首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite its widespread usage as a chemotherapy drug in cancer treatment, doxorubicin (DOX) has limitations such as short in vivo circulation time, low solubility, and poor permeability. In this regard, a pH‐responsive chitosan (CS)‐ montmorillonite (MMT)‐ nitrogen‐doped carbon quantum dots (NCQDs) nanocomposite was first developed, loaded with DOX, and then incorporated into a double emulsion to further develop the sustained release. The incorporated NCQDs into the CS‐MMT hydrogel exhibited enhanced loading and entrapment efficiencies. The presence of NCQDs nanoparticles in the CS‐MMT hydrogel also resulted in an extended pH‐responsive release of DOX over a period of 96 h compared to that of CS‐MMT‐DOX nanocarriers at pH 5.4. Based on the Korsmeyer‐Peppas model, there was a controlled DOX release at pH 5.4, while no diffusion was observed at pH 7.4, indicating fewer side effects. MTT assay showed that the cytotoxicity of DOX‐loaded CS‐MMT‐NCQDs hydrogel nanocomposite was significantly higher than those of free DOX (p < 0.001) and CS‐MMT‐NCQDs (p < 0.001) on MCF‐7 cells. Flow cytometry results demonstrated that a higher apoptosis induction achieved after incorporating NCQDs nanoparticles into CS‐MMT‐DOX nanocarrier. These findings suggest that the DOX‐loaded nanocomposite is a promising candidate for the targeted treatment of cancer cells.  相似文献   

2.
This study aimed to further investigate the effect of PLD1 on the biological characteristics of human cervical cancer (CC) cell line, CASKI and the potential related molecular mechanism. CRISPR/Cas9 genome editing technology was used to knock out the PLD1 gene in CASKI cells. Cell function assays were performed to evaluate the effect of PLD1 on the biological function of CASKI cells in vivo and in vitro. A PLD1‐overexpression rescue experiment in these knockout cells was performed to further confirm its function. Two PLD1‐knockout CASKI cell lines (named PC‐11 and PC‐40, which carried the ins1/del4 mutation and del1/del2/ins1 mutation, respectively), were constructed by CRISPR/Cas9. PLD1 was overexpressed in these knockout cells (named PC11‐PLD1 and PC40‐PLD1 cells), which rescued the expression of PLD1 by approximately 71.33% and 74.54%, respectively. In vivo, the cell function assay results revealed that compared with wild‐type (WT)‐CASKI cells, the ability of PC‐11 and PC‐40 cells to proliferate, invade and migrate was significantly inhibited. The expression of H‐Ras and phosphorylation of Erk1/2 (p‐Erk1/2) was decreased in PC‐11 and PC‐40 cells compared with WT‐CASKI cells. PC‐11 and PC‐40 cells could sensitize CASKI cells to cisplatin. More importantly, the proliferation, migration and invasion of PC11‐PLD1 and PC40‐PLD1 cells with PLD1 overexpression were significantly improved compared with those of the two types of PLD1 knockout cells. The sensitivity to cisplatin was decreased in PC11‐PLD1 and PC40‐PLD1 cells compared with PC‐11 and PC‐40 cells. In vivo, in the PC‐11 and PC‐40 tumour groups, tumour growth was significantly inhibited and tumour weight (0.95 ± 0.27 g and 0.66 ± 0.43 g vs. 1.59 ± 0.67 g, p = 0.0313 and 0.0108) and volume (1069.41 ± 393.84 and 1077.72 mm3 ± 815.07 vs. 2142.94 ± 577.37 mm3, p = 0.0153 and 0.0128) were significantly reduced compared to those in the WT‐CASKI group. Tumour differentiation of the PC‐11 and PC40 cells was significantly better than that of the WT‐CASKI cells. The immunohistochemistry results confirmed that the expression of H‐Ras and p‐Erk1/2 was decreased in PC‐11 and PC‐40 tumour tissues compared with WT‐CASKI tumour tissues. PLD1 promotes CC progression by activating the RAS pathway. Inhibition of PLD1 may serve as an attractive therapeutic modality for CC.  相似文献   

3.
The inhibitor of growth family member 4 (ING4) is one of the ING family genes, serves as a repressor of angiogenesis or tumour growth and suppresses loss of contact inhibition. Oncostatin M (OSM) is a multifunctional cytokine that belongs to the interleukin (IL)‐6 subfamily with several biological activities. However, the role of recombinant adenoviruses co‐expressing ING4 and OSM (Ad‐ING4‐OSM) in anti‐tumour activity of laryngeal cancer has not yet been identified. Recombinant Ad‐ING4‐OSM was used to evaluate their combined effect on enhanced anti‐tumour activity in Hep‐2 cells of laryngeal cancer in vivo. Moreover, in vitro function assays of co‐expression of Ad‐ING4‐OSM were performed to explore impact of co‐expression of Ad‐ING4‐OSM on biological phenotype of laryngeal cancer cell line, that is Hep‐2 cells. In vitro, Ad‐ING4‐OSM significantly inhibited the growth, enhanced apoptosis, altered cell cycle with G1 and G2/M phase arrest, and upregulated the expression of P21, P27, P53 and downregulated survivin in laryngeal cancer Hep‐2 cells. Furthermore, in vivo functional experiments of co‐expressing of Ad‐ING4‐OSM demonstrated that solid tumours in the nude mouse model were significantly suppressed, and the co‐expressing Ad‐ING4‐OSM showed a significant upregulation expression of P21, P53, Bax and Caspase‐3 and a downregulation of Cox‐2, Bcl‐2 and CD34. This study for the first time demonstrated the clinical value and the role of co‐expressing Ad‐ING4‐OSM in biological function of laryngeal cancer. This work suggested that co‐expressing Ad‐ING4‐OSM might serve as a potential therapeutic target for laryngeal cancer patients.  相似文献   

4.
BackgroundPappalysin 2 (PAPPA2) mutation, occurring most frequently in skin cutaneous melanoma (SKCM) and non‐small cell lung cancer (NSCLC), is found to be related to anti‐tumour immune response. However, the association between PAPPA2 and the efficacy of immune checkpoint inhibitors (ICIs) therapy remains unknown.MethodsTo analyse the performance of PAPPA2 mutation as an indicator stratifying beneficiaries of ICIs, seven public cohorts with whole‐exome sequencing (WES) data were divided into the NSCLC set (n = 165) and the SKCM set (n = 210). For further validation, 41 NSCLC patients receiving anti‐PD‐(L)1 treatment were enrolled in China cohort (n = 41). The mechanism was explored based on The Cancer Genome Atlas database (n = 1467).ResultsIn the NSCLC set, patients with PAPPA2 mutation (PAPPA2‐Mut) demonstrated a significantly superior progress free survival (PFS, hazard ratio [HR], 0.28 [95% CI, 0.14–0.53]; p < 0.001) and objective response rate (ORR, 77.8% vs. 23.2%; p < 0.001) compared to those with wide‐type PAPPA2 (PAPPA2‐WT), consistent in the SKCM set (overall survival, HR, 0.49 [95% CI: 0.31–0.78], p < 0.001; ORR, 34.1% vs. 16.9%, p = 0.039) and China cohort. Similar results were observed in multivariable models. Accordingly, PAPPA2 mutation exhibited superior performance in predicting ICIs efficacy compared with other published ICIs‐related gene mutations, such as EPHA family, MUC16, LRP1B and TTN, etc. In addition, combined utilization of PAPPA2 mutation and tumour mutational burden (TMB) could expand the identification of potential responders to ICIs therapy in both NSCLC set (HR, 0.36 [95% CI: 0.23–0.57], p < 0.001) and SKCM set (HR, 0.51 [95% CI: 0.34–0.76], p < 0.001). Moreover, PAPPA2 mutation was correlated with enhanced anti‐tumour immunity including higher activated CD4 memory T cells level, lower Treg cells level, and upregulated DNA damage repair pathways.ConclusionsOur findings indicated that PAPPA2 mutation could serve as a novel indicator to stratify beneficiaries from ICIs therapy in NSCLC and SKCM, warranting further prospective studies.

Flow diagram of the study. (A) Preliminary analysis. PAPPA2 mutated most frequently in skin cutaneous melanoma (SKCM) and non‐small cell lung cancer (NSCLC) in the The Cancer Genome Atlas (TCGA) database. PAPPA2 mutational rates in patients with objective response (CR + PR) versus without (SD + PD) were compared with other immune checkpoint inhibitors‐related gene mutations in the NSCLC and SKCM sets. (B) Biomarker development. Association between PAPPA2 mutation and clinical outcomes has been analysed in the NSCLC set, the SKCM set and China cohort. (C) Mechanism exploring. Based on the TCGA database, the correlation of PAPPA2 mutation with tumour mutation burden, infiltrating immune cells and DNA damage repair was explored for further immunogenicity and anti‐tumour activity mechanisms.  相似文献   

5.
Several epidemiological studies have suggested that obesity complicated with insulin resistance and type 2 diabetes exerts deleterious effects on the skeleton. While obesity coexists with estrogen deficiency in postmenopausal women, their combined effects on the skeleton are poorly studied. Thus, we investigated the impact of high‐fat diet (HFD) on bone and metabolism of ovariectomized (OVX) female mice (C57BL/6J). OVX or sham operated mice were fed either HFD (60%fat) or normal diet (10%fat) for 12 weeks. HFD‐OVX group exhibited pronounced increase in body weight (~86% in HFD and ~122% in HFD‐OVX, p < 0.0005) and impaired glucose tolerance. Bone microCT‐scanning revealed a pronounced decrease in trabecular bone volume/total volume (BV/TV) (−15.6 ± 0.48% in HFD and −37.5 ± 0.235% in HFD‐OVX, p < 0.005) and expansion of bone marrow adipose tissue (BMAT; +60.7 ± 9.9% in HFD vs. +79.5 ± 5.86% in HFD‐OVX, p < 0.005). Mechanistically, HFD‐OVX treatment led to upregulation of genes markers of senescence, bone resorption, adipogenesis, inflammation, downregulation of gene markers of bone formation and bone development. Similarly, HFD‐OVX treatment resulted in significant changes in bone tissue levels of purine/pyrimidine and Glutamate metabolisms, known to play a regulatory role in bone metabolism. Obesity and estrogen deficiency exert combined deleterious effects on bone resulting in accelerated cellular senescence, expansion of BMAT and impaired bone formation leading to decreased bone mass. Our results suggest that obesity may increase bone fragility in postmenopausal women.  相似文献   

6.
Neoadjuvant chemotherapy is used in patients with locally advanced breast cancer to reduce tumor size before surgery. Unfortunately, resistance to chemotherapy may arise from a variety of mechanisms. Heat shock proteins (HSPs), which are highly expressed in mammary tumor cells, have been implicated in anticancer drug resistance. In spite of the widely described value of HSPs as molecular markers in cancer, their implications in breast tumors treated with anthracycline-based neoadjuvant chemotherapy has been poorly explored. In this study, we have evaluated, by immunohistochemistry, the expression of HSP27 (HSPB1) and HSP70 (HSPA) in serial biopsies from locally advanced breast cancer patients (n = 60) treated with doxorubicin (DOX)- or epirubicin (EPI)-based monochemotherapy. Serial biopsies were taken at days 1, 3, 7, and 21, and compared with prechemotherapy and surgical biopsies. After surgery, the patients received additional chemotherapy with cyclophosphamide, methotrexate, and 5-fluorouracil. High nuclear HSPB1 and HSPA expressions were found in invasive cells after DOX/EPI administration (P < 0.001), but the drug did not affect the cytoplasmic expression of the HSPs. Infiltrating lymphocytes showed high nuclear HSPA (P < 0.01) levels at postchemotherapy. No correlations were found between HSPs expression and the clinical and pathological response to neoadjuvant therapy. However, in postchemotherapy biopsies, high nuclear (>31 % of the cells) and cytoplasmic HSPA expressions (>11 % of the tumor cells) were associated with better DFS (P = 0.0348 and P = 0.0118, respectively). We conclude that HSPA expression may be a useful prognostic marker in breast cancer patients treated with neoadjuvant DOX/EPI chemotherapy indicating the need to change the administered drugs after surgery for overcoming drug resistance.  相似文献   

7.
Comorbidities impact negatively on breast cancer prognosis, especially in developing countries where cases are usually presented to clinics at advanced stages. This study aimed to determine the atherogenic index of plasma (AIP) and cardiovascular risk factors among Ghanaian women diagnosed with breast cancer. A total of 52 breast cancer patients were age-matched with 52 healthy controls. Sociodemographics of participants were obtained using a well-structured questionnaire. Pathological data of patients were obtained from medical records, and all clinical and anthropometric measurements were done using standard instruments. Lipid profile was determined from serum using enzymatic assays, and cardiovascular risk factors were calculated from estimated lipid parameters. Blood pressure, AIP, total cholesterol (T. chol), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-c) were significantly elevated (P < 0.05) in the breast cancer patients compared to the controls, but the reverse was observed for high-density lipoprotein cholesterol (HDL-c) (P < 0.01). Obesity (odds ratio [OR] = 2.51, P = 0.015), hypertension (OR = 4.04, P < 0.001), AIP (OR = 10.44, P < 0.001), and dyslipidemia (P < 0.01) were significantly associated with breast cancer. AIP correlated positively with age (r = 0.244, P < 0.05), body mass index (r = 0.225, P < 0.05), blood pressure (P < 0.01), T. chol (r =0.418, P< 0.01), and TG (r = 0.880, P < 0.01), but inversely correlated with HDL-c (r = −0.460, P < 0.01). A greater proportion (88%) of the patients presented with advanced breast cancer. AIP and cardiovascular risk factors were high in the breast cancer patients. Considering that AIP and cardiovascular disease risk factors are of interest in breast cancer patients, further studies are needed to understand the effect of AIP and cardiovascular risk factors on breast cancer outcomes.  相似文献   

8.

The authors note that P values presented in the original Fig 1A and Appendix Fig S1A were not assessed using a proper statistical analysis method. In contrast to the initially employed two‐group t‐test, a one‐sample one‐tailed t‐test is appropriate here, as the basic null hypothesis is that the proportion of MT FOXL2 mRNA in each AGCT patient is lower than WT {H 0: WT(%) > MT(%) }. New p values are presented in the corrected Fig 1A and Appendix Fig S1A, which are P < 0.00001 and P < 0.05, respectively. These revised P values did not affect the conclusion drawn.  相似文献   

9.
BackgroundObservational epidemiological studies have shown that high body mass index (BMI) is associated with a reduced risk of breast cancer in premenopausal women but an increased risk in postmenopausal women. It is unclear whether this association is mediated through shared genetic or environmental factors.MethodsWe applied Mendelian randomization to evaluate the association between BMI and risk of breast cancer occurrence using data from two large breast cancer consortia. We created a weighted BMI genetic score comprising 84 BMI-associated genetic variants to predicted BMI. We evaluated genetically predicted BMI in association with breast cancer risk using individual-level data from the Breast Cancer Association Consortium (BCAC) (cases  =  46,325, controls  =  42,482). We further evaluated the association between genetically predicted BMI and breast cancer risk using summary statistics from 16,003 cases and 41,335 controls from the Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) Project. Because most studies measured BMI after cancer diagnosis, we could not conduct a parallel analysis to adequately evaluate the association of measured BMI with breast cancer risk prospectively.ResultsIn the BCAC data, genetically predicted BMI was found to be inversely associated with breast cancer risk (odds ratio [OR]  =  0.65 per 5 kg/m2 increase, 95% confidence interval [CI]: 0.56–0.75, p = 3.32 × 10−10). The associations were similar for both premenopausal (OR   =   0.44, 95% CI:0.31–0.62, p  =  9.91 × 10−8) and postmenopausal breast cancer (OR  =  0.57, 95% CI: 0.46–0.71, p  =  1.88 × 10−8). This association was replicated in the data from the DRIVE consortium (OR  =  0.72, 95% CI: 0.60–0.84, p   =   1.64 × 10−7). Single marker analyses identified 17 of the 84 BMI-associated single nucleotide polymorphisms (SNPs) in association with breast cancer risk at p < 0.05; for 16 of them, the allele associated with elevated BMI was associated with reduced breast cancer risk.ConclusionsBMI predicted by genome-wide association studies (GWAS)-identified variants is inversely associated with the risk of both pre- and postmenopausal breast cancer. The reduced risk of postmenopausal breast cancer associated with genetically predicted BMI observed in this study differs from the positive association reported from studies using measured adult BMI. Understanding the reasons for this discrepancy may reveal insights into the complex relationship of genetic determinants of body weight in the etiology of breast cancer.  相似文献   

10.
11.
Breast cancer (BC) is the most prevalent cancer in women and the second leading cause for cancer‐related death in women. LncRNA CCAT2 is involved in BC cell drug sensitivity. Drug resistance of BC cells after chemotherapy is the main obstacle to therapeutic effects. This study explored whether BC cell drug sensitivity to 5‐Fu was related to lncRNA CCAT2‐regulated mTOR pathway. Normal breast tissues and BC tissues before/after neoadjuvant chemotherapy were collected, and CCAT2 expression was detected by RT‐qPCR. Correlation between CCATA2 expression and neoadjuvant chemotherapy efficacy was analysed using the Kendall''s tau‐b correlation analysis. Normal breast epithelial cells and BC cell lines were cultured. BC cell lines were treated with 5‐Fu, and CCAT2 mRNA level in cells was detected. The 5‐Fu‐resistant MCF‐7/5‐Fu and MDA‐MB‐231/5‐Fu cells were treated with CCAT2 overexpression/knockdown or CCI‐779 (the mTOR pathway inhibitor). The mTOR pathway levels were detected. Expression of apoptosis‐related factors was identified. A subcutaneous xenograft model was carried out. High CCAT2 expression was detected in BC tissues and BC drug‐resistant cells after neoadjuvant chemotherapy, and a negative link was revealed between CCAT2 expression and efficacy of neoadjuvant chemotherapy. p‐mTOR/mTOR in 5‐Fu‐resistant BC cells with inhibited CCAT2 was decreased, while CCAT2 overexpression activated the mTOR pathway. IC50 value, proliferation, cells in S phase increased and apoptosis reduced after CCAT2 overexpression. After si‐CCAT2 or CCI‐779 treatment, the growth rate of transplanted tumours was inhibited, while promoted after CCAT2 overexpression. CCAT2 may reduce BC cell chemosensitivity to 5‐Fu by activating the mTOR pathway.  相似文献   

12.
This study aimed to verify the anti-inflammatory effect of soybean isoflavones (SI) on the inflammatory response induced by Streptococcus agalactiae (S. agalactiae) of bovine mammary epithelial cells (bMECs) and to elucidate its possible mechanism. BMECs were pretreated with SI of different concentrations (20, 40, 60, 80, 100 μg/mL) for 0.5, 3, 6, 9, 12, 15, 18, 24 h. And then, S. agalactiae was used to infect bMECs for 6 h (MOI = 50:1) to establish the inflammation model. Cell viability, growth curves of S. agalactiae, cytotoxicity, and S. agalactiae invasion rate were determined. A proteomics technique was used to further detect differential proteins and enrichment pathways. SI (40 μg/mL) improved the viability of bMECs at 12 h (p < 0.05) and 60 and 80 μg/mL of SI greater (p < 0.01). Moreover, 60 μg/mL of SI protects cells from bacterial damage (p < 0.05). SI could inhibit S. agalactiae growth and internalization into bMECs in a time- and dose-dependent manner. In addition, proteomics results showed that 133 proteins were up-regulated and 89 proteins were down-regulated significantly. The differentially significantly expressed proteins (DSEPs) were mainly related to cell proliferation, differentiation, apoptosis, and migration. GO annotation showed that 222 DSEPs were divided into 23 biological processes (BP) terms, 14 cell components (CC) terms, and 12 molecular functions (MF) terms. DSEPs were significantly enriched in 10 pathways, of which the immune pathway was the main enrichment pathway.  相似文献   

13.
14.
Atrial fibrillation (AF) is associated with short-term mortality after ST-elevation myocardial infarction (STEMI), but there is limited data on the temporal association between AF and mortality after STEMI. A total of 830 patients were included (age: 62 ± 12 years, 76 % male). Patients with new-onset AF < 30 days after STEMI were divided among three subgroups: AF on the day of admission, AF 24–72 h and AF > 72 h after admission. Thirty-day mortality was assessed by telephone and via the municipal population registry. Twenty patients died < 30 days after admission. In 41 patients, AF was detected on the day of admission, in 14 patients 24–72 h after admission and in 18 patients > 72 h after admission. Mortality was higher in patients with AF on the day of admission (7.3 vs 2.2 %, p = 0.036) and 24–72 h after admission (14.3 vs 1.4 %, p < 0.001), but not in patients with AF > 72 h after admission (0 vs 1.1 %, p > 0.999). Age (odds ratio (OR) 1.123, p < 0.001), Killip class (adjusted OR 8.341, p < 0.001), AF on the day of admission (OR 3.585, p = 0.049) and 24–72 h after admission (OR 11.515, p = 0.003) were, amongst other variables, associated with an increased 30-day mortality. In conclusion, only new-onset incident AF during the first 72 h after admission was associated with 30-day mortality in STEMI patients.

Electronic supplementary material

The online version of this article (doi:10.1007/s12471-015-0709-2) contains supplementary material, which is available to authorized users.  相似文献   

15.
The biological mechanisms underlying decline in physical function with age remain unclear. We examined the plasma proteomic profile associated with longitudinal changes in physical function measured by gait speed and grip strength in community‐dwelling adults. We applied an aptamer‐based platform to assay 1154 plasma proteins on 2854 participants (60% women, aged 76 years) in the Cardiovascular Health Study (CHS) in 1992–1993 and 1130 participants (55% women, aged 54 years) in the Framingham Offspring Study (FOS) in 1991–1995. Gait speed and grip strength were measured annually for 7 years in CHS and at cycles 7 (1998–2001) and 8 (2005–2008) in FOS. The associations of individual protein levels (log‐transformed and standardized) with longitudinal changes in gait speed and grip strength in two populations were examined separately by linear mixed‐effects models. Meta‐analyses were implemented using random‐effects models and corrected for multiple testing. We found that plasma levels of 14 and 18 proteins were associated with changes in gait speed and grip strength, respectively (corrected p < 0.05). The proteins most strongly associated with gait speed decline were GDF‐15 (Meta‐analytic p = 1.58 × 10−15), pleiotrophin (1.23 × 10−9), and TIMP‐1 (5.97 × 10−8). For grip strength decline, the strongest associations were for carbonic anhydrase III (1.09 × 10−7), CDON (2.38 × 10−7), and SMOC1 (7.47 × 10−7). Several statistically significant proteins are involved in the inflammatory responses or antagonism of activin by follistatin pathway. These novel proteomic biomarkers and pathways should be further explored as future mechanisms and targets for age‐related functional decline.  相似文献   

16.
Immune infiltration of ovarian cancer (OV) is a critical factor in determining patient''s prognosis. Using data from TCGA and GTEx database combined with WGCNA and ESTIMATE methods, 46 genes related to OV occurrence and immune infiltration were identified. Lasso and multivariate Cox regression were applied to define a prognostic score (IGCI score) based on 3 immune genes and 3 types of clinical information. The IGCI score has been verified by K‐M curves, ROC curves and C‐index on test set. In test set, IGCI score (C‐index = 0.630) is significantly better than AJCC stage (C‐index = 0.541, p < 0.05) and CIN25 (C‐index = 0.571, p < 0.05). In addition, we identified key mutations to analyse prognosis of patients and the process related to immunity. Chi‐squared tests revealed that 6 mutations are significantly (p < 0.05) related to immune infiltration: BRCA1, ZNF462, VWF, RBAK, RB1 and ADGRV1. According to mutation survival analysis, we found 5 key mutations significantly related to patient prognosis (p < 0.05): CSMD3, FLG2, HMCN1, TOP2A and TRRAP. RB1 and CSMD3 mutations had small p‐value (p < 0.1) in both chi‐squared tests and survival analysis. The drug sensitivity analysis of key mutation showed when RB1 mutation occurs, the efficacy of six anti‐tumour drugs has changed significantly (p < 0.05).  相似文献   

17.
In this study, nanoniosome‐loaded Myristica fragrans'' (MF) phenolic compounds (NLMP) were synthesized and characterized for their physical properties, and hepatoprotective effects on mice with liver toxicity induced by L‐asparaginase (LA) injection. According to the results, NLMP has a spherical shape with a 263 nm diameter, a zeta potential of −26.55 mV and a polydispersity index (PDI) of 0.192. The weight and feed intake of mice induced with hepatotoxicity were significantly (p ≤ 0.05) increased after they were treated with NLMP (2.5 mg/kg body weight of mice). In addition, the blood levels of triglyceride (TG), cholesterol (Chol), liver enzymes (aspartate aminotransferase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP)) and total bilirubin were significantly (p ≤ 0.05) decreased. A significant increase (p ≤ 0.05) in the blood levels of the antioxidant defence system (glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (CAT)) were also reported after NLMP treatment. NLMP was also led to a significant decrease (p ≤ 0.05) in inflammatory‐related gene expression of inducible nitric oxide synthase (iNOS) and Interferon‐gamma (IFN‐γ) in the liver, as well as a meaningful (p ≤ 0.05) increase in the expression of SOD as an antioxidant status biomarker. Consequently, the NLMP is recommended as a potential dietary supplement to alleviate the symptoms of LA‐induced hepatotoxicity.  相似文献   

18.
KP167 is a novel hypoxia‐activated prodrug (HAP), targeting cancer cells via DNA intercalating and alkylating properties. The single agent and radiosensitizing efficacy of KP167 and its parental comparator, AQ4N, were evaluated in 2D and 3D cultures of luminal and triple negative breast cancer (TNBC) cell lines and compared against DNA damage repair inhibitors. 2D normoxic treatment with the DNA repair inhibitors, Olaparib or KU‐55933 caused, as expected, substantial radiosensitization (sensitiser enhancement ratio, SER0.01 of 1.60–3.42). KP167 induced greater radiosensitization in TNBC (SER0.01 2.53 in MDAMB‐231, 2.28 in MDAMB‐468, 4.55 in MDAMB‐436) and luminal spheroids (SER0.01 1.46 in MCF‐7 and 1.76 in T47D cells) compared with AQ4N. Significant radiosensitization was also obtained using KP167 and AQ4N in 2D normoxia. Although hypoxia induced radioresistance, radiosensitization by KP167 was still greater under 2D hypoxia, yielding SER0.01 of 1.56–2.37 compared with AQ4N SER0.01 of 1.13–1.94. Such data show KP167 as a promising single agent and potent radiosensitiser of both normoxic and hypoxic breast cancer cells, with greater efficacy in TNBCs.  相似文献   

19.
Poly(ADP‐ribose) polymerase‐1 (PARP‐1) is a nuclear chromatin‐associated enzyme involved in the DNA damage response. SNP rs1136410 C>T, the most studied polymorphism in PARP‐1 gene, is highly implicated in the susceptibility of cancer. However, the roles of PARP‐1 rs1136410 C>T on cancer risk vary from different studies. We comprehensively screened all qualified publications from several databases, including PubMed, EMBASE, MEDLINE, CNKI and Wanfang. The searching was updated to April 2020. Our meta‐analysis included 60 articles with 65 studies, comprised of a total of 23 996 cases with cancer and 33 015 controls. Overall, pooled data showed that the PARP‐1 rs1136410 C>T polymorphism was significantly but a border‐line associated with an increased risk of overall cancer (CC vs. TT/TC: OR = 1.11, 95% CI = 1.00‐1.24; C vs T: OR = 1.07, 95% CI = 1.01‐1.14). Subgroup analysis indicated that rs1136410 C allele contributed to high risk among gastric, thyroid, and cervical cancer, but lower risk among brain cancer. Furthermore, increased cancer risk was detected in the subgroups of Asian, controls from population‐based design studies, and HWE ≤ 0.05 studies. Sensitivity analysis and Egger''s test showed that results of the meta‐analysis were fairly stable. The current study indicated that PARP1 rs1136410 C>T polymorphism may have an impact on certain types of cancer susceptibility.  相似文献   

20.
IntroductionJuvenile idiopathic arthritis (JIA) often causes inflammation of the temporomandibular joint (TMJ) and has been treated with both systemic and intra-articular steroids, with concerns about effects on growing bones. In this study, we evaluated the impact of a macromolecular prodrug of dexamethasone (P-DEX) with inflammation-targeting potential applied systemically or directly to the TMJ.MethodsJoint inflammation was initiated by injecting two doses of complete Freund’s adjuvant (CFA) at 1-month intervals into the right TMJs of 24 growing Sprague–Dawley male rats (controls on left side). Four additional rats were not manipulated. With the second CFA injection, animals received (1) 5 mg of P-DEX intra-articularly (n = 9), (2) 15 mg of P-DEX into the tail vein (n = 7), or (3) nothing in addition to CFA (n = 8). The rats were killed 28 days later and measured by radiography for ramus height (condylar superior to gonion inferior [CsGoInf]), by micro-computed tomography for condylar width (CW) and bone volume/standardized condylar volume (BV/CV), and by histology for retrodiscal inflammatory cells. Inflammation targeting of systemic P-DEX was confirmed by IVIS infrared dye imaging. Inflammation and bone growth were compared between groups using analysis of variance and Pearson’s correlations.ResultsCFA caused a significant reduction in CsGoInf (p < 0.05), but neither route of P-DEX administration had an effect on CsGoInf or CW at CFA injection sites. BV/CV was significantly reduced in both inflamed and control condyles as a result of either steroid application (p < 0.05). The inflammatory infiltrate was overwhelmingly lymphocytic, comprising 16.4 ± 1.3 % of the field in CFA alone vs. <0.01 % lymphocytes in contralateral controls (p < 0.0001). Both P-DEX TMJ (10.1 ± 1.2 %) and systemic P-DEX (8.9 ± 1.7 %) reduced lymphocytes (p < 0.002). The total area of inflammatory infiltrate was significantly less in the systemic injection group than in the group that received CFA injections alone (2.6 ± 1.5 mm2 vs. 8.0 ± 1.3 mm2; p = 0.009), but not in the group that received intra-articular P-DEX (8.8 ± 1.2 mm2).ConclusionsHigh-dose systemic administration of inflammation-targeting P-DEX is more effective than an intra-articular injection in reducing TMJ inflammation, but both routes may affect TMJ bone density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号