首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The roles of the kynurenine pathway (KP) of tryptophan (Trp) degradation in serotonin deficiency in major depressive disorder (MDD) and the associated inflammatory state are considered in the present study. Using molecular docking in silico, we demonstrate binding of antidepressants to the crystal structure of tryptophan 2,3-dioxygenase (TDO) but not to indoleamine 2,3-dioxygenase (IDO). TDO is inhibited by a wide range of antidepressant drugs. The rapidly acting antidepressant ketamine does not dock to either enzyme but may act by inhibiting kynurenine monooxygenase thereby antagonising glutamatergic activation to normalise serotonin function. Antidepressants with anti-inflammatory properties are unlikely to act by direct inhibition of IDO but may inhibit IDO induction by lowering levels of proinflammatory cytokines in immune-activated patients. Of six anti-inflammatory drugs tested, only salicylate docks strongly to TDO and apart from celecoxib, the other five dock to IDO. TDO inhibition remains the major common property of antidepressants and TDO induction the most likely mechanism of defective serotonin synthesis in MDD. TDO inhibition and increased free Trp availability by salicylate may underpin the antidepressant effect of aspirin and distinguish it from other nonsteroidal anti-inflammatory drugs. The controversial findings with IDO in MDD patients with an inflammatory state can be explained by IDO induction being overridden by changes in subsequent KP enzymes influencing glutamatergic function. The pathophysiology of MDD may be underpinned by the interaction of serotonergic and glutamatergic activities.  相似文献   

2.
Tryptophan (Trp) catabolism into immunosuppressive kynurenine (Kyn) by indoleamine 2,3-dioxygenase (IDO) was previously linked to Th17/Treg differentiation and immune activation. Here we examined Trp catabolism and its impact on Th17/Treg balance in uninfected healthy subjects (HS) and a large cohort of HIV-infected patients with different clinical outcomes: ART-naïve, Successfully Treated (ST), and elite controllers (EC). In ART-naïve patients, increased IDO activity/expression, together with elevated levels of TNF-α and sCD40L, were associated with Treg expansion and an altered Th17/Treg balance. These alterations were normalized under ART. In contrast, Trp 2,3-dioxegenase (TDO) expression was dramatically lower in EC when compared to all other groups. Interestingly, EC displayed a distinctive Trp metabolism characterized by low Trp plasma levels similar to ART-naïve patients without accumulating immunosuppressive Kyn levels which was accompanied by a preserved Th17/Treg balance. These results suggest a distinctive Trp catabolism and Th17/Treg balance in HIV progressors and EC. Thus, IDO-induced immune-metabolism may be considered as a new inflammation-related marker for HIV-1 disease progression.  相似文献   

3.
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes. Mammalian IDO expression is induced by cytokines and has antimicrobial and immunomodulatory effects. A major role of mammalian TDO is to supply nicotinamide adenine dinucleotide (NAD+). In fungi, the IDO homologue is thought to be expressed constitutively and supply NAD+, as TDO is absent from their genomes. Here, we reveal the distribution of IDO genes among fungal species and characterize their enzymatic activity. The yeast, Saccharomyces cerevisiae has only one IDO gene, whereas the koji-mold, Aspergillus oryzae has two genes, IDOα and IDOβ. The A. oryzae IDOα showed more similar enzymatic properties to those of S. cerevisiae IDO than IDOβ, suggesting that the A. oryzae IDOα is a functional homologue of the S. cerevisiae IDO. From the IDOβ gene, two isoforms, IDOβ and IDOβ+ could be generated by alternative splicing. The latter contained a 17 amino acids insertion which were encoded by the first intron of IDOβ gene. In comparison to IDOβ+, bacterially expressed IDOβ showed much lower K m value and more than five-times faster V max value, resulting in 85 times higher catalytic efficiency; i.e., the removal of the domain encoded by the first intron from IDOβ+ increases its enzymatic activity drastically. This might be a unique regulation mechanism of the l-Trp metabolism in the A. oryzae. The levo-1-methyl tryptophan (l-1MT) is a good inhibitor of both IDO1 and IDO2. However, the activity of fungal IDOs tested was not inhibited at all by l-1MT.  相似文献   

4.
5.
Yuasa HJ  Ushigoe A  Ball HJ 《Gene》2011,485(1):22-31
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that catalyze the first step in L-Trp catabolism via the kynurenine pathway. In mammals, TDO is mainly expressed in the liver and primarily supplies nicotinamide adenine dinucleotide (NAD+). TDO is widely distributed from mammals to bacteria. Active IDO enzymes have been reported only in vertebrates and fungi. In mammals, IDO activity plays a significant role in the immune system while in fungal species, IDO is constitutively expressed and supplies NAD+, like mammalian TDO. A search of genomic databases reveals that some bacterial species also have a putative IDO gene. A phylogenetic analysis clustered bacterial IDOs into two groups, group I or group II bacterial IDOs. The catalytic efficiencies of group I bacterial IDOs were very low and they are suspected not to contribute significantly to L-Trp metabolism. The bacterial species bearing the group I bacterial IDO are scattered across a few phyla and no phylogenetically close relationship is observed between them. This suggests that the group I bacterial IDOs might be acquired by horizontal gene transmission that occurred in each lineage independently. In contrast, group II bacterial IDOs showed rather high catalytic efficiency. Particularly, the enzymatic characteristics (Km, Vmax and inhibitor selectivity) of the Gemmatimonas aurantiaca IDO are comparable to those of mammalian IDO1, although comparison of the IDO sequences does not suggest a close evolutionary relationship. In several bacteria, TDO and the kynureninase gene (kynU) are clustered on their chromosome suggesting that these genes could be transcribed in an operon. Interestingly, G. aurantiaca has no TDO, and the IDO is clustered with kynU on its chromosome. Although the G. aurantiaca also has NadA and NadB to synthesize a quinolinic acid (a precursor of NAD+) via the aspartate pathway, the high activity of the G. aurantiaca IDO flanking the kynU gene suggests its IDO has a function similar to eukaryotic enzymes.  相似文献   

6.
Porphyromonas gingivalis (P. gingivalis) is a key pathogen of chronic periodontitis. Aryl hydrocarbon receptor (AhR) is essential in immune homeostasis via modulation of pro‐inflammatory cytokines production and indoleamine 2,3‐dioxygenase (IDO). In this study, it is demonstrated that P. gingivalis may regulate AhR signalling in periodontitis, which provides a potential target for further immune regulation studies in periodontitis. Experimental periodontitis was induced in C57BL/6 mice by silk ligature and P. gingivalis oral inoculation. The alveolar bone resorption was examined using Micro‐CT. Histological structures were observed and related cytokines involved in AhR signalling pathway were analysed. RAW264.7 cells were pretreated with AhR agonist (FICZ) and antagonist (CH223191) and infected with P. gingivalis subsequently. The levels of IDO, AhR and other related cytokines were measured. To demonstrate IDO activity, the concentrations of tryptophan (Trp) and kynurenine (Kyn) were assessed by HPLC. Histological analysis of periodontitis mice showed distinct alveolar bone resorption and inflammatory cell infiltration. The level of AhR and its downstream target factors were significantly decreased in inflamed gingival tissue. Furthermore, RAW 264.7 cells incubated by P. gingivalis exhibited increased pro‐inflammatory cytokines production and decreased AhR, CYP1A1, CYP1B1, and IDO expression. Decreased IDO activity was observed as decreased Kyn/Trp ratio in the supernatant. Moreover, FICZ decreased the pro‐inflammatory cytokines levels in P. gingivalis infected cells. It is concluded that P. gingivalis may promote inflammatory responses via inhibiting the AhR signalling pathway in periodontitis.

The schematic figure illustrating P. gingivalis inhibits Aryl hydrocarbon receptor (AhR) signalling pathway in periodontitis. P. gingivalis infection suppressed AhR and its downstream indoleamine 2,3‐dioxygenase (IDO) expression in periodontitis, which is responsible for the degradation of tryptophan (Trp) to kynurenine (Kyn). The downregulation of AhR signalling may increase IL‐6 and IL‐1β production by activating NF‐κB and NLRP3 inflammasome.  相似文献   

7.
8.
The kynurenine pathway is the major tryptophan degradation routes generating bioactive compounds important in physiology and diseases. Depending on cell type it is initiated enzymatically by tryptophan-2,3-dioxygenase (TDO) or indoleamine-2,3-dioxygenase 1 and 2 (IDO1 and IDO2) to yield N-formylkynurenine as the precursor of further metabolites. Herein, we describe an accurate high-pressure liquid chromatography coupled with a diode array detector (HPLC-DAD) method to serve for IDO1 activity determination in human cancer cells cultured in vitro. Enzymatic activity was expressed as the rate of ʟ-kynurenine generation by 1 mg of proteins obtained from cancer cells. Our approach shows the limit of detection and limit of quantification at 12.9 and 43.0 nM Kyn, respectively. Applicability of this method was demonstrated in different cells (ovarian and breast cancer)exposed to various conditions and has successfully passed the validation process. This approach presents a useful model to study the role of kynurenine pathway in cancer biology.  相似文献   

9.
10.
In a preliminary study we observed that piglets suffering from chronic lung inflammation induced by an intravenous injection of complete Freund adjuvant showed a marked decrease in plasma tryptophan (Trp) concentration suggesting increased Trp utilisation. During the inflammatory process, a cytokine-induced enzyme called indoleamine 2,3-dioxygenase (IDO) has been shown to catabolise Trp into kynurenine (Kyn). Yet, during inflammation, increased Trp catabolism may decrease Trp availability for other functions such as growth. This metabolic pathway has never been studied in pigs. So, the objectives of this study were to measure IDO activity in pigs and to determine if the decrease in plasma Trp concentrations previously observed in piglets suffering from chronic lung inflammation could be explained by the induction of IDO activity. In order to do so, we compared IDO activity measured in the tracheo-bronchial lymph nodes and in the lungs of 7 piglets, injected with complete Freund adjuvant (CFA), to 7 pair-fed littermate healthy controls. Blood samples were taken at 0, 2, 5, 7 and 10 days following CFA injection in order to measure plasma Trp, Kyn and haptoglobin concentrations. Indoleamine 2,3-dioygenase activity in the tracheo-bronchial lymph nodes (P < 0.05), in the lungs (P < 0.07) and plasma haptoglobin (P < 0.01) were higher in pigs with lung inflammation than in the controls. Plasma Trp and Kyn were not significantly affected by CFA injection. Our data showed that IDO is activated under chronic lung inflammation in pigs. The impact of IDO activation on plasma Trp concentration and its availability is discussed according to the amount of Trp provided by the diet.  相似文献   

11.

Objectives

Indoleamine 2,3-dioxygenase-1 (IDO1) is an immune-modulatory enzyme that catalyzes the degradation of tryptophan (Trp) to kynurenine (Kyn) and is strongly induced by interferon (IFN)-γ. We previously reported highly increased levels of IFN-γ and corresponding IDO activity in patients with hemophagocytic lymphohistiocytosis (HLH), a hyper-inflammatory syndrome. On the other hand, IFN-γ and IDO were low in patients with systemic juvenile idiopathic arthritis (sJIA), an autoinflammatory syndrome. As HLH can occur as a complication of sJIA, the opposing levels of both IFN-γ and IDO are remarkable. In animal models for sJIA and HLH, the role of IFN-γ differs from being protective to pathogenic. In this study, we aimed to unravel the role of IDO1 in the pathogenesis of sJIA and HLH.

Methods

Wild-type and IDO1-knockout (IDO1-KO) mice were used in 3 models of sJIA or HLH: complete Freund’s adjuvant (CFA)-injected mice developed an sJIA-like syndrome and secondary HLH (sHLH) was evoked by either repeated injection of unmethylated CpG oligonucleotide or by primary infection with mouse cytomegalovirus (MCMV). An anti-CD3-induced cytokine release syndrome was used as a non-sJIA/HLH control model.

Results

No differences were found in clinical, laboratory and hematological features of sJIA/HLH between wild-type and IDO1-KO mice. As IDO modulates the immune response via induction of regulatory T cells and inhibition of T cell proliferation, we investigated both features in a T cell-triggered cytokine release syndrome. Again, no differences were observed in serum cytokine levels, percentages of regulatory T cells, nor of proliferating or apoptotic thymocytes and lymph node cells.

Conclusions

Our data demonstrate that IDO1 deficiency does not affect inflammation in sJIA, sHLH and a T cell-triggered cytokine release model. We hypothesize that other tryptophan-catabolizing enzymes like IDO2 and tryptophan 2,3-dioxygenase (TDO) might compensate for the lack of IDO1.  相似文献   

12.
The heme enzyme indoleamine 2,3-dioxygenase (IDO) oxidizes the pyrrole moiety of L-tryptophan (Trp) and other indoleamines and represents the initial and rate-limiting enzyme of the kynurenine (Kyn) pathway. IDO is a unique enzyme in that it can utilize superoxide anion radical (O2*- ) as both a substrate and a co-factor. The latter role is due to the ability of O2*- to reduce inactive ferric-IDO to the active ferrous form. Nitrogen monoxide (*NO) and H2O2 inhibit the dioxygenase and various inter-relationships between the nitric oxide synthase- and IDO-initiated amino acid degradative pathways exist. Induction of IDO and metabolism of Trp along the Kyn pathway is implicated in a variety of physiological and pathophysiological processes, including anti-microbial and anti-tumor defense, neuropathology, immunoregulation and antioxidant activity. Antioxidant activity may arise from O2*- scavenging by IDO and formation of the potent radical scavengers and Kyn pathway metabolites, 3-hydroxyanthranilic acid and 3-hydroxykynurenine. Under certain conditions, these aminophenols and other Kyn pathway metabolites may exhibit pro-oxidant activities. This article reviews findings indicating that redox reactions are involved in the regulation of IDO and Trp metabolism along the Kyn pathway and also participate in the biological activities exhibited by Kyn pathway metabolites.  相似文献   

13.
Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are promising drug development targets due to their implications in pathologies such as cancer and neurodegenerative diseases. The search for IDO1 inhibitor has been intensely pursued but there is a paucity of potent TDO and IDO1/TDO dual inhibitors. Natural product tryptanthrin has been confirmed to bear IDO1 and/or TDO inhibitory activities. Herein, twelve novel tryptanthrin derivatives were synthesized and evaluated for the IDO1 and TDO inhibitory potency. All of the compounds were found to be IDO1/TDO dual inhibitors, in particular, compound 9a and 9b bore IDO1 inhibitory activity similar to that of INCB024360, and compound 5a and 9b had remarkable TDO inhibitory activity superior to that of the well-known TDO inhibitor LM10. This work enriches the collection of IDO1/TDO dual inhibitors and provides chemical molecules for potential development into drugs.  相似文献   

14.
Indoleamine 2,3-dioxygenase (IDO) functions as a crucial mediator of tumor-mediated immune tolerance by causing T-cell suppression via tryptophan starvation in a tumor environment. Glycogen synthase kinase-3β (GSK-3β) is also involved in immune and anti-tumor responses. However, the relativity of these proteins has not been as well defined. Here, we found that GSK-3β-dependent IDO expression in the dendritic cell (DC) plays a role in anti-tumor activity via the regulation of CD8+ T-cell polarization and cytotoxic T lymphocyte activity. By the inhibition of GSK-3β, attenuated IDO expression and impaired JAK1/2-Stat signaling crucial for IDO expression were observed. Protein kinase Cδ (PKCδ) activity and the interaction between JAK1/2 and Stat3, which are important for IDO expression, were also reduced by GSK-3β inhibition. CD8+ T-cell proliferation mediated by OVA-pulsed DC was blocked by interferon (IFN)-γ-induced IDO expression via GSK-3β activity. Specific cytotoxic T lymphocyte activity mediated by OVA-pulsed DC against OVA-expressing EG7 thymoma cells but not OVA-nonexpressing EL4 thymoma cells was also attenuated by the expressed IDO via IFN-γ-induced activation of GSK-3β. Furthermore, tumor growth that was suppressed with OVA-pulsed DC vaccination was restored by IDO-expressing DC via IFN-γ-induced activation of GSK-3β in an OVA-expressing murine EG7 thymoma model. Taken together, DC-based immune response mediated by interferon-γ-induced IDO expression via GSK-3β activity not only regulates CD8+ T-cell proliferation and cytotoxic T lymphocyte activity but also modulates OVA-pulsed DC vaccination against EG7 thymoma.  相似文献   

15.
Nicotinamide adenine dinucleotide, NAD+, is a small metabolite coenzyme that is essential for the progress of crucial cellular pathways including glycolysis, the tricarboxylic acid cycle (TCA) and mitochondrial respiration. These processes consume and produce both oxidative and reduced forms of NAD (NAD+ and NADH). NAD+ is also important for ADP(ribosyl)ation reactions mediated by the ADP-ribosyltransferase enzymes (ARTDs) or deacetylation reactions catalyzed by the sirtuins (SIRTs) which use NAD+ as a substrate. In this review, we highlight the significance of NAD+ catabolism in DNA repair and cell death through its utilization by ARTDs and SIRTs. We summarize the current findings on the involvement of ARTD1 activity in DNA repair and most specifically its involvement in the trigger of cell death mediated by ARTD1 activation and energy depletion. By sharing the same substrate, the activities of ARTDs and SIRTs are tightly linked, are dependent on each other and are thereby involved in the same cellular processes that play an important role in cancer biology, inflammatory diseases and ischaemia/reperfusion.  相似文献   

16.
The first and rate‐limiting step of the kynurenine pathway, in which tryptophan (Trp) is converted to N‐formylkynurenine is catalyzed by two heme‐containing proteins, Indoleamine 2,3‐dioxygenase (IDO), and Tryptophan 2,3‐dioxygenase (TDO). In mammals, TDO is found exclusively in liver tissue, IDO is found ubiquitously in all tissues. IDO has become increasingly popular in pharmaceutical research as it was found to be involved in many physiological situations, including immune escape of cancer. More importantly, small‐molecule inhibitors of IDO are currently utilized in cancer therapy. One of the main concerns for the design of human IDO (hIDO) inhibitors is that they should be selective enough to avoid inhibition of TDO. In this work, we have used a combination of classical molecular dynamics (MD) and hybrid quantum‐classical (QM/MM) methodologies to establish the structural basis that determine the differences in (a) the interactions of TDO and IDO with small ligands (CO/O2) and (b) the substrate stereo‐specificity in hIDO and TDO. Our results indicate that the differences in small ligand bound structures of IDO and TDO arise from slight differences in the structure of the bound substrate complex. The results also show that substrate stereo‐specificity of TDO is achieved by the perfect fit of L ‐Trp, but not D ‐Trp, which exhibits weaker interactions with the protein matrix. For hIDO, the presence of multiple stable binding conformations for L /D ‐Trp reveal the existence of a large and dynamic active site. Taken together, our data allow determination of key interactions useful for the future design of more potent hIDO‐selective inhibitors. Proteins 2010; © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Alzheimer’s disease is the most common age-related neurodegenerative disorder. Familial forms of Alzheimer’s disease associated with the accumulation of a toxic form of amyloid-β (Aβ) peptides are linked to mitochondrial impairment. The coenzyme nicotinamide adenine dinucleotide (NAD+) is essential for both mitochondrial bioenergetics and nuclear DNA repair through NAD+-consuming poly (ADP-ribose) polymerases (PARPs). Here we analysed the metabolomic changes in flies overexpressing Aβ and showed a decrease of metabolites associated with nicotinate and nicotinamide metabolism, which is critical for mitochondrial function in neurons. We show that increasing the bioavailability of NAD+ protects against Aβ toxicity. Pharmacological supplementation using NAM, a form of vitamin B that acts as a precursor for NAD+ or a genetic mutation of PARP rescues mitochondrial defects, protects neurons against degeneration and reduces behavioural impairments in a fly model of Alzheimer’s disease. Next, we looked at links between PARP polymorphisms and vitamin B intake in patients with Alzheimer’s disease. We show that polymorphisms in the human PARP1 gene or the intake of vitamin B are associated with a decrease in the risk and severity of Alzheimer’s disease. We suggest that enhancing the availability of NAD+ by either vitamin B supplements or the inhibition of NAD+-dependent enzymes such as PARPs are potential therapies for Alzheimer’s disease.Subject terms: Metabolomics, Cell death in the nervous system, Alzheimer''s disease  相似文献   

18.
Tryptophan (Trp) requirements in pregnancy are several-fold: (1) the need for increased protein synthesis by mother and for fetal growth and development; (2) serotonin (5-HT) for signalling pathways; (3) kynurenic acid (KA) for neuronal protection; (4) quinolinic acid (QA) for NAD+ synthesis (5) other kynurenines (Ks) for suppressing fetal rejection. These goals could not be achieved if maternal plasma [Trp] is depleted. Although plasma total (free + albumin-bound) Trp is decreased in pregnancy, free Trp is elevated. The above requirements are best expressed in terms of a Trp utilization concept. Briefly, Trp is utilized as follows: (1) In early and mid-pregnancy, emphasis is on increased maternal Trp availability to meet the demand for protein synthesis and fetal development, most probably mediated by maternal liver Trp 2,3-dioxygenase (TDO) inhibition by progesterone and oestrogens. (2) In mid- and late pregnancy, Trp availability is maintained and enhanced by the release of albumin-bound Trp by albumin depletion and non-esterified fatty acid (NEFA) elevation, leading to increased flux of Trp down the K pathway to elevate immunosuppressive Ks. An excessive release of free Trp could undermine pregnancy by abolishing T-cell suppression by Ks. Detailed assessment of parameters of Trp metabolism and disposition and related measures (free and total Trp, albumin, NEFA, K and its metabolites and pro- and anti-inflammatory cytokines in maternal blood and, where appropriate, placental and fetal material) in normal and abnormal pregnancies may establish missing gaps in our knowledge of the Trp status in pregnancy and help identify appropriate intervention strategies.  相似文献   

19.
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) have an independent origin; however, they have distinctly evolved to catalyze the same reaction. In general, TDO is a single-copy gene in each metazoan species, and TDO enzymes demonstrate similar enzyme activity regardless of their biological origin. In contrast, multiple IDO paralogues are observed in many species, and they display various enzymatic properties. Similar to vertebrate IDO2, invertebrate IDOs generally show low affinity/catalytic efficiency for L-Trp. Meanwhile, two IDO isoforms from scallop (IDO-I and -III) and sponge IDOs show high L-Trp catalytic activity, which is comparable to vertebrate IDO1. Site-directed mutagenesis experiments have revealed that primarily two residues, Tyr located at the 2nd residue on the F-helix (F2nd) and His located at the 9th residue on the G-helix (G9th), are crucial for the high affinity/catalytic efficiency of these ‘high performance’ invertebrate IDOs. Conversely, those two amino acid substitutions (F2nd/Tyr and G9th/His) resulted in high affinity and catalytic activity in other molluscan ‘low performance’ IDOs. In human IDO1, G9th is Ser167, whereas the counterpart residue of G9th in human TDO is His76. Previous studies have shown that Ser167 could not be substituted by His because the human IDO1 Ser167His variant showed significantly low catalytic activity. However, this may be specific for human IDO1 because G9th/His was demonstrated to be very effective in increasing the L-Trp affinity even in vertebrate IDOs. Therefore, these findings indicate that the active sites of TDO and IDO are more similar to each other than previously expected.  相似文献   

20.
Indoleamine 2,3-dioxygenase 1 (IDO1) is regarded as a promising target for cancer immunotherapy. Many naphthoquinone derivatives have been reported as IDO1 inhibitors so far. Herein, two series of naphthoquinone derivatives, naphthoindolizine and indolizinoquinoline-5,12-dione derivatives, were synthesized and evaluated for their IDO1 inhibitory activity. Most of the target compounds showed significant inhibition potency and high selectivity for IDO1 over tryptophan 2,3-dioxygenase (TDO). The structure-activity relationship was also summarized. The most potent compounds 5c (IC50 23?nM, IDO1 enzyme), and 5b′ (IC50 372?nM, HeLa cell) were identified as promising lead compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号