首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells respond to ionizing radiation (IR)–induced DNA double-strand breaks (DSBs) by orchestrating events that coordinate cell cycle progression and DNA repair. How cells signal and repair DSBs is not yet fully understood. A genome-wide RNA interference screen in Caenorhabditis elegans identified egr-1 as a factor that protects worm cells against IR. The human homologue of egr-1, MTA2 (metastasis-associated protein 2), is a subunit of the nucleosome-remodeling and histone deacetylation (NuRD) chromatin-remodeling complex. We show that knockdown of MTA2 and CHD4 (chromodomain helicase DNA-binding protein 4), the catalytic subunit (adenosine triphosphatase [ATPase]) of NuRD, leads to accumulation of spontaneous DNA damage and increased IR sensitivity. MTA2 and CHD4 accumulate in DSB-containing chromatin tracks generated by laser microirradiation. Directly at DSBs, CHD4 stimulates RNF8/RNF168-dependent formation of ubiquitin conjugates to facilitate the accrual of RNF168 and BRCA1. Finally, we show that CHD4 promotes DSB repair and checkpoint activation in response to IR. Thus, the NuRD chromatin–remodeling complex is a novel regulator of DNA damage responses that orchestrates proper signaling and repair of DSBs.  相似文献   

2.
  1. Download : Download high-res image (138KB)
  2. Download : Download full-size image
  相似文献   

3.
Lamins, the major structural components of the nuclear lamina (NL) found beneath the nuclear envelope, are known to interact with most of the nuclear peripheral chromatin in metazoan cells. Although NL–chromatin associations correlate with a repressive chromatin state, the role of lamins in tethering chromatin to NL and how such tether influences gene expression have remained challenging to decipher. Studies suggest that NL proteins regulate chromatin in a context-dependent manner. Therefore understanding the context of chromatin states based on genomic features, including chromatin–NL interactions, is important to the study of lamins and other NL proteins. By modeling genome organization based on combinatorial patterns of chromatin association with lamin B1, core histone modification, and core and linker histone occupancy, we report six distinct large chromatin landscapes, referred to as histone lamin landscapes (HiLands)-red (R), -orange (O), -yellow (Y), -green (G), -blue (B), and -purple (P), in mouse embryonic stem cells (mESCs). This HiLands model demarcates the previously mapped lamin-associated chromatin domains (LADs) into two HiLands, HiLands-B and HiLands-P, which are similar to facultative and constitutive heterochromatins, respectively. Deletion of B-type lamins in mESCs caused a reduced interaction between regions of HiLands-B and NL as measured by emerin–chromatin interaction. Our findings reveal the importance of analyzing specific chromatin types when studying the function of NL proteins in chromatin tether and regulation.  相似文献   

4.
The role of poly ADP-ribosylation in DNA excision repair was studied in experimental models of various complexities. In intact cells in vivo, the unfolding of chromatin during DNA excision repair apparently requires the presence of a functional poly-ADP-ribosylation system. In vitro studies involving a reconstituted poly-ADP-ribosylation system show that the enzyme poly(ADP-ribose)polymerase has the capacity to shuttle core histones on a core DNA fragment of 146 bp. Under these conditions, the polymerase operates in a strictly processive mode. Furthermore, the polymerase adapts to different shuttling targets by producing very distinct polymer patterns. We conclude that the eukaryotic poly-ADP-ribosylation system has the capacity to regulate DNA-protein interactions and this may be an essential part of the unfolding mechanism of chromatin during excision repair in vivo.  相似文献   

5.
  • 1.1. Sedimentation of chromatin DNA and isolated deproteinized DNA was compared in neutral and alkaline sucrose density gradients after incubation of chromatin or DNA with various concentrations of heparin.
  • 2.2. Irrespective of the molecular weight of DNA, an increase in the sedimentation constant of DNA was found with increasing concentration of the polyanion employed.
  相似文献   

6.
Chromatin structure is not fixed. Instead, chromatin is dynamic and is subject to extensive developmental and age-associated remodeling. In some cases, this remodeling appears to counter the aging and age-associated diseases, such as cancer, and extend organismal lifespan. However, stochastic non-deterministic changes in chromatin structure might, over time, also contribute to the break down of nuclear, cell and tissue function, and consequently aging and age-associated diseases.  相似文献   

7.
Taking advantage of the effects on DNA secondary structure of two DNA-intercalators,ethidium bromide and chloroquine,we used each of them to treat nuclei from both mature erythrocytes and reticulocytes of chicken,as an alternative approach to study the relationships between DNA secondary structure,nuclear proteins and chromatin structure.We presented results of differential extraction of nuclear proteins from nuclei with DNA-intercalators,as well as preliminary characterization of these proteins.A 45kd protein is the major component in fractions extracted by both intercalators from nuclei from either mature erythrocytes or reticulocytes and seems to be a DNA-binding protein.Furthermore,from current concepts of functional aspects of DNA conformation and structural heterogeneity in chromatin and nuclear proteins,we have discussed both the significance of our results as well as technical aspects of this approach.  相似文献   

8.
In Bombyx mori oocytes the synaptonemal complexes are retained in modified form from pachytene to metaphase I. At the end of pachytene the length and width of the lateral components of the complex increase, whereafter the complexes become compacted during later stages of the meiotic prophase. Ultimately, at metaphase I the modified synaptonemal complexes of individual bivalents fuse to form a more or less continuous sheet between the homologous chromosomes. This sheet corresponds to the structure historically known as the elimination chromatin. It is concluded that in the absence of crossing over and chiasma formation in Bombyx mori females the retainment and subsequent modification of the synaptonemal complex has evolved as a substitute mechanism to ensure regular disjunction of the bivalents.  相似文献   

9.
More than 109 base pairs of the genome in higher eucaryotes are positioned in the interphase nucleus such that gene activation, gene repression, remote gene regulation by enhancer elements, and reading as well as adjusting epigenetic marks are possible. One important structural and functional component of chromatin organization is the zinc finger factor CTCF. Two decades of research has advanced the understanding of the fundamental role that CTCF plays in regulating such a vast expanse of DNA.  相似文献   

10.
11.
The nonstructural protein NS1 of the autonomous parvovirus minute virus of mice interferes with cell division and can cause cell death, depending on the cell transformation state. Upon infection, the synthesis of NS1 protein is massively initiated during S phase. In this article, we show that minute virus of mice-infected cells accumulate in this phase. To investigate the link between NS1 accumulation and S-phase arrest, we have used stably transfected cells in which NS1 expression is under the control of a glucocorticoid-inducible promoter (the long terminal repeat of mouse mammary tumor virus). NS1 expression interferes with cell DNA replication, and consequently, the cell cycle stops in S phase. NS1 expression also induces nicks in the cell chromatin, as detected by an in situ nick translation assay. The nicks are observed several hours before any cell cycle perturbation. As cell cycle arrest is a common consequence of DNA damage, we propose that NS1 exerts its cytostatic activity by inducing lesions in cell chromatin.  相似文献   

12.
M. Baum  R. Appels 《Chromosoma》1991,101(1):1-10
Conclusions The evolution of chromosome 1R has resulted in a structure with genes that are similar enough, qualitatively and quantitatively, to those in wheat to allow substitution for wheat chromosomes. The sequences dispersed between the genes, and those arranged tandemly in large blocks, have however undergone major quantitative changes (and possibly qualitative changes as well). Amplification events since the time that wheat and rye have been separated in an evolutionary sense have generated arrays of repetitive sequence families that characterize the rye chromosomes (including 1R) and distinguish them from wheat chromosomes. The genetic mapping of chromosome 1R at the level of DNA has provided a range of probes for the study of 1R chromosome segments as they are manipulated in commercial wheat cultivars.The extensive utilization of chromosome 1R as a source of disease resistance genes in wheat implies that rye genes are normally expressed in a wheat background. This is, however, not always the case and a particularly well studied example is the suppression of rRNA gene expression (reviewed in Applels et al. 1986a). These isolated examples of modified expression of rye genes in a wheat background are presumably the result of evolutionary change in the rye promoter regions resulting in their reduced competitiveness when combined with wheat genes in a common cytoplasmic environment. The cytoplasm of wheat plants carrying rye chromosome fragments would be dominated by protein molecules adapted to wheat promoters.  相似文献   

13.
14.
15.
The complexity in composition and function of the eukaryotic nucleus is achieved through its organization in specialized nuclear compartments. The Drosophila chromatin remodeling ATPase ISWI plays evolutionarily conserved roles in chromatin organization. Interestingly, ISWI genetically interacts with the hsrω gene, encoding multiple non-coding RNAs (ncRNA) essential, among other functions, for the assembly and organization of the omega speckles. The nucleoplasmic omega speckles play important functions in RNA metabolism, in normal and stressed cells, by regulating availability of hnRNPs and some other RNA processing proteins. Chromatin remodelers, as well as nuclear speckles and their associated ncRNAs, are emerging as important components of gene regulatory networks, although their functional connections have remained poorly defined. Here we provide multiple lines of evidence showing that the hsrω ncRNA interacts in vivo and in vitro with ISWI, regulating its ATPase activity. Remarkably, we found that the organization of nucleoplasmic omega speckles depends on ISWI function. Our findings highlight a novel role for chromatin remodelers in organization of nucleoplasmic compartments, providing the first example of interaction between an ATP-dependent chromatin remodeler and a large ncRNA.  相似文献   

16.
17.
18.
19.
Neutrophil extracellular traps (NETs) are made of processed chromatin bound to granular and selected cytoplasmic proteins. NETs are released by white blood cells called neutrophils, maybe as a last resort, to control microbial infections. This release of chromatin is the result of a unique form of cell death, dubbed "NETosis." Here we review our understanding of how NETs are made, their function in infections and as danger signals, and their emerging importance in autoimmunity and coagulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号