首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G. Ahmad  S. Zemenhof 《Life sciences》1978,22(11):963-970
It has been suggested that biogenic amines, in addition to their role as neurotransmitters, may also act as growth factors in the embryo. In the present work the concentrations of serotonin (5-HT), norepinephrine (NE) and dopamine (DA) were first determined in cerebral hemispheres of chick embryo at 10, 12 and 14 days of continuous incubation at 37.5°C (controls). When the incubation on days 7–10 was at 40°C (experimentals), a procedure known to increase brain weight, brain protein content and brain cell number, the concentration of 5-HT in cerebral hemispheres at day 10 (end of neuron proliferation) was significantly increased; this increase persisted at days 12 and 14 but ceased to be significant. No such increases were observed in the concentrations of NE and DA in experimentals at either day 10, 12 or 14. When 5-HT was injected into albumen of eggs at day 7 (37.5°C), cerebral weights, optic lobe weights and cerebral concentrations of 5-HT at day 10 were significantly increased over non-injected controls. Elevated temperature of incubation (40°C) further increased cerebral weight and 5-HT concentration. Cerebral protein contents and the ratios of cerebral protein/ cerebral DNA at day 10 were also significantly increased but cerebral DNA and body weights were unchanged. The optimal doses have been determined. It is concluded that 5-HT may be a growth promoting or regulating factor for embyronal brain.  相似文献   

2.
Action of norepinephrine (NE), serotonin (5-HT) and dopamine (DA) in the hypothalamus have been reported to play key roles in several homeostatic functions, including thermoregulation. The purpose of this study was to clarify differences in concentrations of NE, 5-HT and DA in several hypothalamic regions after cold exposure of different durations. Rats were exposed to a cold environment (5 °C) for 3 hours (3H), 1 day (1D), 7 days (7D), 14 days (14D), or 28 days (28D). After cold exposure, each hypothalamic region was immediately extracted and homogenized. NE, 5-HT and DA in the extract were measured by high-performance liquid chromatography. We observed marked differences in the concentration of NE in each hypothalamic region after cold exposures. NE in the preoptic area was high only in the 3H group, while it was elevated in the 7D, 14D and 28D groups in the ventromedial hypothalamus. On the other hand, NE in the posterior hypothalamus was low in the 3H, 1D, 7D and 14D groups. Cold exposure did not affect concentrations of 5-HT and DA in these hypothalamic regions. Our results suggest the involvement of NE in each hypothalamic region in maintenance of body temperature, and that the neuronally active site in the hypothalamus seems to change during cold acclimation.  相似文献   

3.
Dopamine/norepinephrine (DA/NE) reuptake inhibitors have been used to manipulate the central mechanisms affecting arousal and motivation during exercise. Eight healthy, physically active males performed 30 min fixed-intensity cycling at 50% Wmax followed by 30 min of self paced time trial (TT) with each section interspersed with a 30 s maximal sprint at 9, 19 and 29 min. The DA/NE re-uptake inhibitor administered was bupropion (BUP) versus a placebo (PLA) in either warm (32 °C, BUP32 or PLA32) or moderate (20 °C; BUP20, PLA20) ambient conditions. Core and skin temperature, heart rate and perceptual responses, neuromuscular and hormonal measures were assessed at multiple times throughout the trials and post exercise. Time trial performance remained unchanged across conditions (12.7–13.1 km) although core temperature was elevated in the fixed intensity section of the trials for BUP32 and BUP20 but continued to rise only in BUP32 during the time trial reaching 38.6 °C (P<0.05). NE increased in all conditions from pre-exercise with BUP32 values peaking at the end of TT to 1245.3±203.1 pg/mL (P<0.05) compared to the other conditions. Neuromuscular responses were similar among conditions although peak force was significantly reduced from pre (262±31 N) to post (202±31 N, P<0.05) exercise along with contraction duration (22%, P<0.05) in BUP20. We conclude that DA/NE re-uptake inhibitors influenced thermoregulation in the heat but not exercise performance. DA/NE re-uptake inhibitors are likely to act centrally to override the inhibitory signals for the cessation of exercise with these drugs acting peripherally to reduce the twitch characteristics of skeletal muscle in cooler conditions.  相似文献   

4.
The effects of nicotinic receptor agonists 5-fluoronicotine, noranhydroecgonine and pyridyl-methylpyrrolidine on the cortical release of acetylcholine (ACh), norepinephrine (NE), dopamine (DA) and serotonin (5-HT) were investigated with microdialysis in rat. 5-Fluoronicotine significantly elevated ACh to 76% above basal values and DA to 69% above baseline. Pyridyl-methylpyrrolidine significantly increased the release of ACh to 39% above basal values and NE to 63% above baseline. Noranhydroecgonine significantly elevated NE to 64% above basal values and DA to 147% above baseline. 5-Fluoronicotine did not affect NE release; pyridylmethylpyrrolidine did not alter DA release; and noranhydroecgonine did not significantly elevate ACh release. None of these agonists increased the release of 5-HT. All responses were blocked by prior administration of mecamylamine, a nicotinic receptor antagonist. The distinctive neurotransmitter-related profiles for the three agonists are suggestive of activity at subtypes of nicotinic receptors, an effect that may be related to the structural diversity of these compounds.  相似文献   

5.
Six lines of the bacterium Escherichia coli were propagated for 2,000 generations in a temporally varying environment. The imposed environmental regime consisted of alternating days at 32°C and 42°C, with rapid transitions between them. These derived lines are competitively superior to their ancestor in this variable temperature regime. We also measured changes in the fitness of these lines, relative to their common ancestor, in both the constant (32°C and 42°C) and transition (from 32°C to 42°C and from 42°C to 32°C) components of this temporally varying environment, to determine whether the bacteria had adapted to the particular constant temperatures or the transitions between them, or both. The experimentally evolved lines had significantly improved fitness in each of the constant environmental components (32°C and 42°C). However, the experimental lines had not improved in making the sudden temperature transitions that were a potentially important aspect of the temporally variable environment. In fact, fitness in making at least one of the transitions (between 32°C and 42°C) unexpectedly decreased. This reduced adaptation to the abrupt transitions between these temperatures is probably a pleiotropic effect of mutations that were responsible for the increased fitness at the component temperatures. Among the six experimental lines, significant heterogeneity occurred in their adaptation to the constant and transition components of the variable environment.  相似文献   

6.
The aim of the present study was to assess the heat tolerance of animals of two Portuguese (Alentejana and Mertolenga) and two exotic (Frisian and Limousine) cattle breeds, through the monitoring of physiological acclimatization reactions in different thermal situations characterized by alternate periods of thermoneutrality and heat stress simulated in climatic chambers. In the experiment, six heifers of the Alentejana, Frisian and Mertolenga breeds and four heifers of the Limousine breed were used. The increase in chamber temperatures had different consequences on the animals of each breed. When submitted to heat stress, the Frisian animals developed high thermal polypnea (more than 105 breath movements per minute), which did not prevent an increase in the rectal temperature (from 38.7°C to 40.0°C). However, only a slight depression in food intake and in blood thyroid hormone concentrations was observed under thermal stressful conditions. Under the thermal stressful conditions, Limousine animals decreased food intake by 11.4% and blood triiodothyronine (T3) hormone concentration decreased to 76% of the level observed in thermoneutral conditions. Alentejana animals had similar reactions. The Mertolenga cattle exhibited the highest capacity for maintaining homeothermy: under heat stressful conditions, the mean thermal polypnea increased twofold, but mean rectal temperature did not increase. Mean food intake decreased by only 2% and mean T3 blood concentration was lowered to 85,6% of the concentration observed under thermoneutral conditions. These results lead to the conclusion that the Frisian animals had more difficulty in tolerating high temperatures, the Limousine and Alentejana ones had an intermediate difficulty, and the Mertolenga animals were by far the most heat tolerant.  相似文献   

7.
An elevated heat-shock protein (HSP) content protects cells and tissues, including skeletal muscles, from certain stressors. We determined if heat stress and the elevated HSP content that results is correlated with protection of contractile characteristics of isolated fast and slow skeletal muscles when contracting at elevated temperatures. To elevate muscle HSP content, one hindlimb of Sprague–Dawley rats (21–28 days old, 70–90 g) was subjected to a 15 min 42 °C heat-stress. Twenty-four hours later, both extensor digitorum longus (EDL) and soleus muscles were removed, mounted in either 20 °C or 42 °C Krebs-Ringer solution, and electrically stimulated. Controls consisted of the same muscles from the contra-lateral (non-stressed) hindlimbs as well as muscles from other (unstressed) animals. Isolated muscles were twitched and brought to tetanus every 5 min for 30 min. As expected, HSP content was elevated in muscles from the heat-stressed limbs when compared with controls. Regardless of prior treatment, both EDL and soleus twitch tensions were lower at 42 °C when compared with 20 °C. In addition, when incubated at 42 °C, both muscles showed a drop in twitch tension between 5 and 30 min. For tetanic tension, both muscles also showed an increase in tension between 5 and 30 min when stimulated at 20 °C regardless of treatment but when stimulated at 42 °C no change was observed. No protective effect of an elevated HSP content was observed for either muscle. In conclusion, although heat stress caused an elevation in HSP content, no protective effects were conferred to isolated contracting muscles.  相似文献   

8.
The aim of the present study was to determine whether heat shock protein 72 (HSP72) is induced in a heated rat model at rectal temperatures below 42 degrees C. Rats were divided into a control group and six groups (n = 6) heated to different rectal temperatures: 39 degrees C for 1 h (39), 40.0 degrees C for either 15 min (40S) or 1 h (40L), 41.0 degrees C for either 15 min (41S) or 1 h (41L) and 42.0 degrees C for 15 min (42). Tissues were sampled 4 h after heating. Following 1 h at 40.0 degrees C, HSP72 was significantly elevated in heart (p < 0.005), but not in gut or liver tissue. In all three tissues, HSP72 was significantly elevated under the conditions 41L and 42 compared to control tissue (p < 0.005). Marked differences were found in the amount of HSP72 induced in different tissues in response to the same heat stress. Duration of heating was important in modulating HSP72 induction, with a significantly greater induction of HSP72 following 1 h compared to 15 min at 41 degrees C in all three tissues (p < 0.02). A correlation was found between thermal load and HSP72 content in liver, heart (both p < 0.01) and gut (p < 0.001) for the rats heated to 41 and 42 degrees C. These data show that HSP72 is induced at temperatures below 42 degrees C, with striking differences between tissues.  相似文献   

9.
This study aimed to investigate temperature effect on physiological and biochemical responses of the marine medaka Oryzias melastigma larvae. The fish were subjected to a stepwise temperature change at a rate of 1 °C/h increasing or decreasing from 25 °C (the control) to six target temperatures (12, 13, 15, 20, 28 and 32 °C) respectively, followed by a 7-day thermal acclimation at each target temperature. The fish were fed ad libitum during the experiment. The results showed that cumulative mortalities were significantly increased at low temperatures (12 and 13 °C) and at the highest temperature (32 °C). For the survivors, their growth profile closely followed the left-skewed ‘thermal performance curve’. Routine oxygen consumption rates of fish larvae were significantly elevated at 32 °C but suppressed at 13 and 15 °C (due to a high mortality, larvae from 12 °C were not examined). Levels of heat shock proteins and activities of malate dehydrogenase and lactate dehydrogenase were also measured in fish larvae exposed at 15, 25 and 32 °C. The activities of both enzymes were significantly increased at both 15 and 32 °C, where the fish larvae probably suffered from thermal discomfort and increased anaerobic components so as to compensate the mismatch of energy demand and supply at these thermal extremes. Coincidently, heat shock proteins were also up-regulated at both 15 and 32 °C, enabling cellular protection. Moreover, the critical thermal maxima and minima of fish larvae increased significantly with increasing acclimation temperature, implying that the fish could develop some degrees of thermal tolerance through temperature acclimation.  相似文献   

10.
E V Avakian  S M Horvath 《Life sciences》1980,26(20):1691-1696
The acute effect of α-methyl-p-tyrosine (αMPT), a tyrosine hydroxylase inhibitor, on plasma levels of norepinephrine (NE), epinephrine (E), dopamine (DA), and adrenal cholesterol content in male rats at room temperature (24°C) and during acute cold exposure (4°C) was evaluated. Compared to saline-treated controls, αMPT: 1) significantly reduced plasma NE and DA in both normal and cold stress conditions, 2) significantly increased plasma E in both environments, and 3) stimulated the adrenal cortex. These findings suggest that tyrosine hydroxylase inhibition and consequent catecholamine synthesis blockade disrupts the homeokinesis of adrenergic processes and may present a significant stress to the intact animal.  相似文献   

11.
Exposure to radiofrequency (RF) power deposition during magnetic resonance imaging (MRI) induces elevated body‐tissue temperatures and may cause changes in heart and breathing rates, disturbing thermoregulation. Eleven temperature sensors were placed in muscle tissue and one sensor in the rectum (measured in 10 cm depth) of 20 free‐breathing anesthetized pigs to verify temperature curves during RF exposure. Tissue temperatures and heart and breathing rates were measured before, during, and after RF exposure. Pigs were placed into a 60‐cm diameter whole‐body resonator of a 3 T MRI system. Nineteen anesthetized pigs were divided into four RF exposure groups: sham (0 W/kg), low‐exposure (2.7 W/kg, mean exposure time 56 min), moderate‐exposure (4.8 W/kg, mean exposure time 31 min), and high‐exposure (4.4 W/kg, mean exposure time 61 min). One pig was exposed to a whole‐body specific absorption rate (wbSAR) of 11.4 W/kg (extreme‐exposure). Hotspot temperatures, measured by sensor 2, increased by mean 5.0 ± 0.9°C, min 3.9; max 6.3 (low), 7.0 ± 2.3°C, min 4.6; max 9.9 (moderate), and 9.2 ± 4.4°C, min 6.1, max 17.9 (high) compared with 0.3 ± 0.3°C in the sham‐exposure group (min 0.1, max 0.6). Four time‐temperature curves were identified: sinusoidal, parabolic, plateau, and linear. These curve shapes did not correlate with RF intensity, rectal temperature, breathing rate, or heart rate. In all pigs, rectal temperatures increased (2.1 ± 0.9°C) during and even after RF exposure, while hotspot temperatures decreased after exposure. When rectal temperature increased by 1°C, hotspot temperature increased up to 42.8°C within 37 min (low‐exposure) or up to 43.8°C within 24 min (high‐exposure). Global wbSAR did not correlate with maximum hotspot. Bioelectromagnetics. 2021;42:37–50. © 2020 The Authors. Bioelectromagnetics published by Wiley Periodicals LLC on behalf of Bioelectromagnetics Society  相似文献   

12.
We used bacteria to study experimentally the process of genetic adaptation to environmental temperature. Replicate lines of Escherichia coli, founded from a common ancestor, were propagated for 2,000 generations in 4 different thermal regimes as 4 experimental groups: constant 32, 37, or 42°C (thermal specialists), or a daily alternation between 32 and 42°C (32/42°C: thermal generalists). The ancestor had previously been propagated at 37°C for 2,000 generations. Adaptation of the groups to temperature was measured by improvement in fitness relative to the ancestor, as estimated by competition experiments. All four experimental groups showed improved relative fitness in their own thermal environment (direct response of fitness). However, rates of fitness improvement varied greatly among temperature groups. The 42°C group responded most rapidly and extensively, followed by the 32 and 32/42°C groups, whose fitness improvements were indistinguishable. The 37°C group, which experienced the ancestral temperature, had the slowest and least extensive fitness improvement. The correlated fitness responses of each group, again relative to the common ancestor, were measured over the entire experimental range of temperatures. No necessary tradeoff between direct and correlated responses of fitness was apparent: for example, the improved fitness of the 42°C group at 42°C was not accompanied by a loss of fitness at 37°C or 32°C. However, the direct fitness responses were usually greater than the correlated responses, judged both by comparing direct and correlated responses of a single group at different temperatures and by comparing direct and correlated responses of different groups at a single temperature. These comparisons indicate that the observed adaptation was, in fact, largely temperature specific. Also, the fitness responses of the generalist group across a range of temperatures were less variable than those of the thermal specialist groups considered as whole.  相似文献   

13.
What factors influence the ability of populations to adapt to extreme environments that lie outside their current tolerance limits? We investigated this question by exposing experimental populations of the bacterium Escherichia coli to lethally high temperatures. We asked: (1) whether we could obtain thermotolerant mutants with an extended upper thermal limit by this selective screen; (2) whether the propensity to obtain thermotolerant mutants depended on the prior selective history of the progenitor genotypes; and (3) how the fitness properties of these mutants compared to those of their progenitors within the ancestral thermal niche. Specifically, we subjected 15 independent populations founded from each of six progenitors to 44°C; all of the progenitors had upper thermal limits between about 40°C and 42°C. Two of the progenitors were from populations that had previously adapted to 32°C, two were from populations adapted to 37°C, and two were from populations adapted to 41–42°C. All 90 populations were screened for mutants that could survive and grow at 44°C. We obtained three thermotolerant mutants, all derived from progenitors previously adapted to 41–42°C. In an earlier study, we serendipitously found one other thermotolerant mutant derived from a population that had previously adapted to 32°C. Thus, prior selection at an elevated but nonlethal temperature may predispose organisms to evolve more extreme thermotolerance, but this is not an absolute requirement. It is evidently possible to obtain mutants that tolerate more extreme temperatures, so why did they not become prevalent during prior selection at 41–42°C, near the upper limit of the thermal niche? To address this question, we measured the fitness of the thermotolerant mutants at high temperatures just within the ancestral niche. None of the four thermotolerant mutants had an advantage relative to their progenitor even very near the upper limit of the thermal niche; in fact, all of the mutants showed a noticeable loss of fitness around 41°C. Thus, the genetic adaptations that improve competitive fitness at high but nonlethal temperatures are distinct from those that permit tolerance of otherwise lethal temperatures.  相似文献   

14.
Although sex determination in amphibians is believed to be a genetic process, environmental factors such as temperature are known to influence the sex differentiation and development. Extremely low and high temperatures influence gonadal development and sex ratio in amphibians but the mechanism of action is not known. In the present study, effect of different temperatures on gonadal development, sex ratio and metamorphosis was studied in the Indian skipper frog, Euphlyctis cyanophlyctis. The embryos of Gosner stage 7 were exposed to 20, 22, 24, 26, 28, 30 and 32°C up to tadpole stage 42. The embryos (stage 7) were also exposed to 20 and 32°C up to tadpole stage 25 (non-feeding stages). Tadpoles of stage 25 were reared at 20 and 32°C up to stage 42 (feeding stages). The results show that exposure to higher temperatures (28, 30 and 32°C) during stages 7–42 produced male-biased sex ratio. Rearing of tadpoles at 32°C during stages 25–42 produced male-biased sex ratio, while exposure during stages 7–25 did not affect sex ratio. Embryos and tadpoles exposed to lower temperatures (20 and 22°C) died during the early stages. High temperatures stimulated testis development, and disturbed ovary development. Exposure to high temperatures resulted in the early metamorphosis of tadpoles with reduced body size. These results demonstrated that high temperatures influence gonadal development differently in male and female tadpoles, leading to male-biased sex ratio. These results suggest that high temperature probably acts through stress hormones and favours the small-sized sex.  相似文献   

15.
Eight healthy and physically well-trained male students exercised on a treadmill for 60 min while being immersed in water to the middle of the chest in a laboratory flowmill. The water velocity was adjusted so that the intensity of exercise correspond to 50% maximal oxygen uptake of each subject, and experiments were performed once at each of three water temperatures: 25, 30, 35°C, following a 30-min control period in air at 25°C, and on a treadmill in air at an ambient temperature of 25°C. Thermal states during rest and exercise were determined by measuring rectal and skin temperatures at various points, and mean skin temperatures were calculated. The intensity of exercise was monitored by measuring oxygen consumption, and heart rate was monitored as an indicator for cardiovascular function. At each water temperature, identical oxygen consumption levels were attained during exercise, indicating that no extra heat was produced by shivering at the lowest water temperature. The slight rise in rectal temperature during exercise was not influenced by the water temperature. The temperatures of skin exposed to air rose slightly during exercise at 25°C and 30°C water temperature and markedly at 35°C. The loss of body mass increased with water temperature indicating that both skin blood flow and sweating during exercise increased with the rise in water temperature. The rise in body temperature provided the thermoregulatory drive for the loss of the heat generated during exercise. Heart rate increased most during exercise in water at 35°C, most likely due to enhanced requirements for skin blood flow. Although such requirements were certainly smallest at 25°C water temperature, heart rate at this temperature was slightly higher than at 30°C suggesting reflex activation of sympathetic control by cold signals from the skin. There was a significantly greater increase in mean skin and rectal temperatures in subjects exercising on the treadmill in air, compared to those exercising in water at 25°C. Accepted: 22 May 1998  相似文献   

16.
Combined inhibition of dopamine (DA)/norepinephrine (NE) reuptake improves exercise performance and increases core temperature in the heat. A recent study demonstrated that this effect may primarily be related to increased DA activity. NE reuptake inhibition (NERI), however, has received little attention in humans, certainly in the heat, where central fatigue appears to be a main factor influencing performance. Therefore the present study examines the effect of NERI (reboxetine) on exercise capacity, thermoregulation, and hormonal response in normal and high temperature. Nine healthy well-trained male cyclists participated in this study. Subjects ingested either placebo (Pla; 2 x 8 mg) or reboxetine (Rebox; 2 x 8 mg). Subjects exercised in temperate (18 degrees C) or warm (30 degrees C) conditions and cycled for 60 min at 55% W(max) immediately followed by a time trial (TT; Pla18/Rebox18; Pla30/Rebox30) to measure exercise performance. Acute NERI decreased power output and consequently exercise performance in temperate (P = 0.018) and warm (P = 0.007) conditions. Resting heart rate was significantly elevated by NERI (18 degrees C: P = 0.02; 30 degrees C: P = 0.018). In Rebox18, heart rate was significantly higher than in the Pla18, while in the heat no effect of the drug treatment was reported during exercise. In Rebox30, all hormone concentrations increased during exercise, except for growth hormone (GH), which was significantly lower during exercise. In Rebox18, prolactin (PRL) concentrations were significantly elevated; GH was significantly higher at rest, but significantly lower during exercise. In conclusion, manipulation of the NE system decreases performance and modifies hormone concentrations, thereby indicating a central NE effect of the drug. These findings confirm results from previous studies that predominantly increased DA activity is important in improving performance.  相似文献   

17.
18.
Systemically administered (–)nicotine (0.2–1.2 mg/kg, s.c.) significantly increased the release of acetylcholine (ACh), norepinephrine (NE) and dopamine (DA) in rat cortex. The lowest dose of (–)nicotine examined (0.2 mg/kg, s.c) also significantly elevated extracellular serotonin (5-HT) levels, and the maximal increases of extracellular ACh (122% at 90 min post injection) and DA levels (249% at 120 min post-injection) were observed following this dose. In contrast, the maximal increase of NE release (157% at 30 min post-injection) was observed following the highest dose of (–)nicotine injected (1.2 mg/kg, s.c.). This higher dose consistently produced generalized seizures. Repeating the (–)nicotine (0.58 mg/kg, s.c.) injection four hours after the first administration significantly elevated extracellular NE levels and also appeared to increase DA and CCh release. In addition, extracellular ACh and DA levels increased significantly in the dialysate after (–)nicotine was administered directly to the neocortex through the microdialysis probe membrane. Norepinephrine levels appeared to be elevated in the cortex following local administration as well.  相似文献   

19.
B Lemmer  U Jarosch  K Breddin 《Life sciences》1977,21(11):1665-1673
The active uptake of 14C-5-HT into human platelets at 37°C was studied at various times (10–130 min) and at various storage temperatures (4°, 22°, 37°C) after venepuncture. 5-HT uptake was significantly influenced by both variables. There was no direct correlation between 5-HT uptake and storage temperatures, storage time and changes in the pH of PRP, resp. The apparent Km-value for the 5-HT uptake (0.5μM) remained constant. However, the Ki-values obtained for different uptake inhibitors at the different experimental conditions indicate the need for exact standardization.  相似文献   

20.
Abstract: In the current study we examined the effects of coadministration of a serotonin 5-HT1A antagonist, (±)-1-(1 H -indol-4-yloxy)-3-(cyclohexylamino)-2-propanol maleate (LY 206130), and a dual 5-HT and norepinephrine (NE) uptake inhibitor, duloxetine, on extracellular levels of NE, 5-HT, dopamine (DA), 5-hydroxyindoleacetic acid, and 3,4-dihydroxyphenylacetic acid in rat hypothalamus microdialysates. LY 206130 (3.0 mg/kg, s.c.) alone significantly increased NE and DA levels by 60 and 34%, respectively, without affecting 5-HT levels. Duloxetine administration at 4.0 mg/kg, i.p. alone produced no significant changes in levels of 5-HT, NE, or DA. In contrast, when LY 206130 and duloxetine were coadministered at 3.0 mg/kg, s.c. and 4.0 mg/kg, i.p., respectively, 5-HT, NE, and DA levels increased to 5.7-, 4.8-, and threefold over their respective basal levels. These data demonstrate that antagonism of somatodendritic 5-HT1A autoreceptors and concomitant inhibition of 5-HT and NE uptake with duloxetine may promote synergistic increases in levels of extracellular 5-HT, NE, and DA in hypothalamus of conscious, freely moving rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号