首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genus Vitis (the grapevine) is a group of highly diverse, diploid woody perennial vines consisting of approximately 60 species from across the northern hemisphere. It is the world’s most valuable horticultural crop with ~8 million hectares planted, most of which is processed into wine. To gain insights into the use of wild Vitis species during the past century of interspecific grape breeding and to provide a foundation for marker-assisted breeding programmes, we present a principal components analysis (PCA) based ancestry estimation method to calculate admixture proportions of hybrid grapes in the United States Department of Agriculture grape germplasm collection using genome-wide polymorphism data. We find that grape breeders have backcrossed to both the domesticated V. vinifera and wild Vitis species and that reasonably accurate genome-wide ancestry estimation can be performed on interspecific Vitis hybrids using a panel of fewer than 50 ancestry informative markers (AIMs). We compare measures of ancestry informativeness used in selecting SNP panels for two-way admixture estimation, and verify the accuracy of our method on simulated populations of admixed offspring. Our method of ancestry deconvolution provides a first step towards selection at the seed or seedling stage for desirable admixture profiles, which will facilitate marker-assisted breeding that aims to introgress traits from wild Vitis species while retaining the desirable characteristics of elite V. vinifera cultivars.  相似文献   

2.
Soil drying causes leaf rolling in rice, but the relationship between leaf rolling and drought tolerance has historically confounded selection of drought‐tolerant genotypes. In this study on tropical japonica and aus diversity panels (170–220 genotypes), the degree of leaf rolling under drought was more affected by leaf morphology than by stomatal conductance, leaf water status, or maintenance of shoot biomass and grain yield. A range of canopy temperature and leaf rolling (measured as change in normalized difference vegetation index [ΔNDVI]) combinations were observed among aus genotypes, indicating that some genotypes continued transpiration while rolled. Association mapping indicated colocation of genomic regions for leaf rolling score and ΔNDVI under drought with previously reported leaf rolling genes and gene networks related to leaf anatomy. The relatively subtle variation across these large diversity panels may explain the lack of agreement of this study with earlier reports that used small numbers of genotypes that were highly divergent in hydraulic traits driving leaf rolling differences. This study highlights the large range of physiological responses to drought among rice genotypes and emphasizes that drought response processes should be understood in detail before incorporating them into a varietal selection programme.  相似文献   

3.
Leaf micromorphological traits and some physiological parameters with potential relevance to drought tolerance mechanisms were investigated in four selected winter wheat varieties. Plants were subjected to two cycles of drought treatment at anthesis. Yield components confirmed contrasting drought-sensitive and -tolerant behavior of the genotypes. Drought tolerance was associated with small flag leaf surfaces and less frequent occurrence of stomata. Substantial variation of leaf cuticular thickness was found among the cultivars. Thin cuticle coincided with drought sensitivity and correlated with a high rate of dark-adapted water loss from leaves. Unlike in Arabidopsis, thickening of the cuticular matrix in response to water deprivation did not occur. Water stress induced epicuticular wax crystal depositions preferentially on the abaxial leaf surfaces. According to microscopy and electrolyte leakage measurements from leaf tissues, membrane integrity was lost earlier or to a higher extent in sensitive than in tolerant genotypes. Cellular damage and a decline of relative water content of leaves in sensitive cultivars became distinctive during the second cycle of water deprivation. Our results indicate strong variation of traits with potential contribution to the complex phenotype of drought tolerance in wheat genotypes. The maintained membrane integrity and relative water content values during repeated water limited periods were found to correlate with drought tolerance in the selection of cultivars investigated.  相似文献   

4.
Plant hydraulic traits capture the impacts of drought stress on plant function, yet vegetation models lack sufficient information regarding trait coordination and variation with climate‐of‐origin across species. Here, we investigated key hydraulic and carbon economy traits of 12 woody species in Australia from a broad climatic gradient, with the aim of identifying the coordination among these traits and the role of climate in shaping cross‐species trait variation. The influence of environmental variation was minimized by a common garden approach, allowing us to factor out the influence of environment on phenotypic variation across species. We found that hydraulic traits (leaf turgor loss point, stomatal sensitivity to drought [Pgs], xylem vulnerability to cavitation [Px], and branch capacitance [Cbranch]) were highly coordinated across species and strongly related to rainfall and aridity in the species native distributional range. In addition, trade‐offs between drought tolerance and plant growth rate were observed across species. Collectively, these results provide critical insight into the coordination among hydraulic traits in modulating drought adaptation and will significantly advance our ability to predict drought vulnerability in these dominant trees species.  相似文献   

5.
Phosphorus (P) deficiency tolerance is a pivotal trait for plant growth and development. Most of the commercial modern cultivars lack this trait and reported it as a very serious problem limiting crop productivity. This trait is advantageous if present in modern high yielding varieties as it increases the yield under the phosphorus-deficient soil conditions. With the importance of phosphorus deficiency tolerance, the present investigation was carried out with an objective to screen for tolerance to phosphorus deficiency using solution culture and phosphorus uptake 1 (Pup1) locus linked markers in 30 diverse rice genotypes. A wide range of varied responses to P deficiency in rice genotypes for all the traits were observed. Root length and enzyme activity showed increased mean performance under the − P condition when compared to + P condition. Medium to high heritability estimates were obtained for most of the traits. Correlation analysis showed that the traits: root P content, fresh shoot weight, dry shoot weight, and shoot length showed highly significant correlations with each other under − P conditions. Based on the hydroponics and molecular screening, three genotypes viz., ADT (R) 48, Improved Pusa Basmati 1 and UPLRI 5 were classified as tolerant for its response to P deficiency as they possessed significant increase in desirable root and shoot traits, increased acid phosphatase enzyme and these genotypes also possessed the Pup1 allele for all the five markers. The selected genotypes may be useful for the exploration of novel genes conferring phosphorus deficiency tolerance and used as donor parents in the breeding programs. Absence of this allele in the rice genotypes viz., drought tolerant (Anna (R) 4) and submergence tolerant (CR 1009 Sub 1) may warrant the development of multiple abiotic stress tolerance cultivars for upland and submergence cropping systems in future rice breeding program.Electronic supplementary materialThe online version of this article (10.1007/s12298-020-00903-1) contains supplementary material, which is available to authorized users.  相似文献   

6.
A variety of cellular responses is needed to ensure the plants survival during drought, but little is known about the signaling mechanisms involved in this process. Soybean cultivars (EMBRAPA 48 and BR 16, tolerant and sensitive to drought, respectively) were exposed to the following treatments: control conditions (plants in field capacity), drought (20% of available water in the soil), sodium nitroprusside (SNP) treatment (plants irrigated and treated with 100-µM SNP [SNP–nitric oxide (NO) donor molecule], and Drought + SNP (plants subjected to drought and SNP treatment). Plants remained in these conditions until the reproductive stage and were evaluated for physiological (photosynthetic pigments, chlorophyll a fluorescence and gas exchange rates), hydraulic (water potential, osmotic potential and leaf hydraulic conductivity) and morpho-anatomical traits (biomass, venation density and stomatal characterization). Exposure to water deficit considerably reduced water potential in both cultivars and resulted in decrease in photosynthesis and biomass accumulation. The addition of the NO donor attenuated these damaging effects of water deficit and increased the tolerance index of both cultivars. The results showed that NO was able to reduce plant's water loss, while maintaining their biomass production through alteration in stomatal characteristics, hydraulic conductivity and the biomass distribution pattern. These hydraulic and morpho-anatomical alterations allowed the plants to obtain, transport and lose less water to the atmosphere, even in water deficit conditions.  相似文献   

7.
Drought stress is one of the major abiotic stresses affecting lint yield and fibre quality in cotton. With increase in population, degrading natural resources and frequent drought occurrences, development of high yielding, drought tolerant cotton cultivars is critical for sustainable cotton production across countries. Six Gossypium hirsutum genotypes identified for drought tolerance, wider adaptability and better fibre quality traits were characterized for various morpho-physiological and biochemical characters and their molecular basis was investigated under drought stress. Under drought conditions, genotypes revealed statistically significant differences for all the morpho-physiological and biochemical traits. The interaction (genotype × treatment) effects were highly significant for root length, excised leaf water loss and cell membrane thermostability indicating differential interaction of genotypes under control and stress conditions. Correlation studies revealed that under drought stress, relative water content had significant positive correlation with root length and root-to-shoot ratio while it had significant negative correlation with excised leaf water loss, epicuticular wax, proline, potassium and total soluble sugar content. Analysis of expression of fourteen drought stress related genes under water stress indicated that both ABA dependent and ABA independent mechanisms of drought tolerance might be operating differentially in the studied genotypes. IC325280 and LRA5166 exhibited ABA mediated expression of stress responsive genes and traits. Molecular basis of drought tolerance in IC357406, Suraj, IC259637 and CNH 28I genotypes could be attributed to ABA independent pathway. Based on physiological phenotyping, the genotypes IC325280 and IC357406 were identified to possess better root traits and LRA5166 was found to have enhanced cellular level tolerance. Variety Suraj exhibited good osmotic adjustment and better root traits to withstand water stress. The identified drought component trait(s) in specific genotypes would pave way for their pyramiding through marker assisted cotton breeding.Electronic supplementary materialThe online version of this article (10.1007/s12298-020-00890-3) contains supplementary material, which is available to authorized users.  相似文献   

8.
The success of drought tolerance breeding programs can be enhanced through molecular assortment of germplasm. This study was designed to characterize molecular diversity within and between Lens species with different adaptations to drought stress conditions using SSR markers. Drought stress was applied at seedling stage to study the effects on morpho-physiological traits under controlled condition, where tolerant cultivars and wilds showed 12.8–27.6% and 9.5–23.2% reduction in seed yield per plant respectively. When juxtaposed to field conditions, the tolerant cultivars (PDL-1 and PDL-2) and wild (ILWL-314 and ILWL-436) accessions showed 10.5–26.5% and 7.5%–15.6% reduction in seed yield per plant, respectively under rain-fed conditions. The reductions in seed yield in the two tolerant cultivars and wilds under severe drought condition were 48–49% and 30.5–45.3% respectively. A set of 258 alleles were identified among 278 genotypes using 35 SSR markers. Genetic diversity and polymorphism information contents varied between 0.321–0.854 and 0.299–0.836, with mean value of 0.682 and 0.643, respectively. All the genotypes were clustered into 11 groups based on SSR markers. Tolerant genotypes were grouped in cluster 6 while sensitive ones were mainly grouped into cluster 7. Wild accessions were separated from cultivars on the basis of both population structure and cluster analysis. Cluster analysis has further grouped the wild accessions on the basis of species and sub-species into 5 clusters. Physiological and morphological characters under drought stress were significantly (P = 0.05) different among microsatellite clusters. These findings suggest that drought adaptation is variable among wild and cultivated genotypes. Also, genotypes from contrasting clusters can be selected for hybridization which could help in evolution of better segregants for improving drought tolerance in lentil.  相似文献   

9.
10.
Grapevine (Vitis genus) is one of the economically most important fruits worldwide. Some species and cultivars are rare and have only a few vines, but represent national heritages with a strong need for preservation. Field collections are labor intensive, and expensive to maintain, and are exposed to natural disasters. In addition, infection with pathogens, especially viruses, is common in grapevine because of vegetative propagation, which is conventionally used for this genus. Cryopreservation provides an alternative and ideal means for the long-term preservation of Vitis germplasm, which can be used as a backup to field collections for important autochthonous cultivars or only as cryo-banks for rare, native cultivars that are worthy of preservation. Cryotherapy, based on cryopreservation protocols, provides an efficient method for the eradication of grapevine viruses. This review provides comprehensive and updated information on cryopreservation for long-term preservation of genetic resources and cryotherapy for virus eradication in Vitis. Additional research in grapevine cryopreservation and cryotherapy is needed.  相似文献   

11.
One of the most important viticultural characteristics of a grapevine rootstock is the ability to form roots on dormant lignified canes (rootstrike). North American species of Vitis are the primary source of germplasm for grapevine rootstocks and vary widely in their rate of rootstrike. Breeders have hybridized grape species in order to introgress traits to produce commercial rootstocks. A combination of 26 parents consisting of improved and wild accessions of Vitis spp. was used to generate 27 families. The percentage of rootstrike of dormant canes was observed over several years for 552 individuals. A logistic generalized linear mixed model (GLMM) method was used to estimate the narrow sense heritability (h 2) of rootstrike. Heritability was found to be moderate (h 2?=?0.307?±?0.050). The model also estimated breeding values of all parents and progeny. A GLMM method can be used to estimate breeding values of germplasm to identify individuals with commercially acceptable rates of rootstrike with a defined probability of transmitting this trait to progeny. This is useful for the introgression of traits into potentially new commercial rootstocks. The pattern of normal distribution of rooting indicates that it is possible to identify individuals with good rootstrike from Vitis species that are generally considered to have low rootstrike. Selection of individuals with a higher breeding value will increase the efficiency of rootstock breeding.  相似文献   

12.
Hybrid poplars are an important renewable forest resource known for their high productivity. At the same time, they are highly vulnerable to water stress. Identifying traits that can serve as indicators for growth performance remains an important task, particularly under field conditions. Understanding which trait combinations translate to improved productivity is key in order to satisfy the demand for poplar wood in an uncertain future climate. In this study, we compared hydraulic and leaf traits among five hybrid poplar clones at 10 plantations in central Alberta. We also assessed the variation of these traits between 2‐ to 3‐year‐old branches from the lower to mid‐crown and current‐year long shoots from the mid to upper crown. Our results showed that (1) hybrid poplars differed in key hydraulic parameters between branch type, (2) variation of hydraulic traits among clones was relatively large for some clones and less for others, and (3) strong relationships between measured hydraulic traits, such as vessel diameter, cavitation resistance, xylem‐specific and leaf‐specific conductivity and leaf area, were observed. Our results suggest that leaf size could serve as an additional screening tool when selecting for drought‐tolerant genotypes in forest management and tree improvement programmes.  相似文献   

13.
Plant resistance to drought depends on timely stomatal closure   总被引:1,自引:0,他引:1       下载免费PDF全文
Stomata play a significant role in the Earth's water and carbon cycles, by regulating gaseous exchanges between the plant and the atmosphere. Under drought conditions, stomatal control of transpiration has long been thought to be closely coordinated with the decrease in hydraulic capacity (hydraulic failure due to xylem embolism). We tested this hypothesis by coupling a meta‐analysis of functional traits related to the stomatal response to drought and embolism resistance with simulations from a soil–plant hydraulic model. We report here a previously unreported phenomenon: the existence of an absolute limit by which stomata closure must occur to avoid rapid death in drought conditions. The water potential causing stomatal closure and the xylem pressure at the onset of embolism formation were equal for only a small number of species, and the difference between these two traits (i.e. safety margins) increased continuously with increasing embolism resistance. Our findings demonstrate the need to revise current views about the functional coordination between stomata and hydraulic traits and provide a mechanistic framework for modeling plant mortality under drought conditions.  相似文献   

14.
Background and AimsCrassulacean acid metabolism (CAM) is often considered to be a complex trait, requiring orchestration of leaf anatomy and physiology for optimal performance. However, the observation of trait correlations is based largely on comparisons between C3 and strong CAM species, resulting in a lack of understanding as to how such traits evolve and the level of intraspecific variability for CAM and associated traits.MethodsTo understand intraspecific variation for traits underlying CAM and how these traits might assemble over evolutionary time, we conducted detailed time course physiological screens and measured aspects of leaf anatomy in 24 genotypes of a C3+CAM hybrid species, Yucca gloriosa (Asparagaceae). Comparisons were made to Y. gloriosa’s progenitor species, Y. filamentosa (C3) and Y. aloifolia (CAM).Key ResultsBased on gas exchange and measurement of leaf acids, Y. gloriosa appears to use both C3 and CAM, and varies across genotypes in the degree to which CAM can be upregulated under drought stress. While correlations between leaf anatomy and physiology exist when testing across all three Yucca species, such correlations break down at the species level in Y. gloriosa.ConclusionsThe variation in CAM upregulation in Y. gloriosa is a result of its relatively recent hybrid origin. The lack of trait correlations between anatomy and physiology within Y. gloriosa indicate that the evolution of CAM, at least initially, can proceed through a wide combination of anatomical traits, and more favourable combinations are eventually selected for in strong CAM plants.  相似文献   

15.
The progress in development and dissemination of drought tolerant lines has been slow as compared to the increasing drought prevalence in the rice growing regions. Significant amount of work has been done in the past on drought resistance traits in rice crop, still the benefit of improved drought tolerant rice cultivars reaching the farmer’s field is not very high and ways to expedite the development of drought tolerant and productive rice cultivars needs to be addressed. In this article, an assessment of easily practicable approach of managed stress screening and prospect of direct selection for yield under drought stress is discussed. Also the large effect yield QTLs identified for grain yield under drought stress field conditions is being reviewed for successful introgression into elite genetic background for developing drought tolerant cultivars with improved yield for the drought prone target environment.  相似文献   

16.
Quantitative trait loci (QTLs) for yield and drought related physiological traits, osmotic potential (OP), carbon isotope ratio (δ13C, an indicator of water use efficiency), and leaf chlorophyll content (Chl), were exchanged via marker-assisted selection (MAS) between elite cultivars of the two cotton species Gossypium barbadense cv. F-177 and G. hirsutum cv. Siv’on. The resulting near isogenic lines (NILs) were examined in two field trials, each with two irrigation regimes, in order to (1) evaluate the potential to improve cotton drought resistance by MAS and (2) test the role of physiological traits in plant productivity. NILs introgressed with QTLs for high yield rarely exhibited an advantage in yield relative to the recipient parent, whereas a considerable number of NILs exhibited the expected phenotype in terms of lower OP (5 out of 9), higher δ13C (4 out of 6) or high Chl (2 out of 3). Several NILs exhibited considerable modifications in non-targeted traits including leaf morphology, stomatal conductance and specific leaf weight (SLW). In G. barbadense genotypes, yield was correlated negatively with δ13C and OP and positively with stomatal conductance, SLW and Chl, whereas in G. hirsutum yield was negatively correlated with δ13C, SLW and Chl. This dissimilarity suggests that each of the respective species has evolved different mechanisms underlying plant productivity. We conclude that the improvement of drought related traits in cotton NILs may lead to improved drought resistance via MAS, but that conventional breeding may be necessary to combine the introduced QTL(s) with high yield potential.  相似文献   

17.
Climate change is expected to increase drought frequency and intensity which will threaten plant growth and survival. In such fluctuating environments, perennial plants respond with hydraulic and biomass adjustments, resulting in either tolerant or avoidant strategies. Plants' response to stress relies on their phenotypic plasticity. The goal of this study was to explore physiology of young Populus nigra in the context of a time‐limited and progressive water deficit in regard to their growth and stress response strategies. Fourteen French 1‐year‐old black poplar genotypes, geographically contrasted, were subjected to withholding water during 8 days until severe water stress. Water fluxes (i.e. leaf water potentials and stomatal conductance) were analyzed together with growth (i.e. radial and longitudinal branch growth, leaf senescence and leaf production). Phenotypic plasticity was calculated for each trait and response strategies to drought were deciphered for each genotype. Black poplar genotypes permanently were dealing with a continuum of adjusted water fluxes and growth between two extreme strategies, tolerance and avoidance. Branch growth, leaf number and leaf hydraulic potential traits had contrasted plasticities, allowing genotype characterization. The most tolerant genotype to water deficit, which maintained growth, had the lowest global phenotypic plasticity. Conversely, the most sensitive and avoidant genotype ceased growth until the season's end, had the highest plasticity level. All the remaining black poplar genotypes were close to avoidance with average levels of traits plasticity. These results underpinned the role of plasticity in black poplar response to drought and calls for its wider use into research on plants' responses to stress.  相似文献   

18.

Aims

All components of the soil-plant-atmosphere (s-p-a) continuum are known to control berry quality in grapevine (Vitis vinifera L.) via ecophysiological interactions between water uptake by roots and water loss by leaves. The scope of the present work was to explore how the main hydraulic components of grapevine influence fruit quality through changes in liquid- and gas-phase hydraulic conductance.

Methods

To reach our objectives, determinations of shoot growth, berry size and sugar content, leaf gas exchange, predawn leaf water potential (as a proxy of soil water potential), midday stem water potential and leaf water potential were performed in conjunction with anatomical measurements of shoot xylem. All measurements were conducted in two different cultivars (Cabernet franc and Merlot) and on three different soil types (clayey, gravelly, and sandy).

Results

Shoot xylem morphometric characteristics and whole-plant hydraulic conductance were influenced by cultivar and soil type. Differences in leaf gas exchange parameters and water potentials were determined by soil type significantly more than by cultivar. Between the two extremes (gravelly soil imposing drought conditions and sandy soil with easily accessible water) the clayey soil expressed an intermediate plant water consumption and highest sugar accumulation in berry.

Conclusions

Hydraulic and non hydraulic limitations to vine/berry interactions supported the conclusion that water availability in the soil overrides differences due to cultivar in determining the productive potential of the vineyard. Non hydraulic stomatal control was expected to be an important component on plants grown on the clayey soil, which experienced a moderate water stress. Possible links between hydraulic traits and berry development and quality are discussed.  相似文献   

19.
Among grain legumes, faba bean is becoming increasingly popular in European agriculture due to recent economic and environmental interests. Faba bean can be a highly productive crop, but it is sensitive to drought stress and yields can vary considerably from season to season. Understanding the physiological basis of drought tolerance would indicate traits that can be used as indirect selection criteria for the development of cultivars adapted to drought conditions. To assess genotypic variation in physiological traits associated with drought tolerance in faba bean and to determine relationships among these attributes, two pot experiments were established in a growth chamber using genetic materials that had previously been screened for drought response in the field. Nine inbred lines of diverse genetic backgrounds were tested under adequate water supply and limited water conditions. The genotypes showed substantial variation in shoot dry matter, water use, stomatal conductance, leaf temperature, transpiration efficiency, carbon isotope discrimination (Δ13C), relative water content (RWC) and osmotic potential, determined at pre-flowering vegetative stage. Moisture deficits decreased water usage and consequently shoot dry matter production. RWC, osmotic potential, stomatal conductance and Δ13C were lower, whereas leaf temperature and transpiration efficiency were higher in stressed plants, probably due to restricted transpirational cooling induced by stomatal closure. Furthermore, differences in stomatal conductance, leaf temperature, Δ13C and transpiration efficiency characterized genotypes that were physiologically more adapted to water deficit conditions. Correlation analysis also showed relatively strong relationships among these variables under well watered conditions. The drought tolerant genotypes, ILB-938/2 and Melodie showed lower stomatal conductance associated with warmer leaves, whereas higher stomatal conductance and cooler leaves were observed in sensitive lines (332/2/91/015/1 and Aurora/1). The lower value of Δ13C coupled with higher transpiration efficiency in ILB-938/2, relative to sensitive lines (Aurora/1 and Condor/3), is indeed a desirable characteristic for water-limited environments. Finally, the results showed that stomatal conductance, leaf temperature and Δ13C are promising physiological indicators for drought tolerance in faba bean. These variables could be measured in pot-grown plants at adequate water supply and may serve as indirect selection criteria to pre-screen genotypes.  相似文献   

20.
Genetic diversity is an essential input for any plant breeding programme. To assess the genetic divergence among the newly identified drought tolerant lines and elite cotton genotypes including popular varieties, a total of 51 distinctly polymorphic markers were identified after screening 142 genome-wide SSR markers. The identified polymorphic markers detected a total of 140 alleles with a mean of 2.75 alleles per loci and average polymorphism information content of 0.45. Jaccard coefficient based dissimilarity index between the genotypes ranged from 0.18 to 0.82 indicating existence of wide variation between and within the drought tolerant and susceptible genotypes at the DNA level. Cluster and factorial analyses have provided the structure of genetic diversity present and clearly distinguished the drought tolerant and susceptible cotton genotypes. Clustering pattern was in congruence with the source or pedigree of genotypes. The information generated in the present study on genetic divergence among genotypes having differential response to drought will help in selection of suitable lines as parents for developing drought tolerant cultivars in cotton. The polymorphic markers and diverse lines identified in the study will be of immense utility in molecular mapping and marker assisted breeding to achieve drought tolerance in cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号