首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vincristine-resistant (VCR) Chinese hamster ovary (CHO) cells have been established by stepwise selection in increasing concentrations of vincristine. These cells exhibit multidrug cross-resistance to a number of drugs that have no structural or functional similarities. Cytogenetic analyses of resistant cells revealed the presence of double minutes and expanded chromosomal segments, thus implicating gene amplification as a possible mechanism of resistance. An amplified DNA segment isolated from other multidrug cross-resistant CHO cell lines (Roninson, I. B., H. T. Abelson, D. E. Housman, N. Howell, and A. Varshavsky, 1984, Nature (Lond.), 309:626-628) is also amplified in our VCR lines. This DNA segment was used as a probe to screen a cosmid library of VCR genomic DNA, and overlapping clones were retrieved. All of these segments, totaling approximately 45 kilobases (kb), were amplified in VCR cells. Using in situ hybridization, we localized the amplification domain to the long arm of CHO chromosome 1 or Z1. Northern hybridization analysis revealed that a 4.3-kb mRNA was encoded by this amplified DNA domain and was over-produced in the VCR cells. Suggestions for the involvement of these amplified DNA segments in the acquisition of multidrug cross-resistance in animal cells are also presented.  相似文献   

2.
Emergence of resistance to chemotherapy and radiotherapy is a major obstacle for the successful treatment of MM (multiple myeloma). Prednisone, vincristine and melphalan are commonly used chemotherapeutic agents for the treatment of MM. In the current study, we examined the presence of possible cross-resistance between these drugs and gamma (γ) radiation. Prednisone, vincristine and melphalan resistant RPMI-8226 and U-266 MM cells were generated by stepwise increasing concentrations of the drugs. The sensitive and resistant cells were exposed to 200- and 800 cGy γ radiation, and proliferation was examined by XTT {2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide} assay. The results showed that Prednisone- and melphalan-resistant RPMI-8226 cells were also cross-resistant to 200 and 800 cGy γ radiation application, while vincristine-resistant cells did not show resistance. On the other hand, Prednisone-, vincristine- and melphalan-resistant U-266 cells showed cross-resistance to 200- and 800 cGy γ radiation application. These results demonstrated that MM cells resistant to anticancer agents respond to radiation in different levels. These findings may be important in the clinical applications of radiation therapy in the treatment of vincristine resistant MM.  相似文献   

3.
Vincristine resistant CHO cell lines, obtained by prolonged selection in semi-inhibitory drug concentrations show considerable hypersensitivity to verapamil. Their D10 values are around 0.2 micrograms/ml compared to 23 micrograms/ml for unselected controls. Reversion of vincristine resistance during growth in vincristine free medium is correlated with reversal of verapamil sensitivity indicating that the two aspects of the cells' phenotype have a common underlying cause. The rate of uptake of calcium in the absence and presence of verapamil is similar in the vincristine resistant cells and the controls. The correlation of verapamil sensitivity with vincristine resistance is not a universal feature of CHO cell lines resistant to antimicrotubular drugs, since it was found that other resistant cell lines which have been selected by short term exposure to high drug concentrations were not verapamil hypersensitive.  相似文献   

4.
LY195448 is an experimental drug that blocks cells at metaphase (Boder et al.: Microtubules and Microtubule Inhibitors 1985: 353-361, 1985). A 4 hour exposure of NRK cells to a drug concentration of 46 microM (15 micrograms/ml) increased the number of mitotic cells in the population from 4.9% to 18.5%. Examination of treated cells by immunofluorescence showed increased numbers of cells blocked at prometaphase, with short microtubules extending from the spindle pole to the kinetochores. The cytoskeleton of interphase cells remained intact at these concentrations. However, the number of microtubules appeared to be reduced, and those that remained appeared kinkier and curled, particularly toward the periphery of the cells. When cytoskeletal microtubules of NRK cells were depolymerized with nocodazole, they reassembled within minutes of transfer to drug-free media. However, nocodazole-treated cells transferred to fresh media containing 15 micrograms/ml of LY195448 required 2-3 times longer to reassemble cytoplasmic microtubules. Previously isolated Chinese hamster ovary cell microtubule mutants resistant to either taxol or Colcemid were tested for cross-resistance to this drug. Cell lines resistant to the depolymerizing drug Colcemid exhibited increased resistance to LY195448 compared to wild-type cells, whereas taxol resistant cell lines were more sensitive. Of eleven newly isolated mutant CHO cell lines selected for increased resistance to LY195448, seven exhibited an altered beta-tubulin protein by two-dimensional polyacrylamide gel electrophoresis. These 11 cell lines also showed a heterogenous pattern of resistance to several microtubule-active drugs. These data demonstrate that LY195448 is cytotoxic to mammalian cells because it inhibits microtubule assembly, most likely through a direct interaction with tubulin.  相似文献   

5.
6.
The effects of the microtubule inhibitor taxol on the growth and viability of Chinese hamster ovary (CHO) cells have been examined. Stable mutants which are between seven to 11-fold more resistant to taxol have been selected in a single step from ethyl methanesulfonate-mutagenized CHO cells. The two taxol-resistant mutants (TaxR-1 and TaxR-2) which have been studied in detail exhibit novel and strikingly different cross-resistance/collateral sensitivity patterns to various microtubule inhibitors. For example, the TaxR-1 mutant exhibits increased resistance to vinblastine, but in comparison to the parental cells, it shows enhanced sensitivity toward colchicine, colcemid, stegnacine, and griseofulvin. However, the sensitivity of this mutant toward other unrelated compounds, e.g., puromycin, daunomycin, etc., remained largely unaltered. The specific pattern of cross-resistance/collateral-sensitivity of this mutant toward various microtubule inhibitors suggests that the genetic lesion in this mutant may be affecting a microtubule-related component. The TaxR-2 mutant, in contrast, is highly resistant to various microtubule inhibitors including colchicine, colcemid, stegnacine, maytan-sine, vinblastine, and podophyllotoxin. This mutant also exhibits greatly increased cross-resistance to daunomycin, puromycin, ethidium bromide, and VM-26 (compounds which do not inhibit microtubule assembly), and shows reduced cellular uptake of 3H-daunomycin indicating that the genetic lesion in this mutant nonspecifically affects the membrane permeability of various drugs. The cell hybrids formed between TaxR-1 (or TaxR-2 mutant(s)) and a taxol-sensitive cell line exhibit intermediate levels of resistance to the drug, indicating that the TaxR phenotypes of both these mutants behave codominantly under these conditions.  相似文献   

7.
We raised a strain of Leishmania donovani in the laboratory that was resistant to 500 nM taxol. The IC50 of the wild-type strain for taxol was 35 nM and that of the taxol-resistant strain (T-500) was 1 microM. The T-500 strain exhibited a Mdr phenotype; it was also resistant to other unrelated drugs like vinblastine, adriamycin and the commonly used antimonial drugs pentostam and glucantime. Verapamil (20 nM), a calcium channel blocker, was found to reverse the resistance of T-500 to taxol. Acquired resistance to taxol has been reported to be mediated by alterations involving tubulin in cancer cells. Thus polymerisation assays with tubulin fractions in wild-type versus taxol-resistant cells (T-500) were performed in vitro. The tubulin fraction from T-500 was more resistant to in vitro polymerisation than the tubulin isolated from the wild-type, suggesting that this is one means by which the parasite may acquire resistance to taxol.  相似文献   

8.
Stable clones selected for resistance to tunicamycin (TM) have been isolated from Chinese Hamster Ovary (CHO) cells. The TMR phenotype is stable for more than nine months in the absence of the drug. The morphology of TMR mutant varies from epitheloid to abnormally elongate. The mutants do not display cross-resistance for ConA but are slightly cross-resistant to PHA. Biochemically labeled membrane proteins and glycoprotein of Vesicular stomatitis virus (VSV) grown in the TMR mutants revealed that the incorporation of radioactive glucosamine was markedly reduced in the mutants. The results indicate that TMR cells are a novel type of membrane mutant.  相似文献   

9.
Chinese hamster ovary (CHO) cell mutants resistant to the cytotoxic effects of taxol and requiring the drug for normal growth were isolated in a single step. One of these mutant cell lines, Tax-18, fails to divide in the absence of taxol; instead, the cells become larger, rounder, flatter, and multinucleated. Analysis by flow cytometry indicates that during taxol deprivation there is an accumulation of cells in G2 + M phase but that the cells are able to leak through the block in the absence of cell division and further increase their DNA content beyond the tetraploid amount. This interpretation is confirmed by karyotype analysis and by time-lapse studies that show cells rounded for mitosis two to five times longer than in wild-type cultures or in Tax-18 cultures grown in taxol. The cells finally attempt to undergo cytokinesis, fail, and spread out again, but as larger cells than before. Tax-18 has a normal growth rate and morphology when grown in taxol even at concentrations three to five times below the selecting concentration of the drug. The cells, however, have increased sensitivity to microtubule-disrupting drugs such as colcemid, griseofulvin, and D2O. The mutation for taxol auxotrophy behaves recessively in somatic cell hybridization experiments, and the phenotypic reversion rate is approximately 10(-5) in a nonmutagenized population. Both alpha- and beta-tubulin are present in apparently normal amounts and with normal electrophoretic mobilities on two-dimensional gels. The results suggest that Tax-18 lacks a factor necessary for mitosis and that taxol may be able to substitute for this factor.  相似文献   

10.
Single-step mutants of Chinese hamster ovary (CHO) cells have been isolated which are resistant to killing by the anti-mitotic drugs colchicine, colcemid or griseofulvin. Two-dimensional gel analysis showed that two mutants resistant to griseofulvin, one resistant to colcemid and one resistant to colchicine carry an alteration in the β-tubulin subunit. Most of the remaining isolates are believed to be permeability mutants on the basis of their cross resistance to drugs which do not interfere with microtubular polymerization or function (Ling and Thompson, 1974; Bech-Hansen, Till and Ling, 1976). A reduced amount of the wild-type β-tubulin protein remained in each of the β-tubulin mutants, but a β-tubulin protein with a more basic isoelectric point also appeared. Messenger RNAs coding for both wild-type and variant β-tubulins were found in at least one mutant as assayed by in vitro translation in a reticulocyte lysate. This indicates that the altered tubulin does not arise as the result of a post-translational modification.  相似文献   

11.
Chinese hamster ovary (CHO) cells exhibit increased sensitivity to a wide variety of microtubule inhibitory drugs when verapamil is present in the growth medium. The extent of this increased sensitivity is drug specific: some drugs such as taxol and vinblastine respond greatly to the presence of verapamil, whereas other drugs such as griseofulvin respond very poorly. For the majority of drugs examined, however, a 2- to 10-fold increase in drug sensitivity is observed in the presence of verapamil at 5 micrograms/ml. The effects of verapamil are even more dramatic when drug-resistant mutant cells with a presumed alteration in membrane permeability are examined. In the presence of appropriate levels of verapamil, these mutants demonstrate a level of drug sensitivity comparable to that of the wild-type parental cells. Drug-resistant cells from similar selections but with well-defined alterations in alpha- or beta-tubulin and no evidence of alterations in membrane permeability, however, continue to exhibit increased resistance to the selecting drug even in the presence of verapamil. These studies support the conclusion that verapamil affects the membrane permeability to or transport of a wide variety of hydrophobic drugs. In addition, we have used this information to devise selections that virtually eliminate the isolation of drug-resistant permeability mutants. This methodology should be generally applicable to genetic studies of drug action that are complicated by the isolation of large numbers of mutants with permeability alterations.  相似文献   

12.
13.
We have isolated and characterized six chemically induced mutants of the filamentous fungusAspergillus nidulans that are resistant to the experimental fungicide 8-chloro-4-(2-chloro-4-fluoro-phenoxy)quinoline (LY214352). The mutants are 13- to 430-fold more resistant to LY214352 than the parental strain, and one of the mutant strains requires LY214352 for maximal growth. The resistance trait is governed by a single dominant or partially dominant gene in each mutant, and it is likely that all of the mutations are allelic. The LY214352-resistant mutants were not cross-resistant to other compounds that inhibit the growth ofA. nidulans. The implications of these findings on the potential for development of resistance to LY214352 are discussed.  相似文献   

14.
Cancer chemotherapy with taxol often fails due to acquired resistance of cancer cells, which is frequently associated with an overexpression of P-gp and alterations of beta-tubulin. A taxol-resistant cell line, QGY-TR50, derived from a human hepatocellular carcinoma (HCC) QGY-7703 cell line was used to investigate the mechanisms of taxol-resistance. QGY-TR50 cells showed more than 250-fold resistance to taxol and exhibited cross-resistance to other drugs including actinomycin D, doxorubicin, vinblastine, and vincristine. P-gp was highly expressed in QGY-TR50 cells. Expression levels of five human beta-tubulin isotypes (betaI-, betaII-,betaIII-, betaIva, and betaIvb-tubulin) were examined by real-time semi-quantitative PCR. Comparing with QGY-7703 cells, QGY-TR50 cells did not show any significant change in the expression levels of betaI-, betaIva, and betaIvb-tubulin. While a 1.2-fold increased in betaII-tubulin and a 0.5-fold decreased in betaIII-tubulin levels were observed. All results suggest that the P-glycoprotein could be one key factor involved in enhancing drug resistance in QGY-TR50 cells.  相似文献   

15.
Mutants of Saccharomyces cerevisiae resistant to triethyl tin sulphate have been isolated and are cross-resistant to other trialkyl tin salts. Triethyl-tin-resistant mutants fall into two general phenotypic classes: class 1 and class 2. Class 1 mutants are cross-resistant to a variety of inhibitors and uncoupling agents which affect mitochondrial membranes (oligomycin, ossamycin, valinomycin, antimycin, erythromycin, chloramphenicol, '1799', tetrachlorotrifluoromethyl benzimidazole carbonylcyanide-m-chlorophenylhydrazone and cycloheximide). Class 2 mutants are specifically resistant to trithyl tin and the uncoupling agent "1799' [bis-(hexafluoroacetonyl)-acetone]. Triethyl tin at neutral pH values is a specific inhibitor of mitochondrial energy conservation reactions and prevents growth on oxidisable substrates such as glycerol and ethanol. Triethyl-tin-resistant mutants grow normally on glucose and ethanol in the presence of triethyl tin (10 muM). Biochemical studies indicate that the mutation involves a modification of the triethyl tin binding site on the mitochondrial inner membrane, probably the ATP-synthetase complex. Triethyl tin resistance/sensitivity in yeast is determined by cytoplasmic (mitochondrial) and nuclear genes. The mutants fall into a nuclear and a cytoplasmic (mitochondrial) class corresponding to the phenotypic cross-resistance classes 1 and 2. In the cytoplasmic mutants the triethyl tin resistance segregates mitotically and the resistance determinat is deleted by the action of ethidium bromide during petite induction. Recombination studies indicate that the triethyl tin mutations are not allelic with the other mitochondrial mutations at the loci RI, RIII and OLI. This indicates that the binding or inhibitory sites of oligomycin and triethyl tin are not identical and that the triethyl tin binding site is located on a different mitochondrial gene product to those which are involved in oligomycin binding. Interaction and cooperative effects between different binding sites on the mitochondrial inner membrane have been demonstrated in studies of the effect of the insertion of the TETr phenotype into mitochondrial oligomycin-resistant mutants and provide an experimental basis for complementation studies at the ATP-synthetase level.  相似文献   

16.
Colchicine-resistant variants derived from mouse and Syrian hamster lines are described. The resistant cells do not appear to be true mutants, since they appear at a high frequency, unaffected by treatment with ethyl methyl sulphonate, and are unstable in the absence of the drug. They are cross-resistant to other drugs, show a reduced rate of binding of colchicine in monolayer, and give extracts with colchicine-binding properties identical to those of the wild type. Thus the resistance is due to a permeability barrier. The naturally occurring resistance of the Syrian hamster line is specific for colchicine, and may be due to a specific permeability barrier. The Syrian hamster line is also shown to have an extra colchicine-binding pool.  相似文献   

17.
Chinese hamster ovary cells were initially selected for resistance to aphidicolin at 0.3 microgram/ml. Serial cultivation with aphidicolin at concentrations up to 5.0 micrograms/ml yielded a series of mutants with increasing resistance. The most resistant mutant isolated was 44 times more resistant to aphidicolin than the parental CHO. The alpha-polymerases, assayed in the cytoplasmic extracts of the mutants, did not increase in specific activity or differ from the parental CHO in their sensitivity to aphidicolin. When cultured in the presence of deoxythymidine, deoxyadenosine, and 1-beta-D-arabinofuranosyl cytosine (araC) the mutants showed considerably more resistance to these inhibitors than did the parental CHO. The intracellular pools of all four deoxynucleoside triphosphates (dNTPs) in the mutants increased with increasing resistance to aphidicolin. The elevated dNTP pools in the mutant most resistant to aphidicolin appear to be the result of a 4- to 8-fold increase in the level of ribonucleotide reductase (2'-deoxyribonucleoside diphosphate:oxidized thioredoxin 2'-oxidoreductase, EC 1.17.4.1).  相似文献   

18.
The radiation response of drug-resistant variants of the human tumor breast cancer cell line MCF-7 has been investigated. Two sublines, one resistant to adriamycin (ADRR) and the other to melphalan (MLNR), have been selected by exposure to stepwise increasing concentrations of the respective drugs. ADRR cells are 200-fold resistant to adriamycin and cross-resistant to a number of other drugs and are characterized by the presence of elevated levels of selenium-dependent glutathione peroxidase and glutathione-S-transferase. MLNR cells are fourfold resistant to melphalan and cross-resistant to some other drugs. The only mechanism of drug resistance established for MLNR cells to date is an enhancement of DNA excision repair processes. While the spectrum of drug resistance and the underlying mechanisms differ for the two sublines, their response to radiation is qualitatively similar. Radiation survival curves for ADRR and MLNR cells differ from that for wild-type cells in a complex manner with, for the linear-quadratic model, a decrease in the size of alpha and an increase in the size of beta. There is a concomitant decrease in the size of the alpha/beta ratio which is greater for ADRR cells than for MLNR cells. Analysis of results using the multitarget model gave values of D0 of 1.48, 1.43, and 1.67 Gy for MCF-7 cells are not a consequence of cell kinetic differences between these sublines. Results of split-dose experiments indicated that for both drug-resistant sublines the extent of sublethal damage repair reflected the width of the shoulder on the single-dose survival curve. For MCF-7 cells in the stationary phase of growth, the drug-resistant sublines did not show cross-resistance to radiation; however, delayed subculture following irradiation of stationary-phase cultures increased survival to a greater extent for ADRR and MLNR cells than for wild-type cells.  相似文献   

19.
Colchicine-resistant Chinese hamster ovary (CHO) cell mutants whose resistance results from reduced drug permeability have been isolated previously in our laboratories. This reduced permeability affects a wide range of unrelated drugs, resulting in the mutants displaying a multiple drug resistance phenotype. A 170,000-dalton cell surface glycoprotein (P-glycoprotein) was identified, and its expression appears to correlate with the degree of resistance. In this study we were able to confer the multiple drug resistance phenotype on sensitive mouse L cells by DNA-mediated gene transfer of DNA obtained from the colchicine-resistant mutants. P-glycoprotein was detected in plasma membranes of these DNA transformants by staining with an antiserum raised against membranes of mutant CHO cells. These results are consistent with a causal relationship between P-glycoprotein expression and the multiple drug resistance phenotype.  相似文献   

20.
Four two-dimensional polyacrylamide gel electrophoresis systems were used to identify 78 Chinese hamster cell ribosomal proteins by the uniform nomenclature based on rat liver ribosomal proteins. The 40S ribosomal subunit protein affected by Chinese hamster ovary (CHO) cell one-step emetine resistance mutations is designated S14 in the standard nomenclature. To seek unambiguous genetic evidence for a cause and effect relationship between CHO cell emetine resistance and mutations in the S14 gene, we mutagenized a one-step CHO cell mutant and isolated second-step mutant clones resistant to 10-fold-higher concentrations of emetine. All of the highly resistant, two-step CHO cell mutants obtained displayed additional alterations in ribosomal protein S14. Hybridization complementation tests revealed that the two-step CHO cell emetine resistance mutants were members of the same complementation group defined by one-step CHO cell mutants, EmtB. Two-step mutants obtained from a Chinese hamster lung cell emetine-resistant clone belong to the EmtA complementation group. The two-step and EmtB mutants elaborated 40S ribosomal subunits, which dissociated to 32S and 40S core particles in buffers containing 0.5 M KCl at 4 degrees C. In contrast, 40S ribosomal subunits purified from all EmtA, one-step EmtB EmtC mutants, and wild-type CHO and lung cells were stable at this temperature in buffers containing substantially higher concentrations of salt. Thus, two-step emtB mutations affect the structure of S14 protein directly and the stability of the 40S ribosomal subunit indirectly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号