首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characters from enamel microstructure have not been used in recent phylogenetic analyses of Mesozoic Mammalia. Reasons are that enamel characters have been perceived as (A) variable without regard to systematic position of taxa, (B) inconsistently reported within the literature, and (C) simply scored as either prismatic or not prismatic in earlier mammals. Our work on Mesozoic mammals such as Sinoconodon, Gobiconodon, Triconodontidae, Docodon, Laolestes, and others suggests that synapsid columnar enamel (SCE) structure was easily transformed into plesiomorphic prismatic enamel (PPE) and that PPE may be described with at least five independent character states. Two PPE characters—a flat, open prism sheath and a planar prism seam—were present in the cynodont Pachygenelus and in several Jurassic and Cretaceous mammals. We propose that appearance of a prism sheath transforms SCE into PPE and that reduction and loss of a prism sheath reverse PPE into SCE, in both phylogeny and ontogeny. We further propose that no amniote vertebrates other than the trithelodontid cynodont, Pachygenelus, plus Mammalia have ever evolved an ameloblastic Tomes process capable of secreting PPE and that the genetic potential to secrete PPE is a synapomorphy of Pachygenelus plus Mammalia, whether or not all lineages of the clade have expressed that potential.  相似文献   

2.
Ameloblastin is an enamel-specific protein that plays critical roles in enamel formation, as well as adhesion between ameloblasts and the enamel matrix, as shown by analyses of ameloblastin-null mice. In the present study, we produced two distinct antibodies that recognize the N-terminus and C-terminus regions of caiman ameloblastin, in order to elucidate the fate of ameloblastin peptides during tooth development. An immunohistochemical study using the antibodies showed that caiman ameloblastin was a tooth-specific matrix protein that may initially be cleaved into two groups, N- and C-terminal peptides, as shown in mammals. The distribution of the N-terminal peptides was much different from that of the C-terminal peptides during enamel formation; however, it was similar to that of mammalian ameloblastin. Although ameloblastin is thought to have a relationship with the enamel prismatic structure in mammals, in the caiman, which has non-prismatic enamel, functional ameloblastin has no relationship with any enamel structure. Consequently, it is suggested that ameloblastin has kept its original functions during the evolutionary transition from reptiles to mammals and that it has been conserved in both lineages during more than 200 million years of evolution. Our results support the notion that ameloblastin acts as a factor for ameloblast adhesion to enamel matrix, because distribution of the C-terminal peptides was consistently restricted on the surface layers of enamel matrix specimens ranging from immature to nearly completely mature. The principal molecules that provide the adhesive function are presumably C-terminal peptides.  相似文献   

3.
The teeth of every primate, living and extinct, are covered by a hard, durable layer of enamel. This is not unique: Almost all mammals have enamel-covered teeth. In addition, all of the variations in enamel structure that occur in primates are also found in other groups of mammals. Nevertheless, the very complexity of enamel and the variation we see in it on the teeth of living and fossil primates raise questions about its evolutionary significance. Is the complex structure of primate enamel adaptive? What, if anything, does enamel structure tell us about primate phylogeny? To answer these questions, we need to look more closely at the characteristics of prismatic enamel in primates and at the distribution of those characteristics, both in relation to our knowledge of primate dental function and feeding ecology and from a phylogenetic perspective.  相似文献   

4.
The tribosphenic molar is a dental apomorphy of mammals and the molar type from which all derived types originated. Its enamel coat is expected to be ancestral: a thin, evenly distributed layer of radial prismatic enamel. In the bat Myotis myotis, we reinvestigated the 3D architecture of the dental enamel using serial sectioning combined with scanning electron microscopy analyses, biometrics of enamel prisms and crystallites, and X‐ray diffraction. We found distinct heterotopies in enamel thickness (thick enamel on the convex sides of the crests, thin on the concave ones), angularity of enamel prisms, and in distribution of particular enamel types (prismatic, interprismatic, aprismatic) and demonstrated structural relations of these heterotopies to the cusp and crest organization of the tribosphenic molar. X‐ray diffraction demonstrated that the crystallites composing the enamel are actually the aggregates of much smaller primary crystallites. The differences among particular enamel types in degree of crystallite aggregation and the variation in structural microstrain of the primary crystallites (depending upon the duration and the mechanical context of mineralization) represent factors not fully understood as yet that may contribute to the complexity of enamel microarchitecture in a significant way. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
The previously unknown enamel microstructure of a variety of Mesozoic and Paleogene mammals ranging from monotremes and docodonts to therians is described and characterized here. The novel information is used to explore the structural diversity of enamel in early mammals and to explore the impact of the new information for systematics. It is presently unclear whether enamel prisms arose several times during mammalian evolution or arose only once with several reversals to prismless structure. At least two undisputed reversions or simplifications are known—in the monotreme clade from Obdurodon to Ornithorhynchus (via Monotrematum?), and (perhaps more than once) within the clade from archaeocete to a variety of odontocete whales. Similarly, both prismatic and nonprismatic enamel is present among docodonts. Seven discrete characters showing enough morphological diversity to be of potential importance in phylogenetic reconstructions may be identified as a more appropriate summary of enamel microstructural diversity among mammaliaforms than the single character “prismatic enamel-present/absent” employed in recent matrices. Inclusion of five of these characters in the matrix of Luo et al. (2002) modifies the original topology by collapsing several nodes involving triconodonts and other nontribosphenic taxa. There is considerable support for prismatic enamel as a synapomorphy of trithelodonts plus Mammaliamorpha, and multituberculates appear to have small or “normal” sized prisms as the ancestral condition, with some (as yet) enigmatic changes to nonprismatic structure in some basal members of the group and the appearance of “gigantoprismatic” structure as an autapomorphic state of less inclusive clades. Other potential qualitative characters and the need for attaining appropriate methods to incorporate quantitative features may be important for future analyses.  相似文献   

6.

Background

Mutations in the Planar Cell Polarity (PCP) core gene Vangl2 cause the most severe neural tube defects (NTD) in mice and humans. Genetic studies show that the Vangl2 gene genetically interacts with a close homologue Vangl1. How precisely Vangl2 and Vangl1 proteins interact and crosstalk has remained a difficult issue to address, with the main obstacle being the accurate discrimination of the two proteins, which share close sequence homology. Experimental evidence previously presented has been sparse and addressed with ectopically expressed proteins or with antibodies unable to biochemically discriminate Vangl1 from Vangl2, therefore giving rise to unclear results.

Methodology and Main Findings

A highly specific monoclonal anti-Vangl2 antibody was generated and rigorously tested on both recombinant and extracted Vangl2 using surface plasmon resonance (SPR) analysis, western blot, and immunoprecipitation experiments. This antibody efficiently affinity-purified Vangl2 from cell lysates and allowed the unambiguous identification of endogenous Vangl2 by proteomic analysis. Vangl1 was also present in Vangl2 immunoprecipitates, establishing the first biochemical evidence for the existence of Vangl2/Vangl1 heterodimers at an endogenous level. Epitope-tagged Vangl2 and Vangl1 confirmed that both proteins interact and colocalize at the plasma membrane. The Vangl2 antibody is able to acutely assess differential expression levels of Vangl2 protein in culture cell lines, as corroborated with gene expression analysis. We characterised Vangl2 expression in the cochlea of homozygous and heterozygous Lp mutant mice bearing a point mutation within the C-terminal Vangl2 region that leads to profound PCP defects. Our antibody could detect much lower levels of Vangl2Lp protein in mutant mice compared to the wild type mice.

Conclusion

Our results provide an in-depth biochemical characterisation of the interaction observed between Vangl paralogues.  相似文献   

7.
Characteristics common to a cytokine family spanning five orders of insects   总被引:1,自引:0,他引:1  
Growth-blocking peptide (GBP) is a member of an insect cytokine family with diverse functions including growth and immunity controls. Members of this cytokine family have been reported in 15 species of Lepidoptera, and we have recently identified GBP-like peptides in Diptera such as Lucilia cuprina and Drosophila melanogaster, indicating that this peptide family is not specific to Lepidoptera. In order to extend our knowledge of this peptide family, we purified the same family peptide from one of the tenebrionids, Zophobas atratus,1 isolated its cDNA, and sequenced it. The Z. atratus GBP sequence together with reported sequence data of peptides from the same family enabled us to perform BLAST searches against EST and genome databases of several insect species including Coleoptera, Diptera, Hymenoptera, and Hemiptera and identify homologous peptide genes. Here we report conserved structural features in these sequence data. They consist of 19–30 amino acid residues encoded at the C terminus of a 73-152 amino acid precursor and contain the motif C-x(2)-G-x(4,6)-G-x(1,2)-C-[KR], which shares a certain similarity with the motif in the mammalian EGF peptide family. These data indicate that these small cytokines belonging to one family are present in at least five insect orders.  相似文献   

8.
9.
10.
Zebrafish gastrulation cell movements occur in the context of dynamic changes in extracellular matrix (ECM) organization and require the concerted action of planar cell polarity (PCP) proteins that regulate cell elongation and mediolateral alignment. Data obtained using Xenopus laevis gastrulae have shown that integrin–fibronectin interactions underlie the formation of polarized cell protrusions necessary for PCP and have implicated PCP proteins themselves as regulators of ECM. By contrast, the relationship between establishment of PCP and ECM assembly/remodeling during zebrafish gastrulation is unclear. We previously showed that zebrafish embryos carrying a null mutation in the four-pass transmembrane PCP protein vang-like 2 (vangl2) exhibit increased matrix metalloproteinase activity and decreased immunolabeling of fibronectin. These data implicated for the first time a core PCP protein in the regulation of pericellular proteolysis of ECM substrates and raised the question of whether other zebrafish PCP proteins also impact ECM organization. In Drosophila melanogaster, the cytoplasmic PCP protein Prickle binds Van Gogh and regulates its function. Here we report that similar to vangl2, loss of zebrafish prickle1a decreases fibronectin protein levels in gastrula embryos. We further show that Prickle1a physically binds Vangl2 and regulates both the subcellular distribution and total protein level of Vangl2. These data suggest that the ability of Prickle1a to impact fibronectin organization is at least partly due to effects on Vangl2. In contrast to loss of either Vangl2 or Prickle1a function, we find that glypican4 (a Wnt co-receptor) and frizzled7 mutant gastrula embryos with disrupted non-canonical Wnt signaling exhibit the opposite phenotype, namely increased fibronectin assembly. Our data show that glypican4 mutants do not have decreased proteolysis of ECM substrates, but instead have increased cell surface cadherin protein expression and increased intercellular adhesion. These data indicate that Wnt/Glypican4/Frizzled signaling regulates ECM assembly through effects on cadherin-mediated cell cohesion. Together, our results demonstrate that zebrafish Vangl2/Prickle1a and non-canonical Wnt/Frizzled signaling have opposing effects on ECM organization underlying PCP and gastrulation cell movements.  相似文献   

11.
We present solution-state NMR structures for two putative venom peptides from Sicarius dolichocephalus. These peptides were identified from cDNA libraries created from venom gland mRNA and then recombinantly expressed. They are the first structures from any species of Sicarius spiders, and the first peptide structures for any haplogyne spiders. These peptides are homologous to one another, and while they have at most only 20% sequence identity with known venom peptides their structures follow the inhibitor cystine knot motif that has been found in a broad range of venom peptides.  相似文献   

12.
The planar cell polarity (PCP) pathway is a conserved non-canonical (β-catenin-independent) branch of Wnt signaling crucial to embryogenesis, during which it regulates cell polarity and polarized cell movements. Disruption of PCP components in mice, including Vangl2 and Dact1, results in defective neural tube closure and other developmental defects. Here, we show that Sestd1 is a novel binding partner of Vangl2 and Dact1. The Sestd1-Dact1 interface is formed by circumscribed regions of Sestd1 (the carboxyl-terminal region) and Dact1 (the amino-terminal region). Remarkably, we show that loss of Sestd1 precisely phenocopies loss of Dact1 during embryogenesis in mice, leading to a spectrum of birth malformations, including neural tube defects, a shortened and/or curly tail, no genital tubercle, blind-ended colons, hydronephrotic kidneys, and no bladder. Moreover, as with Dact1, a knock-out mutation at the Sestd1 locus exhibits reciprocal genetic rescue interactions during development with a semidominant mutation at the Vangl2 locus. Consistent with this, examination of Wnt pathway activities in Sestd1 mutant mouse embryonic tissue reveals disrupted PCP pathway biochemistry similar to that characterized in Dact1 mutant embryos. The Sestd1 protein is a divergent member of the Trio family of GTPase regulatory proteins that lacks a guanine nucleotide exchange factor domain. Nonetheless, in cell-based assays the Sestd1-Dact1 interaction can induce Rho GTPase activation. Together, our data indicate that Sestd1 cooperates with Dact1 in Vangl2 regulation and in the PCP pathway during mammalian embryonic development.  相似文献   

13.
Tooth enamel microstructure is a reliable and widely used indicator of dietary interpretations and data for phylogenetic reconstruction, if all levels of variability are investigated. It is usually difficult to have a thorough examination at all levels of enamel structures for any mammals, especially for the early mammals, which are commonly represented by sparse specimens. Because of the random preservation of specimens, enamel microstructures from different teeth in various species are often compared. There are few examples that convincingly show intraspecific variation of tooth enamel microstructure in full dentition of a species, including multituberculates. Here we present a systematic survey of tooth enamel microstructures of Lambdopsalis bulla, a taeniolabidoid multituberculate from the Late Paleocene Nomogen Formation, Inner Mongolia. We examined enamel structures at all hierarchical levels. The samples are treated differently in section orientations and acid preparation and examined using different imaging methods. The results show that, except for preparation artifacts, the crystallites, enamel types, Schmelzmuster and dentition types of Lambdopsalis are relatively consistent in all permanent teeth, but the prism type, including the prism shape, size and density, may vary in different portions of a single tooth or among different teeth of an individual animal. The most common Schmelzmuster of the permanent teeth in Lambdopsalis is a combination of radial enamel in the inner and middle layers, aprismatic enamel in the outer layer, and irregular decussations in tooth crown area with great curvature. The prism seam is another comparably stable characteristic that may be a useful feature for multituberculate taxonomy. The systematic documentation of enamel structures in Lambdopsalis may be generalized for the enamel microstructure study, and thus for taxonomy and phylogenetic reconstruction, of multituberculates and even informative for the enamel study of other early mammals.  相似文献   

14.

Objectives

Developmental defects of tooth enamel are associated with systemic physiological stress and have been linked to seasonal environmental factors such as rainfall, temperature, and fruit availability. Here, we evaluate whether linear enamel hypoplasia and accentuated perikymata occur with any cyclicity on lower canines and then whether cycles differ between Bornean and Sumatran orangutans.

Materials and Methods

Epoxy casts of lower canines from Pongo abelii (n = 14) and P. pygmaeus (n = 33) were evaluated for perikymata and dental enamel defects. Individual developmental sequences (IDSs) were generated for each canine, tracking the position of each defect in the context of continuous perikymata (time). Autocorrelation, a form of time-series statistical analysis was run for each canine to identify whether any cyclicity of defect expression was discernable.

Results

Autocorrelation revealed cycles of defect expression within canines, but no common cycle periodicities were identified between individuals of the same species or across species. P. pygmaeus averaged more linear enamel hypoplasia per year than P. abelli, but no other comparisons (number of defects, number of perikymata between defects, and autocorrelation analysis) revealed differences between the species.

Discussion

Although no common patterns of defect expression were identified within or between P. abelli and P. pygmaeus, the potential for autocorrelation analysis is promising for primatological and paleoanthropological studies of seasonal phenomena.
  相似文献   

15.
T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) contains the canonical phosphoprotein phosphatase 1 (PPP1) binding motif, composed by the amino acid sequence RVSF. We identified and validated the binding of TCTEX1D4 to PPP1 and demonstrated that indeed this protein is a novel PPP1 interacting protein. Analyses of twenty-one mammalian species available in public databases and seven Lagomorpha sequences obtained in this work showed that the PPP1 binding motif 90RVSF93 is present in all of them and is flanked by a palindromic sequence, PLGS, except in three species of pikas (Ochotona princeps, O. dauurica and O. pusilla). Furthermore, for the Ochotona species an extra glycosylation site, motif 96NLS98, and the loss of the palindromic sequence were observed. Comparison with other lagomorphs suggests that this event happened before the Ochotona radiation. The dN/dS for the sequence region comprising the PPP1 binding motif and the flanking palindrome highly supports the hypothesis that for Ochotona species this region has been evolving under positive selection. In addition, mutational screening shows that the ability of pikas TCTEX1D4 to bind to PPP1 is maintained, although the PPP1 binding motif is disrupted, and the N- and C-terminal surrounding residues are also abrogated. These observations suggest pika as an ideal model to study novel PPP1 complexes regulatory mechanisms.  相似文献   

16.
Aspein is one of the unusually acidic shell matrix proteins originally identified from the pearl oyster Pinctada fucata. Aspein is thought to play important roles in the shell formation, especially in calcite precipitation in the prismatic layer. In this study, we identified Aspein homologs from three closely related pterioid species: Pinctada maxima, Isognomon perna, and Pteria penguin. Our immunoassays showed that they are present in the calcitic prismatic layer but not in the aragonitic nacreous layer of the shells. Sequence comparison showed that the Ser-Glu-Pro and the Asp-Ala repeat motifs are conserved among these Aspein homologs, indicating that they are functionally important. All Aspein homologs examined share the Asp-rich D-domain, suggesting that this domain might have a very important function in calcium carbonate formation. However, sequence analyses showed a significantly high level of variation in the arrangement of Asp in the D-domain even among very closely related species. This observation suggests that specific arrangements of Asp are not required for the functions of the D-domain.  相似文献   

17.
Amelogenin, the most abundant enamel matrix protein, plays several critical roles in enamel formation. Importantly, we previously found that the singular phosphorylation site at Ser16 in amelogenin plays an essential role in amelogenesis. Studies of genetically knock-in (KI) modified mice in which Ser16 in amelogenin is substituted with Ala that prevents amelogenin phosphorylation, and in vitro mineralization experiments, have shown that phosphorylated amelogenin transiently stabilizes amorphous calcium phosphate (ACP), the initial mineral phase in forming enamel. Furthermore, KI mice exhibit dramatic differences in the enamel structure compared with wild type (WT) mice, including thinner enamel lacking enamel rods and ectopic surface calcifications. Here, we now demonstrate that amelogenin phosphorylation also affects the organization and composition of mature enamel mineral. We compared WT, KI, and heterozygous (HET) enamel and found that in the WT elongated crystals are co-oriented within each rod, however, their c-axes are not aligned with the rods’ axes. In contrast, in rod-less KI enamel, crystalline c-axes are less co-oriented, with misorientation progressively increasing toward the enamel surface, which contains spherulites, with a morphology consistent with abiotic formation. Furthermore, we found significant differences in enamel hardness and carbonate content between the genotypes. ACP was also observed in the interrod of WT and HET enamel, and throughout aprismatic KI enamel. In conclusion, amelogenin phosphorylation plays crucial roles in controlling structural, crystallographic, mechanical, and compositional characteristics of dental enamel. Thus, loss of amelogenin phosphorylation leads to a reduction in the biological control over the enamel mineralization process.  相似文献   

18.
Tumor protein D54 (TPD54) is an abundant cytosolic protein that belongs to the TPD52 family, a family of four proteins (TPD52, 53, 54, and 55) that are overexpressed in several cancer cells. Even though the functions of these proteins remain elusive, recent investigations indicate that TPD54 binds to very small cytosolic vesicles with a diameter of ca. 30 nm, half the size of classical (e.g., COPI and COPII) transport vesicles. Here, we investigated the mechanism of intracellular nanovesicle capture by TPD54. Bioinformatical analysis suggests that TPD54 contains a small coiled-coil followed by four amphipathic helices (AH1-4), which could fold upon binding to lipid membranes. Limited proteolysis, CD spectroscopy, tryptophan fluorescence, and cysteine mutagenesis coupled to covalent binding of a membrane-sensitive probe showed that binding of TPD54 to small liposomes is accompanied by large structural changes in the amphipathic helix region. Furthermore, site-directed mutagenesis indicated that AH2 and AH3 have a predominant role in TPD54 binding to membranes both in cells and using model liposomes. We found that AH3 has the physicochemical features of an amphipathic lipid packing sensor (ALPS) motif, which, in other proteins, enables membrane binding in a curvature-dependent manner. Accordingly, we observed that binding of TPD54 to liposomes is very sensitive to membrane curvature and lipid unsaturation. We conclude that TPD54 recognizes nanovesicles through a combination of ALPS-dependent and ALPS-independent mechanisms.  相似文献   

19.
Dental fluorosis has recently been diagnosed in wild marsupials inhabiting a high-fluoride area in Victoria, Australia. Information on the histopathology of fluorotic marsupial enamel has thus far not been available. This study analyzed the developmental and post-eruptive defects in fluorotic molar enamel of eastern grey kangaroos (Macropus giganteus) from the same high-fluoride area using light microscopy and backscattered electron imaging in the scanning electron microscope. The fluorotic enamel exhibited a brownish to blackish discolouration due to post-eruptive infiltration of stains from the oral cavity and was less resistant to wear than normally mineralized enamel of kangaroos from low-fluoride areas. Developmental defects of enamel included enamel hypoplasia and a pronounced hypomineralization of the outer (sub-surface) enamel underneath a thin rim of well-mineralized surface enamel. While the hypoplastic defects denote a disturbance of ameloblast function during the secretory stage of amelogenesis, the hypomineralization is attributed to an impairment of enamel maturation. In addition to hypoplastic defects, the fluorotic molars also exhibited numerous post-eruptive enamel defects due to the flaking-off of portions of the outer, hypomineralized enamel layer during mastication. The macroscopic and histopathological lesions in fluorotic enamel of M. giganteus match those previously described for placental mammals. It is therefore concluded that there exist no principal differences in the pathogenic mechanisms of dental fluorosis between marsupial and placental mammals. The regular occurrence of hypomineralized, opaque outer enamel in the teeth of M. giganteus and other macropodids must be considered in the differential diagnosis of dental fluorosis in these species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号