首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enzyme that rapidly catalyzes the hydrolysis of denatured DNA has been partially purified from germinated pea (Pisum sativum) seeds. The nuclease has been characterised as having endonucleolytic activity degrading single stranded DNA at a 15- to 20-fold higher rate than native DNA. From exclusion chromatography on Sephadex G-200 the molecular weight of the enzyme was calculated to be 42,000. The small extent of hydrolysis of native DNA is suggested to be due to the degradation of partially denatured areas in the native molecule. The enzyme shows activity over a broad range of pH but was most active between pH 6.5 and 8.0. The maximum hydrolysis of denatured DNA was observed at 45 °C while with native DNA the temperature optima was 60 °C. The nuclease does not show an absolute requirement for added divalent cations. However, the addition of Mg2+ and Ca2+ results in 40 and 60% stimulation, respectively. EDTA has no effect on enzymatic activity, whereas 8-hydroxyquinoline was inhibitory.  相似文献   

2.
The surface-bound nuclease of Staphylococcus aureus liberated during formation of protoplasts was purified 1,000-fold by chromatography on phosphocellulose. Its properties were compared with those of the known extracellular nuclease, purified 200-fold by the same procedures. The adsorbance of the surface-bound nuclease on phosphocellulose was distinctly different from that of the extracellular nuclease, but other properties of the two enzymes were similar. Both enzymes had a pH optimum of about 10 and required Ca2+ for activity. Both enzymes hydrolyzed deoxyribonucleic acid (DNA) and ribonucleic acid, and denatured DNA was a better substrate than native DNA. Both enzymes were inhibited by the same metal ions. Nuclease-less mutants of S. aureus were isolated from S. aureus 209P by using N-methyl-N′-nitroso-N-nitrosoguanidine. These mutants contained neither surface-bound nor extracellular nuclease activity. These results suggest that the surface-bound and extracellular nucleases are expressed from the same cistron of S. aureus.  相似文献   

3.
In our studies on the role of enzymes in plant DNA replication, recombination, and repair, we isolated from cauliflower (Brassica oleracea L. var. botrytis) inflorescences a single-stranded DNA-specific endonuclease that was inhibited by ATP. The endonuclease, designated cauliflower nuclease II, was purified to near homogeneity through six successive column chromatographies. The enzyme is a single polypeptide with a molecular mass of 70 kDa as judged by the results of sodium dodecyl sulfate-polyacry amide gel electrophoresis, activity gel, and gel-filtration column chromatography. The enzyme can cleave a linear or a circular single-stranded DNA but cannot cut or nick a double-stranded DNA. The mode of activity of the nuclease is endonucleolytic and non-processive. Interestingly, the endonuclease activity is strongly inhibited by less than 0.1 mM ATP, although the role of this inhibition is thus far unclear. While ATPγS and GTP can also inhibit the activity, other ribonucleoside triphosphates are much less effective. The optimum pH of the enzyme is 5.6. The enzyme requires an exceptionally high ionic strength, 0.2 M KCI for optimum activity, and without these ions no activity can be detected. The endonuclease activity is stimulated by Ca2+, which cannot be replaced by Mg2+ or Mn2+. The features of the enzyme and its relation to plant DNA metabolism are discussed. Received: 26 March 1998 / Accepted: 4 June 1998  相似文献   

4.
S1 nuclease (EC 3.1.30.1) of Aspergillus oryzae has been purified 1600-fold by a procedure designed to remove traces of contaminating phosphatases. The nearly homogeneous enzyme was found to be a glycoprotein with a carbohydrate content of 18%. At pH 4.5 the enzyme preparation hydrolyzed single-stranded DNA, RNA, 3′-AMP, and 2′-AMP at relative rates of 100, 52, 13, and 0.05, respectively. The 3′-nucleotidase activity of this single-strand specific nuclease is inhibited by single-stranded DNA but not by double-stranded DNA. Three forms of the enzyme, with isoelectric points of 3.35, 3.53, and 3.67, were observed on electrofocusing, and each form exhibited the same relative activity on single-stranded DNA and 3′-AMP. Enzymatic hydrolysis of nucleotides occurred over a broad range of pH, with maximal activity at pH 6–7. Ribonucleotides were hydrolyzed approximately 100-fold more rapidly than deoxyribonucleotides. A high degree of base specificity was not observed. The 3′-nucleotidase activity was stimulated by Zn2+, but not by other divalent cations tested.  相似文献   

5.
From the mycelia of Neurospora crassa (wild type No. 6068) multiple forms of a nuclease which had very close isoelectric points (pI = 9.6 (peak I), 9.4 (peak II)) were isolated by ampholine electrofocusing column chromatography (pH 8.5 ~ 10). The nuclease was about 300-fold purified from the crude extract. The two fractions of Peak I, II were indistinguishable in their enzymatic properties and were considered as manifestation of the same enzyme with minor physicochemical differences. The molecular weight was around 41,000 as estimated by the gel filtration method. The enzyme could hydrolyze both DNA and RNA in the order of heat-denatured DNA > native DNA DNA ≧ RNA. RNA competitively inhibited DNA degradation with this enzyme. The enzyme was therefore regarded as a nuclease. The pH optimum was around pH 6.5 toward native DNA, pH 6.7 toward heat-denatured DNA and pH 7.9 toward RNA. The temperature optimum was around 40°C toward these substrates and most of the activities were lost by heating at 55°C for 15 min. The enzyme required Mg2+ for action toward heat-denatured DNA and Mg2+, Mn2+ or Co2+ toward native DNA. In the presence of EDTA, the activities toward both types of DNA were lost and recovered by addition of the respective activating metallic ions. p-CMB inhibited this nuclease, but β-mercapto-ethanol and glutathione had no effect. Polyamìnes showed no activation of the nuclease for DNA degradation.  相似文献   

6.
New Deoxyribonuclease Activity After Bacteriophage P22 Infection   总被引:1,自引:1,他引:0       下载免费PDF全文
Extracts from P22-infected and uninfected cultures of Salmonella typhimurium were subjected to deoxyribonucleic acid (DNA)-cellulose and diethylaminoethyl-cellulose chromatography. Comparison of the elution patterns revealed that in infected cells there is a decrease in the amount of nuclease activity specific for denatured DNA and an increase in the amount of nuclease activity specific for native DNA. The latter activity was shown to differ from a similar host enzyme in Mg2+, Mn2+, and pH optima. This new activity is not found after infection of a lysogen with a nonvirulent phage or after infection under nonpermissive conditions with P22ts25.1 (a mutant in gene 25 that carries out no known functions other than adsorption and injection) and thus appears to be specified by the phage genome.  相似文献   

7.
A manganese-stimulated exonuclease was purified from culture fluids ofBacillus subtilis 168 using ammonium sulfate fractionation, SephadexG-150 gel filtration, and DEAE-Sephadex ion-exchange chromatography. This extracellular nuclease was found to attain maximal activity in the presence of 5 mM Mn2+. Little or no activity was demonstrated in the presence of Fe2+, Mg2+, Zn2+, Cu2+, or Ni2+, but the nuclease was somewhat active with Ca2+. The nuclease exhibited a broad pH range, with maximum activity at pH 8.5. A molecular weight of 214,000 was calculated for the protein using Sephacryl S-300 columm chromatography. Incubation of the enzyme with the closed circular DNA of plasmid pUB110 indicated that the nuclease is strictly, exonucleolytic in nature.  相似文献   

8.
A moderately halophilic bacterium, Bacillus sp., isolated from rotting wood on the seashore in Nauru, produced an extracellular nuclease when cultivated aerobically in media containing 1 to 2 M NaCl. The enzyme was purified from the culture filtrate to an electrophoretically homogeneous state by ethanol precipitation, DEAE-Sephadex A-50 column chromatography, and Sephadex G-200 gel filtration. The enzyme consisted of two charge isomers and showed both RNase and DNase activities. Molecular weight was estimated to be 138,000 by Sephadex G-200 gel filtration. The enzyme had marked halophilic properties, showing maximal activities in the presence of 1.4 to 3.2 M NaCl or 2.3 to 3.2 M KCl. The enzyme hydrolyzed thymidine-5′-monophosphate-p-nitrophenyl ester at a rate that increased with NaCl concentration up to 4.8 M. In the presence of both Mg2+ and Ca2+, activity was greatly enhanced. The activity was lost by dialysis against water and low-salt buffer, but it was protected when 10 mM Ca2+ was added to the dialysis buffer. When the inactivated enzyme was dialyzed against 3.5 M NaCl buffer as much as 68% of the initial activity could be restored. The enzyme exhibited maximal activity at pH 8.5 and at 50°C on DNA and at 60°C on RNA and attacked RNA and DNA exonucleolytically and successively, producing 5′-mononucleotides.  相似文献   

9.
An extracellular nuclease from Basidiobolus haptosporus (designated as nuclease Bh1) was purified to homogeneity by ammonium sulfate precipitation, heat treatment, negative adsorption on DEAE-cellulose, and chromatography on phenyl-Sepharose followed by FPLC on phenyl-Superose. The overall yield was 26%. The Mr of the purified enzyme, determined by gel filtration, was 41 000 whereas by SDS/PAGE (after deglycosylation) it was 30 000. It is a glycoprotein with a pI of 6.8. The optimum pH and temperature for DNA hydrolysis were 8. 5 and 60 degrees C, respectively. Nuclease Bh1 is a metalloprotein but has no obligate requirement for metal ions to be active, nor is its activity stimulated in the presence of metal ions. The enzyme was inhibited by Zn2+, Ag2+, Hg2+, Fe3+ and Al3+, inorganic phosphate, pyrophosphate, dithiothreitol, 2-mercaptoethanol, NaCl and KCl. It was stable to high concentrations of organic solvents and urea but susceptible to low concentrations of SDS and guanidine hydrochloride. Nuclease Bh1 is a multifunctional enzyme and its substrate specificity is in the order of ssDNA approximately 3'AMP > RNA > dsDNA. Studies on its mode of action showed that it cleaved supercoiled pUC 18 DNA and phage M13 DNA, endonucleolytically, generating single base nicks. The enzyme hydrolyzed DNA with preferential liberation of 5'dGMP, suggesting it to be a guanylic acid preferential endoexonuclease. 5'dGMP, the end product of hydrolysis, was a competitive inhibitor of the enzyme. The absence of 5'dCMP as a hydrolytic product, coupled with the resistance of (dC)10 and deoxyribodinucleoside monophosphates having cytosine either at the 3' or the 5' end, indicates that C-linkages are resistant to cleavage by nuclease Bh1.  相似文献   

10.
Two barley chloroplast nuclease fractions were separated by the affinity chromatography and gel electrophoresis. Both were about 2 times more active to RNA than to native DNA and about half as active to denaturated DNA as to native DNA. Both fractions were as active to UV-irradiated (270 J m-2) native DNA as to intact DNA but their action was inhibited by apurinic sites. The enzyme activities were inhibited by high concentrations of EDTA, NaCl, Mn2+, Ca2+, Zn2+ ions and by N-ethylmaleimide. They do not require Mg2+ ions but are stimulated or at higher concentration inhibited by their presence. Both RNase and DNase were active over a wide pH range (5.5–9), the optimum for DNase action in the presence of Mg2+ being 6.5, for RNA decomposing activity at pH 8.0. As no mononucleotides were detected in acid soluble form, it seems likely that DNase acts in the endonucleolytic way.  相似文献   

11.
The large terminase subunit is a central component of the genome packaging motor from tailed bacteriophages and herpes viruses. This two-domain enzyme has an N-terminal ATPase activity that fuels DNA translocation during packaging and a C-terminal nuclease activity required for initiation and termination of the packaging cycle. Here, we report that bacteriophage SPP1 large terminase (gp2) is a metal-dependent nuclease whose stability and activity are strongly and preferentially enhanced by Mn2+ ions. Mutation of conserved residues that coordinate Mn2+ ions in the nuclease catalytic site affect the metal-induced gp2 stabilization and impair both gp2-specific cleavage at the packaging initiation site pac and unspecific nuclease activity. Several of these mutations block also DNA encapsidation without affecting ATP hydrolysis or gp2 C-terminus binding to the procapsid portal vertex. The data are consistent with a mechanism in which the nuclease domain bound to the portal switches between nuclease activity and a coordinated action with the ATPase domain for DNA translocation. This switch of activities of the nuclease domain is critical to achieve the viral chromosome packaging cycle.  相似文献   

12.
Properties of nuclease O, a new intracellular enzyme which was partially purified from autolyzate of Asp. Oryzae,1) are described in this paper. The purified enzyme preferentially depolymerized RNA and heat denatured DNA, but apparently did not attack native DNA. It was activated by 0.1 mm Mg2+ or Mn2+, and inactive in the presence of EDTA. Optimum pH of the activity were 7.7 for DNA and 8.2 for RNA. By heat treatment (60°C, 10 min at pH 6) the nuclease completely lost its activity for RNA and DNA. Optimum concentration of Tris buffer for enzymatic activity was 0.15~0.2m.  相似文献   

13.
Proteins diffusing from tobacco pollen grains exhibit different phosphohydrolytic activities. Molecular sieving produces nuclease fractionation into forms I, II and III with apparent molecular masses ≥ 60 × 103, 32.9 × 103 and 24.6 × 103, respectively, and separation of principal forms II and III from phosphatase and major part of 5′- and 3′-nucleotidase activities. These forms did not differ in the mode of substrate attack and were combined for further enzyme characterization. The preparation had 3′-nueleotidase activity even after further purification by DEAE-cellulose chromatography. The enzyme is an endonuclease with preference for single stranded molecules. The endolytical cleavage of native DNA occurs simultaneously in both strands and generates limit products of about 58 pairs of nucleotides. DNA duplex polymers are also cleaved by a terminally-directed, exonuclease-like process. The products of DNA degradation are oligonucleotides and 5′-mononucleotides. In the presence of NaCl, both endolytical and exonucleaselike activities on bihelical DNA are inhibited and the proportion of mono-to oligonucleotides produced increases. The enzyme can rapidly convert superhelical plasmid DNA to a nicked open circular form, and then to a unit-length linear molecule. On the basis of these properties and of those found earlier (sugar-unspecificity, acidic pH optimum, activation by Zn2+ ions), the extracellular nuclease of tobacco pollen can be classified as plant nuclease I (EC 3.1.30.x).  相似文献   

14.
The somatic extract of L. intestinalis plerocercoids reveals hydrolytic activity against N-Benzoyl-l-tyrosine ethyl ester (BTEE) and Azocoll, and inactivates the esterolysis by mammalian trypsin and chymotripsin. The proteolytic enzyme activity and the inhibitory effect were completely separated by Sephadex G-100 column chromatography. Gel chromatography of the somatic extract revealed two peaks of proteolytic activity : one is bound to macromolecular substances, the other appears to be in free form and has a molecular weight of approx 60,000–65,000. The proteolytic activity showed the following characteristics : Tris-HCl buffer provided the highest activity against BTEE, the pH optimum was 7·4–7·8; the enzyme was activated by 10?5m-Ca2+, Mg2+ or Mn2+, it was inhibited by 10?5m-Cu2+, but not by 10?5m-Zn2+. 0.001% soybean trypsin inhibitor, 2 × 10?3m-EDTA, 1 mm-tosyl-l-phenylalanyl chloromethane, 1000 KIU/ml Trasylol did not inhibit the proteolytic activity, but it was inhibited by 1 mm-phenylmethyl-sulphonyl fluoride. The enzyme activity completely ceased upon 5 % TCA treatment or incubation at 56°C for 30 min. The trypsin and chyrnotrypsin inhibitor activities were eluted from the Sephadex G-100 column in a single peak with an estimated molecular weight of 6700–7200. The inhibitory effect was not sensitive to pH changes, and treatment by 5% TCA or incubation at 80°C for 15 min was ineffective. The proteolytic activity of plerocercoid extract was not effected ‘in vitro’ by the inhibitors isolated from this parasite.  相似文献   

15.
《Insect Biochemistry》1991,21(3):239-242
Alkaline phosphatase from the excretory system of the grasshopper, Poekilocerus bufonius was purified with ammonium sulphate fractionation and chromatography on Bio-Gel A-0.5 m. The specific activity of the enzyme is 152 units/mg of protein. The enzyme is a tetramer and the Mr value of the subunit is 72,000 ± 2500 as shown by gel filtration and SDS-polyacrylamide gel electrophoresis. The enzyme has a pH optimum of 9.6 and an apparent Km value of 0.28 × 10−3 M. The activity of the enzyme reached a maximum at 75°C and the enzyme showed stability at 65°C. The enzyme was inhibited by Ca2+, Na+ and Fe3+ and was stimulated by Zn2+, Mn2+ and Mg2+.  相似文献   

16.
The Mg-nucleoside triphosphatase activity associated with the inner envelope membrane of the pea chloroplast is comprised of at least two components, a major activity that is sensitive to vanadate and sodium fluoride and a minor insensitive activity. The vanadate/fluoride sensitive activity has been partially purified (about 35-fold) from Triton X-100 solubilized membranes by DEAE-Sephadex chromatography and sucrose density gradient centrifugation. The partially purified enzyme resembles the membrane-bound activity in requiring either Mg2+ or Mn2+, having a broad specificity for nucleoside triphosphates, having a Km for ATP of 0.18 millimolar, and being inhibited by N-ethylmaleimide, but insensitive to sodium azide and dicyclohexylcarbodiimide. The partially purified enzyme obtained after sucrose gradient centrifugation has a markedly increased sensitivity to inhibition by inorganic pyrophosphate compared with the less pure enzyme. Pyrophosphate is not a substrate of either the membrane-bound or partially purified enzyme.  相似文献   

17.
The pH optimum for the stability of the barley leaf polyamine oxidase is 4.8, which is also the pH optimum for its activity with spermine as substrate. Zonal centrifugation indicates that the enzyme is associated with a particle which is slightly more dense than chloroplasts, and the peak of activity corresponds with the peak of nucleic acid. Neither DNase nor RNase released the enzyme from the particles, despite the hydrolysis of more than 50% of the nucleic acid. The enzyme from the leaves of oat seedlings grown in the dark was purified 900-fold. Mg2+ and Ca2+ inhibited both barley and oat enzymes by ca 50% at 50 mM. The optimum pH for both spermine and spermidine oxidation by the oat enzyme was 6.5. The MW of the enzyme from both sources determined by gel chromatography was ca 85 000.  相似文献   

18.
A thermostable amylase, possibly a β-amylase from Thermoactinomyces sp. no. 2 isolated from soil, is reported. The enzyme was purified 36-fold by acetone precipitation, ion-exchange chromatography, and Sephadex G-200 gel filtration, and the molecular weight was estimated at 31,600. The enzyme was characterized by demonstration of optimum activity at 60°C and pH 7 and by retention of 70% activity at 70°C (30 min). It was stimulated by Mn2+ and Fe2+ but strongly inhibited by Hg2+. Maltose was the only detectable product of hydrolysis of starches and was quantitatively highest in plantain starch hydrolysate.  相似文献   

19.
The microsomal fraction of mung bean seedlings contains mannosidase activities capable of hydrolyzing [3H]mannose from the [3H]Man9GlcNAc as well as for releasing mannose from p-nitrophenyl-α-d-mannopyranoside. The glycoprotein processing mannosidase was solubilized from the microsomes with 1.5% Triton X-100 and was purified 130-fold by conventional methods and also by affinity chromatography on mannan-Sepharose and mannosamine-Sepharose. The final enzyme preparation contained a trace of aryl-mannosidase, but this activity was inhibited by swainsonine whereas the processing enzyme was not. The pH optimum for the processing enzyme was 5.5 to 6.0, and activity was optimum in the presence of 0.1% Triton X-100. The enzyme was inhibited by ethylenediaminetetraacetate while Ca2+ was the most effective cation for reversing this inhibition. Mn2+ was considerably less effective than Ca2+ and Mg2+ was without effect. The processing mannosidase was inhibited by α1,2- and α1,3-linked mannose oligosaccharides (50% inhibition at 3 millimolar), whereas free mannose and α1,6-linked mannose oligosaccharides were ineffective. Mannosamine was also an inhibitor of this enzyme. The aryl-mannosidase and the processing mannosidase could also be distinguished by their susceptibility to various processing inhibitors. The aryl-mannosidase was inhibited by swainsonine and 1,4-dideoxy-1,4-imino-d-mannitol but not by deoxymannojirimycin or other inhibitors, while the processing mannosidase was only inhibited by deoxymannojirimycin. The processing mannosidase was incubated for long periods with [3H]Man9GlcNAc and the products were identified by gel filtration. Even after a 24 hour incubation, the only two radioactive products were Man5GlcNAc and free mannose. Thus, this enzyme appears to be similar to the animal processing enzyme, mannosidase I, and is apparently a specific α1,2-mannosidase.  相似文献   

20.
Endonuclease G (EndoG) is a mitochondrial protein that traverses to the nucleus and participates in chromosomal DNA degradation during apoptosis in yeast, worms, flies, and mammals. However, it remains unclear how EndoG binds and digests DNA. Here we show that the Caenorhabditis elegans CPS-6, a homolog of EndoG, is a homodimeric Mg2+-dependent nuclease, binding preferentially to G-tract DNA in the optimum low salt buffer at pH 7. The crystal structure of CPS-6 was determined at 1.8 Å resolution, revealing a mixed αβ topology with the two ββα-metal finger nuclease motifs located distantly at the two sides of the dimeric enzyme. A structural model of the CPS-6-DNA complex suggested a positively charged DNA-binding groove near the Mg2+-bound active site. Mutations of four aromatic and basic residues: Phe122, Arg146, Arg156, and Phe166, in the protein-DNA interface significantly reduced the DNA binding and cleavage activity of CPS-6, confirming that these residues are critical for CPS-6-DNA interactions. In vivo transformation rescue experiments further showed that the reduced DNase activity of CPS-6 mutants was positively correlated with its diminished cell killing activity in C. elegans. Taken together, these biochemical, structural, mutagenesis, and in vivo data reveal a molecular basis of how CPS-6 binds and hydrolyzes DNA to promote cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号