首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
During development, neurons pass through a critical phase in which survival is dependent on neurotrophin support. In order to dissect the potential role of p75NTR, the common neurotrophin receptor, in neurotrophin dependence, we expressed wild-type and mutant p75NTR in cells that do not express endogenous p75NTR or Trk family members (NIH3T3). Expression of wild-type p75NTR created a state of neurotrophin dependence: cells could be rescued by nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), or neurotrophin-3 (NT-3), but not by a mutant NGF that binds well to Trk A but poorly to p75NTR. Similarly, expression of p75NTR in human prostate cancer cells in culture rendered a metastatic tumor cell line (PC-3) sensitive to the availability of neurotrophins for survival. Moreover, expression of mutant p75NTR's in another neurotrophin-insensitive cell line (HEK293T) showed that a domain within the intracellular domain governs alternate responses to neurotrophins: the carboxy terminus of the intracellular domain of p75NTR including the sixth alpha helix domain is necessary for rescue by BDNF, but not NGF. These results, when considered with previous studies of the timing of p75NTR expression, support the hypothesis that p75NTR is a mediator of neurotrophin dependence during the critical phase of developmental cell death and during the progression of carcinogenesis in prostate cancer.  相似文献   

2.
The nonsteroidal anti-inflammatory drugs (NSAID) R-flurbiprofen and ibuprofen have been shown to induce expression of p75(NTR) (neurotrophin receptor) in prostate cancer cell lines. p75(NTR), a tumor necrosis factor receptor superfamily member, is a proapoptotic protein that functions as a tumor suppressor in the human prostate. Expression of p75(NTR) is lost as prostate cancer progresses and is minimal in several metastatic prostate cancer cell lines. NSAIDs induce p75(NTR) through activation of the p38 mitogen-activated protein kinase (MAPK) pathway, with a concomitant decrease in cell survival. Here, we show that treatment with R-flurbiprofen and ibuprofen induces expression of the NSAID-activated gene-1 (Nag-1) protein, a divergent member of the TGF beta (TGF-β) family, in PC-3 cells. Using the selective pharmacologic inhibitor of p38 MAPK, SB202190, and p38 MAPK-specific siRNA (small interfering RNA), we show that Nag-1 induction following NSAID treatment is mediated by the p38 MAPK pathway. p75(NTR)-specific siRNA pretreatment shows that Nag-1 induction by NSAIDs is downstream of p75(NTR) induction. Decreased survival of NSAID-treated cells is rescued by p75(NTR)-specific siRNA but not by Nag-1 siRNA. Transwell chamber and in vitro wound healing assays demonstrate decreased cell migration upon NSAID treatment. Pretreatment of PC-3 cells with p75(NTR) and Nag-1-specific siRNA shows that NSAID inhibition of cell migration is mediated by Nag-1 and p75(NTR). These results demonstrate a role for Nag-1 in NSAID inhibition of cell migration, but not survival.  相似文献   

3.

Background

Caffeic acid phenethyl ester (CAPE), a component of propolis, is reported to possess anti-inflammatory, anti-bacterial, anti-viral, and anti-tumor activities. Previously, our laboratory demonstrated the in vitro and in vivo bioactivity of CAPE and addressed the role of p53 and the p38 mitogen-activated protein kinase (MAPK) pathway in regulating CAPE-induced apoptosis in C6 glioma cells.

Results

C6 cancer cell lines were exposed to doses of CAPE; DNA fragmentation and MAPKs and NGF/P75NTR levels were then determined. SMase activity and ceramide content measurement as well as western blotting analyses were performed to clarify molecular changes. The present study showed that CAPE activated neutral sphingomyelinase (N-SMase), which led to the ceramide-mediated activation of MAPKs, including extracellular signal-regulated kinase (ERK), Jun N-terminus kinase (JNK), and p38 MAPK. In addition, CAPE increased the expression of nerve growth factor (NGF) and p75 neurotrophin receptor (p75NTR). The addition of an N-SMase inhibitor, GW4869, established that NGF/p75NTR was the downstream target of N-SMase/ceramide. Pretreatment with MAPK inhibitors demonstrated that MEK/ERK and JNK acted upstream and downstream, respectively, of NGF/p75NTR. Additionally, CAPE-induced caspase 3 activation and poly [ADP-ribose] polymerase cleavage were reduced by pretreatment with MAPK inhibitors, a p75NTR peptide antagonist, or GW4869.

Conclusions

Taken together, N-SMase activation played a pivotal role in CAPE-induced apoptosis by activation of the p38 MAPK pathway and NGF/p75NTR may explain a new role of CAPE induced apoptosis in C6 glioma.  相似文献   

4.
Wu LM  Yang Z  Zhou L  Zhang F  Xie HY  Feng XW  Wu J  Zheng SS 《PloS one》2010,5(12):e14460

Background

Recent studies have shown that high expression levels of class I histone deacetylases (HDACs) correlate with malignant phenotype and poor prognosis in some human tumors. However, the expression patterns and prognostic role of class I HDAC isoforms in hepatocellular carcinoma (HCC) remain unclear.

Methodology/Principal Findings

The expression patterns and clinical significance of class I HDAC isoforms were assessed by immunohistochemistry in a cohort of 43 hepatitis B virus-associated HCC patients treated with liver transplantation. In addition, the effects of HDAC inhibition on HCC cell behavior were investigated by knockdown of the HDAC isoform with short interfering RNA. Class I HDACs were highly expressed in a subset of HCCs with positivity for HDAC1 in 51.2%, HDAC2 in 48.8%, and HDAC3 in 32.6% of cases. The expression levels of HDAC isoforms were significantly associated with the proliferation index of HCC. Kaplan-Meier curves showed that a high expression level of HDAC2 or HDAC3 implicated significantly reduced recurrence-free survival. Cox proportional hazards model analysis revealed HDAC3 overexpression was an unfavorable independent prognostic factor (P = 0.002; HR 3.907). In vitro, inhibition of HDAC2 and HDAC3, but not HDAC1, suppressed proliferation and the invasiveness of liver cancer cells.

Conclusions/Significance

Our findings demonstrate that HDAC3 plays a significant role in regulating tumor cell proliferation and invasion, and it could be served as a candidate biomarker for predicting the recurrence of hepatitis B virus-associated HCC following liver transplantation and a potential therapeutic target.  相似文献   

5.
Background: The current chemotherapeutic outcomes for hepatocellular carcinoma (HCC) are not encouraging, and long-term survival of this patient group remains poor. Recent studies have demonstrated the utility of histone deacetylase inhibitors that can disrupt cell proliferation and survival in HCC management. However, the effects of droxinostat, a type of histone deacetylase inhibitor, on HCC remain to be established. Methods: The effects of droxinostat on HCC cell lines SMMC-7721 and HepG2 were investigated. Histone acetylation and apoptosis-modulating proteins were assessed via Western blot. Proliferation was examined with 3-(4, 5 dimetyl-2-thiazolyl)-2, 5-diphenyl 2H-tetrazolium bromide, cell proliferation, and real-time cell viability assays, and apoptosis with flow cytometry. Results: Droxinostat inhibited proliferation and colony formation of the HCC cell lines examined. Hepatoma cell death was induced through activation of the mitochondrial apoptotic pathway and downregulation of FLIP expression. Droxinostat suppressed histone deacetylase (HDAC) 3 expression and promoted acetylation of histones H3 and H4. Knockdown of HDAC3 induced hepatoma cell apoptosis and histone H3 and H4 acetylation. Conclusions: Droxinostat suppresses HDAC3 expression and induces histone acetylation and HCC cell death through activation of the mitochondrial apoptotic pathway and downregulation of FLIP, supporting its potential application in the treatment of HCC.  相似文献   

6.
7.
8.
The Akt kinase plays a crucial role in supporting Trk-dependent cell survival, whereas the p75 neurotrophin receptor (p75NTR) facilitates cellular apoptosis. The precise mechanism that p75NTR uses to promote cell death is not certain, but one possibility is that p75NTR-dependent ceramide accumulation inhibits phosphatidylinositol 3-kinase-mediated Akt activation. To test this hypothesis, we developed a system for examining p75NTR-dependent apoptosis and determined the effect of p75NTR on Akt activation. Surprisingly, p75NTR increased, rather than decreased, Akt phosphorylation in a variety of cell types, including human Niemann-Pick fibroblasts, which lack acidic sphingomyelinase activity. The p75NTR expression level required to elicit Akt phosphorylation was much lower than that required to activate the JNK pathway or to mediate apoptosis. We show that p75NTR-dependent Akt phosphorylation was independent of TrkA signaling, required active phosphatidylinositol 3-kinase, and was associated with increased tyrosine phosphorylation of p85 and Shc and with reduced cytosolic tyrosine phosphatase activity. Finally, we show that p75NTR expression increased survival in cells exposed to staurosporine or subjected to serum withdrawal. These findings indicate that p75NTR facilitates cell survival through novel signaling cascades that result in Akt activation.  相似文献   

9.
The p75 neurotrophin receptor (p75NTR) is known to transduce the signal from some myelin-associated axon growth inhibitors, including Nogo and myelin-associated glycoprotein. As ephrin-B3, a member of the ephrin family, is also expressed in myelin and inhibits axon growth, the purpose of this study was to assess the possible involvement of p75NTR in ephrin-B3 signaling. Here, we report that p75NTR is required for the inhibitory effect of ephrin-B3 on neurite growth in vitro. While ephrin-B3 inhibited neurite elongation of embryonic cortical neurons, the neurons with p75NTR knockdown or with EphA4 knockdown were less sensitive to ephrin-B3. Although no direct interaction of p75NTR with ephrin-B3 was observed, Pep5, a peptide that specifically inhibits RhoA activation mediated by p75NTR, reduced the effect of ephrin-B3. Therefore, p75NTR functions as a signal transducer for ephrin-B3. Moreover, axonal regeneration in vivo was induced by Pep5 application after optic nerve crush injury in mice. Thus, Pep5 is a promising agent that contributes to axonal regeneration in the central nervous system.  相似文献   

10.
11.
12.
Neurotrophins signal through two different classes of receptors, members of the trk family of receptor tyrosine kinases, and p75 neurotrophin receptor (p75(NTR)), a member of the tumor necrosis factor receptor family. While neurotrophin binding to trks results in, among other things, increased cell survival, p75(NTR) has enigmatically been implicated in promoting both survival and cell death. Which of these two signals p75(NTR) imparts depends on the specific cellular context. Xenopus laevis is an excellent system in which to study p75(NTR) function in vivo because of its amenability to experimental manipulation. We therefore cloned partial cDNAs of two p75(NTR) genes from Xenopus, which we have termed p75(NTR)a and p75(NTR)b. We then cloned two different cDNAs, both of which encompass the full coding region of p75(NTR)a. Early in development both p75(NTR)a and p75(NTR)b are expressed in developing cranial ganglia and presumptive spinal sensory neurons, similar to what is observed in other species. Later, p75(NTR)a expression largely continues to parallel p75(NTR) expression in other species. However, Xenopus p75(NTR)a is additionally expressed in the neuroepithelium of the anterior telencephalon, all layers of the retina including the photoreceptor layer, and functioning axial skeletal muscle. Finally, misexpression of full length p75(NTR) and each of two truncated mutants in developing retina reveal that p75(NTR) probably signals for cell survival in this system. This result contrasts with the reported role of p75(NTR) in developing retinae of other species, and the possible implications of this difference are discussed.  相似文献   

13.
The p75 neurotrophin receptor (p75(NTR)), a common receptor for members of the neurotrophins (NT) family, was previously identified as a molecular determinant of brain metastasis. We have also reported that NT treatment of murine and human brain-metastatic melanoma cells affects their invasive capacities and increases the production of heparanase, an important and unique extracellular matrix (ECM) degradative enzyme. Neurotrophism can be a survival-support mechanism for brain-metastatic cells and a survival assay was devised to mimic the growth limiting conditions of rapidly expanding metastatic tumors prior to neoangiogenesis. We report that p75(NTR) promoted the survival of brain-metastatic melanoma cells but not melanocytes in stress cultures conditions. Secondly, melanoma cells fluorescently sorted for high p75(NTR) expression (p75(NTR-H) cells) had an up to a 15-fold greater survival than those sorted for low p75(NTR) expression (p75(NTR-L) cells). Thirdly, cells overexpressing p75(NTR) associated with the growth fraction and provided these cells with an inherent growth advantage. Finally, we observed an increased survival of sorted p75(NTR-L) cells, dependent upon treatment of NT members whose functional receptors are present on these cells. Together, these results delineate that p75(NTR)-mediated trophic support profoundly affects competitive melanoma-cell survival when the tumor cell microenvironment becomes growth limiting.  相似文献   

14.
Jin H  Pan Y  He L  Zhai H  Li X  Zhao L  Sun L  Liu J  Hong L  Song J  Xie H  Gao J  Han S  Li Y  Fan D 《Molecular cancer research : MCR》2007,5(5):423-433
The p75 neurotrophin receptor (p75NTR) is a focus for study at present. However, its function in gastric cancer was not elucidated. Here, we investigated its relation with metastasis of gastric cancer. By immunohistochemistry, we found that the positive rate of p75NTR expression in metastatic gastric cancer was 15.09% (16 of 106), which was lower compared with nonmetastatic gastric cancer (64.15%; 68 of 106). The average staining score in nonmetastatic gastric cancer was significantly higher than in metastatic gastric cancer (1.21 +/- 0.35 versus 0.23 +/- 0.18; P<0.01). p75NTR protein level was also lowly expressed in the highly liver-metastatic gastric cancer cell line XGC9811-L compared with other gastric cancer cell lines by Western blotting. It could also significantly inhibit the in vitro adhesive, invasive, and migratory and in vivo metastatic abilities of gastric cancer cell lines SGC7901 and MKN45 by reducing urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9 proteins and by increasing tissue inhibitor of matrix metalloproteinase (TIMP)-1 protein. Further studies showed that p75NTR could suppress the nuclear factor-kappaB (NF-kappaB) signal. SN50, a specific inhibitor of NF-kappaB, which could inhibit in vitro invasive and migratory abilities of gastric cancer cells, reduced expression of uPA and MMP9 proteins and increased expression of TIMP1 protein. Taken together, p75NTR had the function of inhibiting the invasive and metastatic abilities of gastric cancer cells, which was mediated, at least partially, by down-regulation of uPA and MMP9 proteins and up-regulation of TIMP1 protein via the NF-kappaB signal transduction pathway. Our studies suggested that p75NTR may be used as a new potential therapeutic target in metastatic gastric cancer.  相似文献   

15.
The differentiation of myelin-forming Schwann cells (SC) is completed with the appearance of myelin proteins MBP and P0 and a concomitant downregulation of markers GFAP and p75NTR, which are expressed by immature and adult non-myelin-forming SC. We have previously demonstrated that holotransferrin (hTf) can prevent SC dedifferentiation in culture ( Salis et al., 2002), while apotransferrin (aTf) cannot. As a consequence, we used pure cultured SC and submitted them to serum deprivation in order to promote dedifferentiation and evaluate the prodifferentiating ability of ferric ammonium citrate (FAC) through the expression of MBP, P0, p75NTR and c-myc. The levels of cAMP, CREB and p-CREB were also measured. Results show that Fe3+, either in its free form or as hTf, can prevent the dedifferentiation promoted by serum withdrawal.  相似文献   

16.
17.
The p75 neurotrophin receptor (p75(NTR)) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75(NTR) retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted (DeltaDD) dominant-negative antagonist of p75(NTR) showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75(NTR)-dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75(NTR) expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75(NTR) rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75(NTR) was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75(NTR)-dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75(NTR) expressing prostate cancer cells.  相似文献   

18.
The low-affinity neurotrophin receptor, p75NTR, has been found to be pro- or anti-apoptotic depending upon the cell in which it is expressed. Reactive oxygen species play a major role in apoptosis induction and enactment. Using two polyclonal PC12 populations that, respectively, do or do not express p75NTR, this paper demonstrates that p75NTR expression confers resistance to oxidant stress upon PC12 cells maintained in serum-containing medium. The effect of p75NTR on cell survival is mimicked in p75-negative cells by expression of constructs that produce the p75NTR intracellular domain (ICD) or p75NTR with the extracellular domain deleted (DeltaECD), suggesting that binding of an extracellular ligand to p75NTR is not required. Our studies further document that the differential sensitivity to oxidant stress is serum-dependent and associated with differential oxidation of glutathione between p75-positive and p75-negative cells. These results suggest that the role of p75NTR in determining the consequences and treatment of age-related disorders and conditions in which reactive oxygen species are involved may require neither the extracellular receptor domain nor, by inference, the cognate extracellular ligands of this neurotrophin receptor.  相似文献   

19.
20.
The common neurotrophin receptor p75(NTR) has been shown to initiate intracellular signaling that leads either to cell survival or to apoptosis depending on the cell type examined; however, the mechanism by which p75(NTR) initiates its intracellular transduction remains unclear. We show here that the tumor necrosis factor receptor-associated death domain protein (TRADD) interacts with p75(NTR) upon nerve growth factor (NGF) stimulation. TRADD could be immunodetected after p75(NTR) immunoprecipitation from MCF-7 breast cancer cells stimulated by nerve growth factor. In addition, confocal microscopy indicated that NGF stimulation induced the plasma membrane localization of TRADD. Using a dominant negative form of TRADD, we also show that interactions between p75(NTR) and TRADD are dependent on the death domain of TRADD, thus demonstrating its requirement for binding. Furthermore, the p75(NTR)-mediated activation of NF-kappaB was inhibited by transfection with a dominant negative TRADD, resulting in an inhibition of NGF antiapoptotic activity. These results thus demonstrate that TRADD is involved in the p75(NTR)-mediated antiapoptotic activity of NGF in breast cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号