首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effects of lacking TNFα on the development and regression of Argon‐laser‐induced choroidal neovascularization (CNV) in mice. We lasered ocular fundus for induction of CNV in both wild‐type (WT) and TNFα‐null (KO) mice. Fluorescence angiography was performed to examine the size of CNV lesions. Gene expression pattern of wound healing‐related components was examined. The effects of exogenous TNFα on apoptosis of human retinal microvascular endothelial cells (HRMECs) and on the tube‐like structure of the cells were investigated in vitro. The results showed that Argon‐laser irradiation‐induced CNV was significantly larger in KO mice than WT mice on Day 21, but not at other timepoints. Lacking TNFα increased neutrophil population in the lesion. The distribution of cleaved caspase3‐labelled apoptotic cells was more frequently observed in the laser‐irradiated tissue in a WT mouse as compared with a KO mouse. Exogenous TNFα induced apoptosis of HRMECs and accelerated regression of tube‐like structure of HRMECs in cell culture. Taken together, TNFα gene knockout delays the regression of laser‐induced CNV in mice. The mechanism underlying the phenotype might include the augmentation of neutrophil population in the treated tissue and attenuation of vascular endothelial cell apoptosis.  相似文献   

2.
Acute liver failure (ALF) is life‐threatening and often associated with high mortality rates. The aim of the present study was to investigate whether extracellular histone H3 could induce ferroptosis in hepatic macrophages in ALF and explore its potential mechanism. RAW264.7 macrophages and C57BL/6 mice were used in this study. LPS, D‐galactosamine (D‐Gal), histone H3, histone H3 antibody, NOD2 agonist Muramyl Dipeptide (MDP) and HDAC6‐siRNA were administered in this study. The key molecules of ferroptosis, NOD2, HDAC6 and the NF‐κb pathway, were detected. In vitro, histone H3 was released into the extracellular environment from cell nucleus after LPS exposure. In addition, histone H3 could induce ferroptosis in RAW264.7 macrophages with increased level of Fe2+ and ROS and decreased levels of GPX4 and GSH. MDP further aggravated ferroptosis in RAW264.7 macrophages stimulated by histone H3, which was accompanied by elevated NOD2, HDAC6, p‐P65 and IκBα. HDAC6‐siRNA ameliorated ferroptosis in RAW264.7 macrophages induced by histone H3, which was accompanied by decreased levels of HDAC6, p‐P65 and IκBα. However, HDAC6‐siRNA did not alter NOD2 levels in RAW264.7 macrophages administered histone H3. In vivo, the levels of NOD2, HDAC6 the NF‐κb pathway and ferroptosis were increased in ALF mice, which were downregulated by histone H3 antibody and upregulated by histone H3. Extracellular histone H3 could induce ferroptosis in hepatic macrophages in ALF by regulating theNOD2‐mediated HDAC6/NF‐κb signalling pathway.  相似文献   

3.
Aging‐related sarcopenia is currently the most common sarcopenia. The main manifestations are skeletal muscle atrophy, replacement of muscle fibers with fat and fibrous tissue. Excessive fibrosis can impair muscle regeneration and function. Lysyl oxidase‐like 2 (LOXL2) has previously been reported to be involved in the development of various tissue fibrosis. Here, we investigated the effects of LOXL2 inhibitor on D‐galactose (D‐gal)‐induced skeletal muscle fibroblast cells and mice. Our molecular and physiological studies show that treatment with LOXL2 inhibitor can alleviate senescence, fibrosis, and increased production of reactive oxygen species in fibroblasts caused by D‐gal. These effects are related to the inhibition of the TGF‐β1/p38 MAPK pathway. Furthermore, in vivo, mice treatment with LOXL2 inhibitor reduced D‐gal‐induced skeletal muscle fibrosis, partially enhanced skeletal muscle mass and strength and reduced redox balance disorder. Taken together, these data indicate the possibility of using LOXL2 inhibitors to prevent aging‐related sarcopenia, especially with significant fibrosis.  相似文献   

4.
5.
Early spontaneous abortion (ESA) is one of the most common complications during pregnancy and the inflammation condition in uterine environment such as long‐term exposure to high TNFα plays an essential role in the aetiology. Ferritin heavy chain (FTH1) is considered to be closely associated with inflammation and very important in normal pregnancy, yet the underlying mechanism of how TNFα induced abortion and its relationship with FTH1 remain elusive. In this study, we found that TNFα and FTH1 were positively expressed in decidual stromal cells and increased significantly in the ESA group compared with the normal pregnancy group (NP group). Besides, TNFα expression was positively correlated with FTH1 expression. Furthermore, in vitro cell model demonstrated that high TNFα could induce the abnormal signals of TNFR/NF‐κB/FTH1 and activate apoptosis both in human endometrium stromal cells (hESCs) and in local decidual tissues. Taken together, the present findings suggest that the excessive apoptosis in response to TNFα‐induced upregulation of FTH1 may be responsible for the occurrence of ESA, and thus provide a possible therapeutic target for the treatment of ESA.  相似文献   

6.
The exact mechanism of tumour necrosis factor α (TNF‐α) promoting osteoclast differentiation is not completely clear. A variety of P2 purine receptor subtypes have been confirmed to be widely involved in bone metabolism. Thus, the purpose of this study was to explore whether P2 receptor is involved in the differentiation of osteoclasts. Mouse bone marrow haematopoietic stem cells (BMHSCs) were co‐cultured with TNF‐α to explore the effect of TNF‐α on osteoclast differentiation and bone resorption capacity in vitro, and changes in the P2 receptor were detected at the same time. The P2 receptor was silenced and overexpressed to explore the effect on differentiation of BMHSCs into osteoclasts. In an in vivo experiment, the animal model of PMOP was established in ovariectomized mice, and anti‐TNF‐α intervention was used to detect the ability of BMHCs to differentiate into osteoclasts as well as the expression of the P2 receptor. It was confirmed in vitro that TNF‐α at a concentration of 20 ng/mL up‐regulated the P2X7 receptor of BMHSCs through the PI3k/Akt signalling pathway, promoted BMHSCs to differentiate into a large number of osteoclasts and enhanced bone resorption. In vivo experiments showed that more P2X7 receptor positive osteoclasts were produced in postmenopausal osteoporotic mice. Anti‐TNF‐α could significantly delay the progression of PMOP by inhibiting the production of osteoclasts. Overall, our results revealed a novel function of the P2X7 receptor and suggested that suppressing the P2X7 receptor may be an effective strategy to delay bone formation in oestrogen deficiency‐induced osteoporosis.  相似文献   

7.
Despite extensive research, the mechanisms underlying rhabdomyolysis‐induced acute kidney injury (AKI) remain largely elusive. In this study, we established both cell and murine models of rhabdomyolysis‐induced AKI by using myoglobin and glycerin, respectively, and provided evidence that protein kinase Cδ (PKC‐δ) was activated in both models and subsequently promoted cell apoptosis. Moreover, we found that this detrimental effect of PKC‐δ activation can be reversed by its pharmaceutical inhibitor rottlerin. Furthermore, we detected and confirmed the existence of PKC‐δ‐mediated myoglobin‐induced cell apoptosis and the expression of TNF‐α and IL1‐β via regulation of the p38MAPK and ERK1/2 signalling pathways. In summary, our research revealed the role of PKC‐δ in renal cell apoptosis and suggests that PKC‐δ is a viable therapeutic target for rhabdomyolysis‐induced AKI.  相似文献   

8.
High fructose intake is a risk factor for liver fibrosis. Polydatin is a main constituent of the rhizome of Polygonum cuspidatum, which has been used in traditional Chinese medicine to treat liver fibrosis. However, the underlying mechanisms of fructose‐driven liver fibrosis as well as the actions of polydatin are not fully understood. In this study, fructose was found to promote zinc finger E‐box binding homeobox 1 (ZEB1) nuclear translocation, decrease microRNA‐203 (miR‐203) expression, increase survivin, activate transforming growth factor β1 (TGF‐β1)/Smad signalling, down‐regulate E‐cadherin, and up‐regulate fibroblast specific protein 1 (FSP1), vimentin, N‐cadherin and collagen I (COL1A1) in rat livers and BRL‐3A cells, in parallel with fructose‐induced liver fibrosis. Furthermore, ZEB1 nuclear translocation‐mediated miR‐203 low‐expression was found to target survivin to activate TGF‐β1/Smad signalling, causing the EMT in fructose‐exposed BRL‐3A cells. Polydatin antagonized ZEB1 nuclear translocation to up‐regulate miR‐203, subsequently blocked survivin‐activated TGF‐β1/Smad signalling, which were consistent with its protection against fructose‐induced EMT and liver fibrosis. These results suggest that ZEB1 nuclear translocation may play an essential role in fructose‐induced EMT in liver fibrosis by targeting survivin to activate TGF‐β1/Smad signalling. The suppression of ZEB1 nuclear translocation by polydatin may be a novel strategy for attenuating the EMT in liver fibrosis associated with high fructose diet.  相似文献   

9.
Fractalkine (CX3CL1, FKN), a CX3C gene sequence inflammatory chemokine, has been found to have pro‐inflammatory and pro‐adhesion effects. Macrophages are immune cells with a critical role in regulating the inflammatory response. The imbalance of M1/M2 macrophage polarization can lead to aggravated inflammation. This study attempts to investigate the mechanisms through which FKN regulates macrophage activation and the acute kidney injury (AKI) involved in inflammatory response induced by lipopolysaccharide (LPS) by using FKN knockout (FKN‐KO) mice and cultured macrophages. It was found that FKN and Wnt/β‐catenin signalling have a positive interaction in macrophages. FKN overexpression inhibited LPS‐induced macrophage apoptosis. However, it enhanced their cell viability and transformed them into the M2 type. The effects of FKN overexpression were accelerated by activation of Wnt/β‐catenin signalling. In the in vivo experiments, FKN deficiency suppressed macrophage activation and reduced AKI induced by LPS. Inhibition of Wnt/β‐catenin signalling and FKN deficiency further mitigated the pathologic process of AKI. In summary, we provide a novel mechanism underlying activation of macrophages in LPS‐induced AKI. Although LPS‐induced murine AKI was unable to completely recapitulate human AKI, the positive interactions between FKN and Wnt/β‐catenin signalling pathway may be a therapeutic target in the treatment of kidney injury.  相似文献   

10.
Ponatinib (PON), a tyrosine kinase inhibitor approved in chronic myeloid leukaemia, has proven cardiovascular toxicity. We assessed mechanisms of sex‐related PON‐induced cardiotoxicity and identified rescue strategies in a murine model. PON+scrambled siRNA‐treated male mice had a higher number of TUNEL‐positive cells (%TdT+6.12 ± 0.17), higher percentage of SA‐β‐gal‐positive senescent cardiac area (%SA‐β‐gal 1.41 ± 0.59) and a lower reactivity degree (RD) for the survival marker Bmi1 [Abs (OD) 5000 ± 703] compared to female (%TdT+3.75 ± 0.35; %SA‐β‐gal 0.77 ± 0.02; Bmi1 [Abs (OD) 8567 ± 2173]. Proteomics analysis of cardiac tissue showed downstream activation of cell death in PON+siRNA scrambled compared to vehicle or PON+siRNA‐Notch1‐treated male mice. Upstream analysis showed beta‐oestradiol activation, and downstream analysis showed activation of cell survival and inhibition of cell death in PON+scrambled siRNA compared to vehicle or PON+siRNA‐Notch1‐treated female mice. PON+scrambled siRNA‐treated mice also had a downregulation of cardiac actin—more marked in males—and vessel density—more marked in females. Female hearts showed greater cardiac fibrosis than their male counterparts at baseline, with no significant change after PON treatment. PON+siRNA‐scrambled mice had less fibrosis than vehicle or PON+siRNA‐Notch1‐treated mice. The left ventricular systolic dysfunction showed by PON+scrambled siRNA‐treated mice (male %EF 28 ± 9; female %EF 36 ± 7) was reversed in both PON+siRNA‐Notch1‐treated male (%EF 53 ± 9) and female mice (%EF 52 ± 8). We report sex‐related differential susceptibility and Notch1 modulation in PON‐induced cardiotoxicity. This can help to identify biomarkers and potential mechanisms underlying sex‐related differences in PON‐induced cardiotoxicity.  相似文献   

11.
It has been demonstrated that the action of dopamine (DA) could enhance the production of tumour necrosis factor‐α (TNF‐α) by astrocytes and potentiate neuronal apoptosis in minimal hepatic encephalopathy (MHE). Recently, sodium hydrosulfide (NaHS) has been found to have neuroprotective properties. Our study addressed whether NaHS could rescue DA‐challenged inflammation and apoptosis in neurons to ameliorate memory impairment in MHE rats and in the neuron and astrocyte coculture system. We found that NaHS suppressed DA‐induced p65 acetylation, resulting in reduced TNF‐α production in astrocytes both in vitro and in vivo. Furthermore, decreased apoptosis was observed in neurons exposed to conditioned medium from DA + NaHS‐challenged astrocytes, which was similar to the results obtained in the neurons exposed to TNF‐α + NaHS, suggesting a therapeutic effect of NaHS on the suppression of neuronal apoptosis via the reduction of TNF‐α level. DA triggered the inactivation of p70 S6 ribosomal kinase (S6K1) and dephosphorylation of Bad, resulting in the disaggregation of Bclxl and Bak and the release of cytochrome c (Cyt. c), and this process could be reversed by NaHS administration. Our work demonstrated that NaHS attenuated DA‐induced astrocytic TNF‐α release and ameliorated inflammation‐induced neuronal apoptosis in MHE. Further research into this approach may uncover future potential therapeutic strategies for MHE.  相似文献   

12.
Liver steatosis is associated with increased ischaemia reperfusion (I/R) injury. Our previous studies have shown that irisin, an exercise‐induced hormone, mitigates I/R injury via binding to αVβ5 integrin. However, the effect of irisin on I/R injury in steatotic liver remains unknown. Kindlin‐2 directly interacts with β integrin. We therefore suggest that irisin protects against I/R injury in steatotic liver via a kindlin‐2 dependent mechanism. To study this, hepatic steatosis was induced in male adult mice by feeding them with a 60% high‐fat diet (HFD). At 12 weeks after HFD feeding, the mice were subjected to liver ischaemia by occluding partial (70%) hepatic arterial/portal venous blood for 60 minutes, which was followed by 24 hours reperfusion. Our results showed HFD exaggerated I/R‐induced liver injury. Irisin (250 μg/kg) administration at the beginning of reperfusion attenuated liver injury, improved mitochondrial function, and reduced oxidative and endoplasmic reticulum stress in HFD‐fed mice. However, kindlin‐2 inhibition by RNAi eliminated irisin''s direct effects on cultured hepatocytes. In conclusion, irisin attenuates I/R injury in steatotic liver via a kindlin‐2 dependent mechanism.  相似文献   

13.
14.
15.
The goal of this study was to test the role cellular senescence plays in the increased inflammation, chronic liver disease, and hepatocellular carcinoma seen in mice null for Cu/Zn‐Superoxide dismutase (Sod1KO). To inhibit senescence, wildtype (WT) and Sod1KO mice were given the senolytics, dasatinib, and quercetin (D + Q) at 6 months of age when the Sod1KO mice begin exhibiting signs of accelerated aging. Seven months of D + Q treatment reduced the expression of p16 in the livers of Sod1KO mice to WT levels and the expression of several senescence‐associated secretory phenotype factors (IL‐6, IL‐1β, CXCL‐1, and GDF‐15). D + Q treatment also reduced markers of inflammation in livers of the Sod1KO mice, for example, cytokines, chemokines, macrophage levels, and Kupffer cell clusters. D + Q treatment had no effect on various markers of liver fibrosis in the Sod1KO mice but reduced the expression of genes involved in liver cancer and dramatically reduced the incidence of hepatocellular carcinoma. Surprisingly, D + Q also reduced markers of necroptosis (phosphorylated and oligomerized MLKL) in the Sod1KO mice to WT levels. We also found that inhibiting necroptosis in the Sod1KO mice with necrostatin‐1s reduced the markers of cellular senescence (p16, p21, and p53). Our study suggests that an interaction occurs between cellular senescence and necroptosis in the liver of Sod1KO mice. We propose that these two cell fates interact through a positive feedback loop resulting in a cycle amplifying both cellular senescence and necroptosis leading to inflammaging and age‐associated pathology in the Sod1KO mice.  相似文献   

16.
Bone is the preferential site of metastasis for breast cancer. Invasion of cancer cells induces the destruction of bone tissue and damnification of peripheral nerves and consequently induced central sensitization which contributes to severe pain. Herein, cancer induced bone pain (CIBP) rats exhibited destruction of tibia, mechanical allodynia and spinal inflammation. Inflammatory response mainly mediated by astrocyte and microglia in central nervous system. Our immunofluorescence analysis revealed activation of spinal astrocytes and microglia in CIBP rats. Transmission electron microscopy (TEM) observations of mitochondrial outer membrane disruption and cristae damage in spinal mitochondria of CIBP rats. Proteomics analysis identified abnormal expression of proteins related to mitochondrial organization and function. Intrathecally, injection of GSK‐3β activity inhibitor TDZD‐8 significantly attenuated Drp1‐mediated mitochondrial fission and recovered mitochondrial function. Inhibition of GSK‐3β activity also suppressed NLRP3 inflammasome cascade and consequently decreased mechanical pain sensitivity of CIBP rats. For cell research, TDZD‐8 treatment significantly reversed TNF‐α induced mitochondrial membrane potential (MMP) deficiency and high mitochondrial reactive oxygen species level. Taken together, GSK‐3β inhibition by TDZD‐8 decreases spinal inflammation and relieves cancer induced bone pain via reducing Drp1‐mediated mitochondrial damage.  相似文献   

17.
Older age and underlying conditions such as diabetes/obesity or immunosuppression are leading host risk factors for developing severe complications from COVID‐19 infection. The pathogenesis of COVID‐19‐related cytokine storm, tissue damage, and fibrosis may be interconnected with fundamental aging processes, including dysregulated immune responses and cellular senescence. Here, we examined effects of key cytokines linked to cellular senescence on expression of SARS‐CoV‐2 viral entry receptors. We found exposure of human umbilical vein endothelial cells (HUVECs) to the inflammatory cytokines, TNF‐α + IFN‐γ or a cocktail of TNF‐α + IFN‐γ + IL‐6, increased expression of ACE2/DPP4, accentuated the pro‐inflammatory senescence‐associated secretory phenotype (SASP), and decreased cellular proliferative capacity, consistent with progression towards a cellular senescence‐like state. IL‐6 by itself failed to induce substantial effects on viral entry receptors or SASP‐related genes, while synergy between TNF‐α and IFN‐γ initiated a positive feedback loop via hyper‐activation of the JAK/STAT1 pathway, causing SASP amplification. Breaking the interactive loop between senescence and cytokine secretion with JAK inhibitor ruxolitinib or antiviral drug remdesivir prevented hyper‐inflammation, normalized SARS‐CoV‐2 entry receptor expression, and restored HUVECs proliferative capacity. This loop appears to underlie cytokine‐mediated viral entry receptor activation and links with senescence and hyper‐inflammation.  相似文献   

18.
Angiotensin‐converting enzyme‐2 (ACE2) and Mas receptor are the major components of the ACE2/Ang 1‐7/Mas axis and have been shown to play a protective role in hypertension and hypertensive nephropathy individually. However, the effects of dual deficiency of ACE2 and Mas (ACE2/Mas) on Ang II‐induced hypertensive nephropathy remain unexplored, which was investigated in this study in a mouse model of hypertension induced in either ACE2 knockout (KO) or Mas KO mice and in double ACE2/Mas KO mice by subcutaneously chronic infusion of Ang II. Compared with wild‐type (WT) animals, mice lacking either ACE2 or Mas significantly increased blood pressure over 7‐28 days following a chronic Ang II infusion (P < .001), which was further exacerbated in double ACE2/Mas KO mice (P < .001). Furthermore, compared to a single ACE2 or Mas KO mice, mice lacking ACE2/Mas developed more severe renal injury including higher levels of serum creatinine and a further reduction in creatinine clearance, and progressive renal inflammation and fibrosis. Mechanistically, worsen hypertensive nephropathy in double ACE2/Mas KO mice was associated with markedly enhanced AT1‐ERK1/2‐Smad3 and NF‐κB signalling, thereby promoting renal fibrosis and renal inflammation in the hypertensive kidney. In conclusion, ACE2 and Mas play an additive protective role in Ang II‐induced hypertension and hypertensive nephropathy. Thus, restoring the ACE2/Ang1‐7/Mas axis may represent a novel therapy for hypertension and hypertensive nephropathy.  相似文献   

19.
ObjectivesEvidences demonstrate that sorafenib alleviates liver fibrosis via inhibiting HSC activation and ECM accumulation. The underlying mechanism remains unclear. Ferroptosis, a novel programmed cell death, regulates diverse physiological/pathological processes. In this study, we aim to investigate the functional role of HSC ferroptosis in the anti‐fibrotic effect of sorafenib.Materials and MethodsThe effects of sorafenib on HSC ferroptosis and ECM expression were assessed in mouse model of liver fibrosis induced by CCl4. In vitro, Fer‐1 and DFO were used to block ferroptosis and then explored the anti‐fibrotic effect of sorafenib by detecting α‐SMA, COL1α1 and fibronectin proteins. Finally, HIF‐1α siRNA, plasmid and stabilizers were applied to assess related signalling pathway.ResultsSorafenib attenuated liver injury and ECM accumulation in CCl4‐induced fibrotic livers, accompanied by reduction of SLC7A11 and GPX4 proteins. In sorafenib‐treated HSC‐T6 cells, ferroptotic events (depletion of SLC7A11, GPX4 and GSH; accumulation iron, ROS and MDA) were discovered. Intriguingly, these ferroptotic events were not appeared in hepatocytes or macrophages. Sorafenib‐elicited HSC ferroptosis and ECM reduction were abrogated by Fer‐1 and DFO. Additionally, both HIF‐1α and SLC7A11 proteins were reduced in sorafenib‐treated HSC‐T6 cells. SLC7A11 was positively regulated by HIF‐1α, inactivation of HIF‐1α/SLC7A11 pathway was required for sorafenib‐induced HSC ferroptosis, and elevation of HIF‐1α could inhibit ferroptosis, ultimately limited the anti‐fibrotic effect.ConclusionsSorafenib triggers HSC ferroptosis via HIF‐1α/SLC7A11 signalling, which in turn attenuates liver injury and fibrosis.  相似文献   

20.
Mice with disruptions of growth hormone‐releasing hormone (GHRH) or growth hormone receptor (GHR) exhibit similar phenotypes of prolonged lifespan and delayed age‐related diseases. However, these two models respond differently to calorie restriction indicating that they might carry different and/or independent mechanisms for improved longevity and healthspan. In order to elucidate these mechanisms, we generated GHRH and GHR double‐knockout mice (D‐KO). In the present study, we focused specifically on the characteristics of female D‐KO mice. The D‐KO mice have reduced body weight and enhanced insulin sensitivity compared to wild‐type (WT) controls. Growth retardation in D‐KO mice is accompanied by decreased GH expression in pituitary, decreased circulating IGF‐1, increased high‐molecular‐weight (HMW) adiponectin, and leptin hormones compared to WT controls. Generalized linear model‐based regression analysis, which controls for body weight differences between D‐KO and WT groups, shows that D‐KO mice have decreased lean mass, bone mineral density, and bone mineral content, but increased adiposity. Indirect calorimetry markers including oxygen consumption, carbon dioxide production, and energy expenditure were significantly lower in D‐KO mice relative to the controls. In comparison with WT mice, the D‐KO mice displayed reduced respiratory exchange ratio (RER) values only during the light cycle, suggesting a circadian‐related metabolic shift toward fat utilization. Interestingly, to date survival data suggest extended lifespan in D‐KO female mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号