首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The telomere at the end of a linear chromosome plays crucial roles in genome stability. In the fission yeast Schizosaccharomyces pombe, the Rap1 protein, one of the central players at the telomeres, associates with multiple proteins to regulate various telomere functions, such as the maintenance of telomere DNA length, telomere end protection, maintenance of telomere heterochromatin, and telomere clustering in meiosis. The molecular bases of the interactions between Rap1 and its partners, however, remain largely unknown. Here, we describe the identification of the interaction domains of Rap1 with its partners. The Bqt1/Bqt2 complex, which is required for normal meiotic progression, Poz1, which is required for telomere length control, and Taz1, which is required for the recruitment of Rap1 to telomeres, bind to distinct domains in the C-terminal half of Rap1. Intriguingly, analyses of a series of deletion mutants for rap1 + have revealed that the long N-terminal region (1–456 a.a. [amino acids]) of Rap1 (full length: 693 a.a.) is not required for telomere DNA length control, telomere end protection, and telomere gene silencing, whereas the C-terminal region (457–693 a.a.) containing Poz1- and Taz1-binding domains plays important roles in those functions. Furthermore, the Bqt1/Bqt2- and Taz1-binding domains are essential for normal spore formation after meiosis. Our results suggest that the C-terminal half of Rap1 is critical for the primary telomere functions, whereas the N-terminal region containing the BRCT (BRCA1 C-terminus) and Myb domains, which are evolutionally conserved among the Rap1 family proteins, does not play a major role at the telomeres.  相似文献   

2.
The junction between the double-stranded and single-stranded telomeric DNA (ds–ss junction) is fundamental in the maintenance of the telomeric chromatin, as it directs the assembly of the telomere binding proteins. In budding yeast, multiple Rap1 proteins bind the telomeric dsDNA, while ssDNA repeats are bound by the Cdc13 protein. Here, we aimed to determine, for the first time, the telomeric 5′ end nucleotide in a budding yeast. To this end, we developed a permutation-specific PCR-based method directed towards the regular 8-mer telomeric repeats in Naumovozyma castellii. We find that, in logarithmically growing cells, the 320 ± 30 bp long telomeres mainly terminate in either of two specific 5′ end permutations of the repeat, both corresponding to a terminal adenine nucleotide. Strikingly, two permutations are completely absent at the 5′ end, indicating that not all ds‐ss junction structures would allow the establishment of the protective telomere chromatin cap structure. Using in vitro DNA end protection assays, we determined that binding of Rap1 and Cdc13 around the most abundant ds–ss junction ensures the protection of both 5′ ends and 3′ overhangs from exonucleolytic degradation. Our results provide mechanistic insights into telomere protection, and reveal that Rap1 and Cdc13 have complementary roles.  相似文献   

3.
The fission yeast Pot1 (protection of telomeres) protein binds to the single-stranded extensions at the ends of telomeres, where its presence is critical for the maintenance of linear chromosomes. Homologs of Pot1 have been identified in a wide variety of eukaryotes, including plants, animals, and humans. We now show that Pot1 plays dual roles in telomere length regulation and chromosome end protection. Using a series of Pot1 truncation mutants, we have defined distinct areas of the protein required for chromosome stability and for limiting access to telomere ends by telomerase. We provide evidence that a large portion of Pot1, including the N-terminal DNA binding domain and amino acids close to the C terminus, is essential for its protective function. C-terminal Pot1 fragments were found to exert a dominant-negative effect by displacing endogenous Pot1 from telomeres. Reducing telomere-bound Pot1 in this manner resulted in dramatic lengthening of the telomere tract. Upon further reduction of Pot1 at telomeres, the opposite phenotype was observed: loss of telomeric DNA and chromosome end fusions. Our results demonstrate that cells must carefully regulate the amount of telomere-bound Pot1 to differentiate between allowing access to telomerase and catastrophic loss of telomeres.  相似文献   

4.
In Saccharomyces cerevisiae, the sequence-specific binding of the negative regulator Rap1p provides a mechanism to measure telomere length: as the telomere length increases, the binding of additional Rap1p inhibits telomerase activity in cis. We provide evidence that the association of Rap1p with telomeric DNA in vivo occurs in part by sequence-independent mechanisms. Specific mutations in EST2 (est2-LT) reduce the association of Rap1p with telomeric DNA in vivo. As a result, telomeres are abnormally long yet bind an amount of Rap1p equivalent to that observed at wild-type telomeres. This behavior contrasts with that of a second mutation in EST2 (est2-up34) that increases bound Rap1p as expected for a strain with long telomeres. Telomere sequences are subtly altered in est2-LT strains, but similar changes in est2-up34 telomeres suggest that sequence abnormalities are a consequence, not a cause, of overelongation. Indeed, est2-LT telomeres bind Rap1p indistinguishably from the wild type in vitro. Taken together, these results suggest that Est2p can directly or indirectly influence the binding of Rap1p to telomeric DNA, implicating telomerase in roles both upstream and downstream of Rap1p in telomere length homeostasis.  相似文献   

5.
In eukaryotes, permanent inhibition of the non‐homologous end joining (NHEJ) repair pathway at telomeres ensures that chromosome ends do not fuse. In budding yeast, binding of Rap1 to telomere repeats establishes NHEJ inhibition. Here, we show that the Uls1 protein is required for the maintenance of NHEJ inhibition at telomeres. Uls1 protein is a non‐essential Swi2/Snf2‐related translocase and a Small Ubiquitin‐related Modifier (SUMO)‐Targeted Ubiquitin Ligase (STUbL) with unknown targets. Loss of Uls1 results in telomere–telomere fusions. Uls1 requirement is alleviated by the absence of poly‐SUMO chains and by rap1 alleles lacking SUMOylation sites. Furthermore, Uls1 limits the accumulation of Rap1 poly‐SUMO conjugates. We propose that one of Uls1 functions is to clear non‐functional poly‐SUMOylated Rap1 molecules from telomeres to ensure the continuous efficiency of NHEJ inhibition. Since Uls1 is the only known STUbL with a translocase activity, it can be the general molecular sweeper for the clearance of poly‐SUMOylated proteins on DNA in eukaryotes.  相似文献   

6.
Telomeres protect the chromosome ends from unscheduled DNA repair and degradation. Telomeres are heterochromatic domains composed of repetitive DNA (TTAGGG repeats) bound to an array of specialized proteins. The length of telomere repeats and the integrity of telomere-binding proteins are both important for telomere protection. Furthermore, telomere length and integrity are regulated by a number of epigenetic modifications, thus pointing to higher order control of telomere function. In this regard, we have recently discovered that telomeres are transcribed generating long, non-coding RNAs, which remain associated with the telomeric chromatin and are likely to have important roles in telomere regulation. In the past, we showed that telomere length and the catalytic component of telomerase, Tert, are critical determinants for the mobilization of stem cells. These effects of telomerase and telomere length on stem cell behaviour anticipate the premature ageing and cancer phenotypes of telomerase mutant mice. Recently, we have demonstrated the anti-ageing activity of telomerase by forcing telomerase expression in mice with augmented cancer resistance. Shelterin is the major protein complex bound to mammalian telomeres; however, its potential relevance for cancer and ageing remained unaddressed to date. To this end, we have generated mice conditionally deleted for the shelterin proteins TRF1, TPP1 and Rap1. The study of these mice demonstrates that telomere dysfunction, even if telomeres are of a normal length, is sufficient to produce premature tissue degeneration, acquisition of chromosomal aberrations and initiation of neoplastic lesions. These new mouse models, together with the telomerase-deficient mouse model, are valuable tools for understanding human pathologies produced by telomere dysfunction.  相似文献   

7.
Some human cancers maintain telomeres using alternative lengthening of telomeres (ALT), a process thought to be due to recombination. In Kluyveromyces lactis mutants lacking telomerase, recombinational telomere elongation (RTE) is induced at short telomeres but is suppressed once telomeres are moderately elongated by RTE. Recent work has shown that certain telomere capping defects can trigger a different type of RTE that results in much more extensive telomere elongation that is reminiscent of human ALT cells. In this study, we generated telomeres composed of either of two types of mutant telomeric repeats, Acc and SnaB, that each alter the binding site for the telomeric protein Rap1. We show here that arrays of both types of mutant repeats present basally on a telomere were defective in negatively regulating telomere length in the presence of telomerase. Similarly, when each type of mutant repeat was spread to all chromosome ends in cells lacking telomerase, they led to the formation of telomeres produced by RTE that were much longer than those seen in cells with only wild-type telomeric repeats. The Acc repeats produced the more severe defect in both types of telomere maintenance, consistent with their more severe Rap1 binding defect. Curiously, although telomerase deletion mutants with telomeres composed of Acc repeats invariably showed extreme telomere elongation, they often also initially showed persistent very short telomeres with few or no Acc repeats. We suggest that these result from futile cycles of recombinational elongation and truncation of the Acc repeats from the telomeres. The presence of extensive 3′ overhangs at mutant telomeres suggests that Rap1 may normally be involved in controlling 5′ end degradation.  相似文献   

8.
Rap1 affects the length and heterogeneity of human telomeres   总被引:8,自引:0,他引:8       下载免费PDF全文
Telomere length is controlled in part by cis-acting negative regulators that limit telomere extension by telomerase. In budding yeast, the major telomere length regulator scRap1 binds to telomeric DNA and acts to inhibit telomere elongation in cis. Because the human Rap1 ortholog hRap1 does not bind to telomeric DNA directly but is recruited to telomeres by TRF2, we examined its role in telomere length control. The data are consistent with hRap1 being a negative regulator of telomere length, indicating functional conservation. Deletion mapping confirmed that hRap1 is tethered to telomeres through interaction of its C terminus with TRF2. The telomere length phenotypes of hRap1 deletion mutants implicated both the BRCT and Myb domain as protein interaction domains involved in telomere length regulation. By contrast, scRap1 binds to telomeres with its Myb domains and uses its C terminus to recruit the telomere length regulators Rif1 and Rif2. Together, our data show that although the role of Rap1 at telomeres has been largely conserved, the domains of Rap1 have undergone extensive functional changes during eukaryotic evolution. Surprisingly, hRap1 alleles lacking the BRCT domain diminished the heterogeneity of human telomeres, indicating that hRap1 also plays a role in the regulation of telomere length distribution.  相似文献   

9.
Pardo B  Marcand S 《The EMBO journal》2005,24(17):3117-3127
Telomeres protect chromosomes from end-to-end fusions. In yeast Saccharomyces cerevisiae, the protein Rap1 directly binds telomeric DNA. Here, we use a new conditional allele of RAP1 and show that Rap1 loss results in frequent fusions between telomeres. Analysis of the fusion point with restriction enzymes indicates that fusions occur between telomeres of near wild-type length. Telomere fusions are not observed in cells lacking factors required for nonhomologous end joining (NHEJ), including Lig4 (ligase IV), KU and the Mre11 complex. SAE2 and TEL1 do not affect the frequency of fusions. Together, these results show that Rap1 is essential to block NHEJ between telomeres. Since the presence of Rap1 at telomeres has been conserved through evolution, the establishment of NHEJ suppression by Rap1 could be universal.  相似文献   

10.
11.
The terminal t-loop structure adopted by mammalian telomeres is thought to prevent telomeres from being recognized as double-stranded DNA breaks by sequestering the 3' single-stranded G-rich overhang from exposure to the DNA damage machinery. The POT1 (protection of telomeres) protein binds the single-stranded overhang and is required for both chromosomal end protection and telomere length regulation. The mouse genome contains two POT1 orthologs, Pot1a and Pot1b. Here we show that conditional deletion of Pot1a elicits a DNA damage response at telomeres, resulting in p53-dependent replicative senescence. Pot1a-deficient cells exhibit overall telomere length and 3' overhang elongation as well as aberrant homologous recombination (HR) at telomeres, manifested as increased telomere sister chromatid exchanges and formation of telomere circles. Telomeric HR following Pot1a loss requires NBS1. Pot1a deletion also results in chromosomal instability. Our results suggest that POT1a is crucial for the maintenance of both telomere integrity and overall genomic stability.  相似文献   

12.
Fission yeast cells survive loss of the telomerase catalytic subunit Trt1 (TERT) through recombination-based telomere maintenance or through chromosome circularization. Although trt1Δ survivors with linear chromosomes can be obtained, they often spontaneously circularize their chromosomes. Therefore, it was difficult to establish genetic requirements for telomerase-independent telomere maintenance. In contrast, when the telomere-binding protein Taz1 is also deleted, taz1Δ trt1Δ cells are able to stably maintain telomeres. Thus, taz1Δ trt1Δ cells can serve as a valuable tool in understanding the regulation of telomerase-independent telomere maintenance. In this study, we show that the checkpoint kinase Tel1 (ATM) and the DNA repair complex Rad32-Rad50-Nbs1 (MRN) are required for telomere maintenance in taz1Δ trt1Δ cells. Surprisingly, Rap1 is also essential for telomere maintenance in taz1Δ trt1Δ cells, even though recruitment of Rap1 to telomeres depends on Taz1. Expression of catalytically inactive Trt1 can efficiently inhibit recombination-based telomere maintenance, but the inhibition requires both Est1 and Ku70. While Est1 is essential for recruitment of Trt1 to telomeres, Ku70 is dispensable. Thus, we conclude that Taz1, TERT-Est1, and Ku70-Ku80 prevent telomere recombination, whereas MRN-Tel1 and Rap1 promote recombination-based telomere maintenance. Evolutionarily conserved proteins in higher eukaryotic cells might similarly contribute to telomere recombination.  相似文献   

13.
Telomeres are essential for genome integrity. scRap1 (S. cerevisiae Rap1) directly binds to telomeric DNA and regulates telomere length and telomere position effect (TPE) by recruiting two different groups of proteins to its RCT (Rap1 C-terminal) domain. The first group, Rif1 and Rif2, regulates telomere length. The second group, Sir3 and Sir4, is involved in heterochromatin formation. On the other hand, human TRF1 and TRF2, as well as their fission yeast homolog, Taz1, directly bind to telomeric DNA and negatively regulate telomere length. Taz1 also plays important roles in TPE and meiosis. Human Rap1, the ortholog of scRap1, negatively regulates telomere length and appears to be recruited to telomeres by interacting with TRF2. Here, we describe two novel fission yeast proteins, spRap1 (S. pombe Rap1) and spRif1 (S. pombe Rif1), which are orthologous to scRap1 and scRif1, respectively. spRap1 and spRif1 are independently recruited to telomeres by interacting with Taz1. The rap1 mutant is severely defective in telomere length control, TPE, and telomere clustering toward the spindle pole body (SPB) at the premeiotic horsetail stage, indicating that spRap1 has critical roles in these telomere functions. The rif1 mutant also shows some defects in telomere length control and meiosis. Our results indicate that Taz1 provides binding sites for telomere regulators, spRap1 and spRif1, which perform the essential telomere functions. This study establishes the similarity of telomere organization in fission yeast and humans.  相似文献   

14.
Role for telomere cap structure in meiosis   总被引:3,自引:0,他引:3       下载免费PDF全文
Telomeres, the natural ends of eukaryotic chromosomes, are essential for the protection of chromosomes from end-to-end fusions, recombination, and shortening. Here we explore their role in the process of meiotic division in the budding yeast, Kluyveromyces lactis. Telomerase RNA mutants that cause unusually long telomeres with deregulated structure led to severely defective meiosis. The severity of the meiotic phenotype of two mutants correlated with the degree of loss of binding of the telomere binding protein Rap1p. We show that telomere size and the extent of potential Rap1p binding to the entire telomere are irrelevant to the process of meiosis. Moreover, we demonstrate that extreme difference in telomere size between two homologous chromosomes is compatible with the normal function of telomeres during meiosis. In contrast, the structure of the most terminal telomeric repeats is critical for normal meiosis. Our results demonstrate that telomeres play a critical role during meiotic division and that their terminal cap structure is essential for this role.  相似文献   

15.
16.
Loss of telomere protection occurs during physiological cell senescence and ageing, due to attrition of telomeric repeats and insufficient retention of the telomere-binding factor TRF2. Subsequently formed telomere fusions trigger rampant genomic instability leading to cell death or tumorigenesis. Mechanistically, telomere fusions require either the classical non-homologous end-joining (C-NHEJ) pathway dependent on Ku70/80 and LIG4, or the alternative non-homologous end-joining (A-NHEJ), which relies on PARP1 and LIG3. Here, we show that the tumour suppressor BRCA1, together with its interacting partner CtIP, both acting in end resection, also promotes end-joining of uncapped telomeres. BRCA1 and CtIP do not function in the ATM-dependent telomere damage signalling, nor in telomere overhang removal, which are critical for telomere fusions by C-NHEJ. Instead, BRCA1 and CtIP act in the same pathway as LIG3 to promote joining of de-protected telomeres by A-NHEJ. Our work therefore ascribes novel roles for BRCA1 and CtIP in end-processing and fusion reactions at uncapped telomeres, underlining the complexity of DNA repair pathways that act at chromosome ends lacking protective structures. Moreover, A-NHEJ provides a mechanism of previously unanticipated significance in telomere dysfunction-induced genome instability.  相似文献   

17.
Rap1p, the major telomere repeat binding protein in yeast, has been implicated in both de novo telomere formation and telomere length regulation. To characterize the role of Rap1p in these processes in more detail, we studied the generation of telomeres in vivo from linear DNA substrates containing defined arrays of Rap1p binding sites. Consistent with previous work, our results indicate that synthetic Rap1p binding sites within the internal half of a telomeric array are recognized as an integral part of the telomere complex in an orientation-independent manner that is largely insensitive to the precise spacing between adjacent sites. By extending the lengths of these constructs, we found that several different Rap1p site arrays could never be found at the very distal end of a telomere, even when correctly oriented. Instead, these synthetic arrays were always followed by a short ( approximately 100-bp) "cap" of genuine TG repeat sequence, indicating a remarkably strict sequence requirement for an end-specific function(s) of the telomere. Despite this fact, even misoriented Rap1p site arrays promote telomere formation when they are placed at the distal end of a telomere-healing substrate, provided that at least a single correctly oriented site is present within the array. Surprisingly, these heterogeneous arrays of Rap1p binding sites generate telomeres through a RAD52-dependent fusion resolution reaction that results in an inversion of the original array. Our results provide new insights into the nature of telomere end capping and reveal one way by which recombination can resolve a defect in this process.  相似文献   

18.
Telomere lengths are tightly regulated within a narrow range in normal human cells. Previous studies have extensively focused on how short telomeres are extended and have demonstrated that telomerase plays a central role in elongating short telomeres. However, much about the molecular mechanisms of regulating excessively long telomeres is unknown. In this report, we demonstrated that the telomerase enzymatic component, hTERT, plays a dual role in the regulation of telomere length. It shortens excessively long telomeres and elongates short telomeres simultaneously in one cell, maintaining the optimal telomere length at each chromosomal end for efficient protection. This novel hTERT-mediated telomere-shortening mechanism not only exists in cancer cells, but also in primary human cells. The hTERT-mediated telomere shortening requires hTERT’s enzymatic activity, but the telomerase RNA component, hTR, is not involved in that process. We found that expression of hTERT increases telomeric circular DNA formation, suggesting that telomere homologous recombination is involved in the telomere-shortening process. We further demonstrated that shelterin protein TPP1 interacts with hTERT and recruits hTERT onto the telomeres, suggesting that TPP1 might be involved in regulation of telomere shortening. This study reveals a novel function of hTERT in telomere length regulation and adds a new element to the current molecular model of telomere length maintenance.  相似文献   

19.
Telomere length is negatively regulated by proteins of the telomeric DNA-protein complex. Rap1p in Saccharomyces cerevisiae binds the telomeric TG(1-3) repeat DNA, and the Rap1p C terminus interacts with Rif1p and Rif2p. We investigated how these three proteins negatively regulate telomere length. We show that direct tethering of each Rif protein to a telomere shortens that telomere proportionally to the number of tethered molecules, similar to previously reported counting of Rap1p. Surprisingly, Rif proteins could also regulate telomere length even when the Rap1p C terminus was absent, and tethered Rap1p counting was completely dependent on the Rif proteins. Thus, Rap1p counting is in fact Rif protein counting. In genetic settings that cause telomeres to be abnormally long, tethering even a single Rif2p molecule was sufficient for maximal effectiveness in preventing the telomere overelongation. We show that a heterologous protein oligomerization domain, the mammalian PDZ domain, when fused to Rap1p can confer telomere length control. We propose that a nucleation and spreading mechanism is involved in forming the higher-order telomere structure that regulates telomere length.  相似文献   

20.
We describe two roles for the Rad50 protein in telomere maintenance and the protection of chromosome ends. Using fluorescence in situ hybridisation (FISH) and fibre-FISH analyses, we show that absence of AtRad50 protein leads to rapid shortening of a subpopulation of chromosome ends and subsequently chromosome-end fusions lacking telomeric repeats. In the absence of telomerase, mutation of atrad50 has a synergistic effect on the number of chromosome end fusions. Surprisingly, this 'deprotection' of the shortened telomeres does not result in increased exonucleolytic degradation, but in a higher proportion of anaphase bridges containing telomeric repeats in atrad50/tert plants, compared to tert mutant plants. Absence of AtRad50 thus facilitates the action of recombination on these shortened telomeres. We propose that this protective role of Rad50 protein on shortened telomeres results from its action in constraining recombination to sister chromatids and thus avoiding end-to-end interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号