首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
GM‐CSF is a potent inflammatory cytokine regulating myeloid cell differentiation, hematopoiesis, and various other functions. It is functionally associated with a number of inflammatory pathologies including rheumatoid arthritis and inflammatory bowel disease. GM‐CSF has been found to promote NLRP3‐dependent IL‐1β secretion, which may have a significant role in driving inflammatory pathologies. However, the molecular mechanisms remain unknown. Here, we show that GM‐CSF induces IL‐1β secretion through a ROS‐dependent pathway. TNF is required for reactive oxygen species (ROS) generation that strikingly does not promote NLRP3 activation, but instead drives ubiquitylation of IL‐1β, promoting its cleavage through basal NRLP3 activity. GM‐CSF regulates this pathway through suppression of antioxidant responses via preventing upregulation of NRF2. Thus, the pro‐inflammatory effect of GM‐CSF on IL‐1β is through suppression of antioxidant responses, which leads to ubiquitylation of IL‐1β and enhanced processing. This study highlights the role of metabolic regulation of inflammatory signaling and reveals a novel mechanism for GM‐CSF to promote inflammation.  相似文献   

3.
Fractalkine (CX3CL1, FKN), a CX3C gene sequence inflammatory chemokine, has been found to have pro‐inflammatory and pro‐adhesion effects. Macrophages are immune cells with a critical role in regulating the inflammatory response. The imbalance of M1/M2 macrophage polarization can lead to aggravated inflammation. This study attempts to investigate the mechanisms through which FKN regulates macrophage activation and the acute kidney injury (AKI) involved in inflammatory response induced by lipopolysaccharide (LPS) by using FKN knockout (FKN‐KO) mice and cultured macrophages. It was found that FKN and Wnt/β‐catenin signalling have a positive interaction in macrophages. FKN overexpression inhibited LPS‐induced macrophage apoptosis. However, it enhanced their cell viability and transformed them into the M2 type. The effects of FKN overexpression were accelerated by activation of Wnt/β‐catenin signalling. In the in vivo experiments, FKN deficiency suppressed macrophage activation and reduced AKI induced by LPS. Inhibition of Wnt/β‐catenin signalling and FKN deficiency further mitigated the pathologic process of AKI. In summary, we provide a novel mechanism underlying activation of macrophages in LPS‐induced AKI. Although LPS‐induced murine AKI was unable to completely recapitulate human AKI, the positive interactions between FKN and Wnt/β‐catenin signalling pathway may be a therapeutic target in the treatment of kidney injury.  相似文献   

4.
Senescence occurs upon critical telomere shortening, or following DNA damage, oncogenic activation, hypoxia and oxidative stress, overall referred to stress‐induced premature senescence (SIPS). In response to DNA damage, senescent cells release cytoplasmic chromatin fragments (CCFs), and express an altered secretome, the senescence‐associated secretory phenotype (SASP), which contributes to generate a pro‐inflammatory and pro‐tumoral extracellular milieu. Polyphenols have gained significant attention owing to their anti‐inflammatory and anti‐tumour activities. Here, we studied the effect of oleuropein aglycone (OLE) and hydroxytyrosol (HT) on DNA damage, CCF appearance and SASP in a model of irradiation‐induced senescence. Neonatal human dermal fibroblasts (NHDFs) were γ‐irradiated and incubated with OLE, 5 µM and HT, 1 µM. Cell growth and senescence‐associated (SA)‐β‐Gal‐staining were used as senescence markers. DNA damage was evaluated by Comet assay, lamin B1 expression, release of CCFs, cyclic GMP‐AMP Synthase (cGAS) activation. IL‐6, IL‐8, MCP‐1 and RANTES were measured by ELISA assay. Our results showed that OLE and HT exerted a protective effect on 8 Gy irradiation‐induced senescence, preserving lamin B1 expression and reducing cGAS/STING/NFκB‐mediated SASP. The ability of OLE and HT to mitigate DNA damage, senescence status and the related SASP in normal cells can be exploited to improve the efficacy and safety of cancer radiotherapy.  相似文献   

5.
Older age and underlying conditions such as diabetes/obesity or immunosuppression are leading host risk factors for developing severe complications from COVID‐19 infection. The pathogenesis of COVID‐19‐related cytokine storm, tissue damage, and fibrosis may be interconnected with fundamental aging processes, including dysregulated immune responses and cellular senescence. Here, we examined effects of key cytokines linked to cellular senescence on expression of SARS‐CoV‐2 viral entry receptors. We found exposure of human umbilical vein endothelial cells (HUVECs) to the inflammatory cytokines, TNF‐α + IFN‐γ or a cocktail of TNF‐α + IFN‐γ + IL‐6, increased expression of ACE2/DPP4, accentuated the pro‐inflammatory senescence‐associated secretory phenotype (SASP), and decreased cellular proliferative capacity, consistent with progression towards a cellular senescence‐like state. IL‐6 by itself failed to induce substantial effects on viral entry receptors or SASP‐related genes, while synergy between TNF‐α and IFN‐γ initiated a positive feedback loop via hyper‐activation of the JAK/STAT1 pathway, causing SASP amplification. Breaking the interactive loop between senescence and cytokine secretion with JAK inhibitor ruxolitinib or antiviral drug remdesivir prevented hyper‐inflammation, normalized SARS‐CoV‐2 entry receptor expression, and restored HUVECs proliferative capacity. This loop appears to underlie cytokine‐mediated viral entry receptor activation and links with senescence and hyper‐inflammation.  相似文献   

6.
Balancing cell death is essential to maintain healthy tissue homeostasis and prevent disease. Tumor necrosis factor (TNF) not only activates nuclear factor κB (NFκB), which coordinates the cellular response to inflammation, but may also trigger necroptosis, a pro‐inflammatory form of cell death. Whether TNF‐induced NFκB affects the fate decision to undergo TNF‐induced necroptosis is unclear. Live‐cell microscopy and model‐aided analysis of death kinetics identified a molecular circuit that interprets TNF‐induced NFκB/RelA dynamics to control necroptosis decisions. Inducible expression of TNFAIP3/A20 forms an incoherent feedforward loop to interfere with the RIPK3‐containing necrosome complex and protect a fraction of cells from transient, but not long‐term TNF exposure. Furthermore, dysregulated NFκB dynamics often associated with disease diminish TNF‐induced necroptosis. Our results suggest that TNF''s dual roles in either coordinating cellular responses to inflammation, or further amplifying inflammation are determined by a dynamic NFκB‐A20‐RIPK3 circuit, that could be targeted to treat inflammation and cancer.  相似文献   

7.
Chronic inflammation is associated with the occurrence of several diseases. However, the side effects of anti‐inflammatory drugs prompt the identification of new therapeutic strategies. Plant‐derived extracellular vesicles (PDEVs) are gaining increasing interest in the scientific community for their biological properties. We isolated PDEVs from the juice of Citrus limon L. (LEVs) and characterized their flavonoid, limonoid and lipid contents through reversed‐phase high‐performance liquid chromatography coupled to electrospray ionization quadrupole time‐of‐flight mass spectrometry (RP‐HPLC–ESI‐Q‐TOF‐MS). To investigate whether LEVs have a protective role on the inflammatory process, murine and primary human macrophages were pre‐treated with LEVs for 24 h and then were stimulated with lipopolysaccharide (LPS). We found that pre‐treatment with LEVs decreased gene and protein expression of pro‐inflammatory cytokines, such as IL‐6, IL1‐β and TNF‐α, and reduced the nuclear translocation and phosphorylation of NF‐κB in LPS‐stimulated murine macrophages. The inhibition of NF‐κB activation was associated with the reduction in ERK1‐2 phosphorylation. Furthermore, the ability of LEVs to decrease pro‐inflammatory cytokines and increase anti‐inflammatory molecules was confirmed ex vivo in human primary T lymphocytes. In conclusion, we demonstrated that LEVs exert anti‐inflammatory effects both in vitro and ex vivo by inhibiting the ERK1‐2/NF‐κB signalling pathway.  相似文献   

8.
Inflammaging, characterized by an increase in low‐grade chronic inflammation with age, is a hallmark of aging and is strongly associated with various age‐related diseases, including chronic liver disease (CLD) and hepatocellular carcinoma (HCC). Because necroptosis is a cell death pathway that induces inflammation through the release of DAMPs, we tested the hypothesis that age‐associated increase in necroptosis contributes to chronic inflammation in aging liver. Phosphorylation of MLKL and MLKL oligomers, markers of necroptosis, as well as phosphorylation of RIPK3 and RIPK1 were significantly upregulated in the livers of old mice relative to young mice and this increase occurred in the later half of life (i.e., after 18 months of age). Markers of M1 macrophages, expression of pro‐inflammatory cytokines (TNFα, IL6 and IL1β), and markers of fibrosis were all significantly upregulated in the liver with age and the change in necroptosis paralleled the changes in inflammation and fibrosis. Hepatocytes and liver macrophages isolated from old mice showed elevated levels of necroptosis markers as well as increased expression of pro‐inflammatory cytokines relative to young mice. Short‐term treatment with the necroptosis inhibitor, necrostatin‐1s (Nec‐1s), reduced necroptosis, markers of M1 macrophages, fibrosis, and cell senescence as well as reducing the expression of pro‐inflammatory cytokines in the livers of old mice. Thus, our data show for the first time that liver aging is associated with increased necroptosis and necroptosis contributes to chronic inflammation in the liver, which in turn appears to contribute to liver fibrosis and possibly CLD.  相似文献   

9.
The NOD1/2‐RIPK2 is a key cytosolic signaling complex that activates NF‐κB pro‐inflammatory response against invading pathogens. However, uncontrolled NF‐κB signaling can cause tissue damage leading to chronic diseases. The mechanisms by which the NODs‐RIPK2‐NF‐κB innate immune axis is activated and resolved remain poorly understood. Here, we demonstrate that bacterial infection induces the formation of endogenous RIPK2 oligomers (RIPosomes) that are self‐assembling entities that coat the bacteria to induce NF‐κB response. Next, we show that autophagy proteins IRGM and p62/SQSTM1 physically interact with NOD1/2, RIPK2 and RIPosomes to promote their selective autophagy and limit NF‐κB activation. IRGM suppresses RIPK2‐dependent pro‐inflammatory programs induced by Shigella and Salmonella. Consistently, the therapeutic inhibition of RIPK2 ameliorates Shigella infection‐ and DSS‐induced gut inflammation in Irgm1 KO mice. This study identifies a unique mechanism where the innate immune proteins and autophagy machinery are recruited together to the bacteria for defense as well as for maintaining immune homeostasis.  相似文献   

10.
Islet inflammation severely impairs pancreatic β‐cell function, but the specific mechanisms are still unclear. Interleukin1‐β (IL‐1β), an essential inflammatory factor, exerts a vital role in multiple physio‐pathologic processes, including diabetes. Calcium/calmodulin‐dependent serine protein kinase (CASK) is an important regulator especially in insulin secretion process. This study aims to unveil the function of CASK in IL‐1β–induced insulin secretion dysfunction and the possible mechanism thereof. Islets of Sprague‐Dawley (SD) rats and INS‐1 cells stimulated with IL‐1β were utilized as models of chronic inflammation. Insulin secretion function associated with Cask and DNA methyltransferases (DNMT) expression were assessed. The possible mechanisms of IL‐1β‐induced pancreatic β‐cell dysfunction were also explored. In this study, CASK overexpression effectively improved IL‐1β‐induced islet β‐cells dysfunction, increased insulin secretion. DNA methyltransferases and the level of methylation in the promoter region of Cask were elevated after IL‐1β administration. Methyltransferase inhibitor 5‐Aza‐2’‐deoxycytidine (5‐Aza‐dC) and si‐DNMTs partially up‐regulated CASK expression and reversed potassium stimulated insulin secretion (KSIS) and glucose‐stimulated insulin secretion (GSIS) function under IL‐1β treatment in INS‐1 and rat islets. These results reveal a previously unknown effect of IL‐1β on insulin secretion dysfunction and demonstrate a novel pathway for Cask silencing based on activation of DNA methyltransferases via inducible nitric oxide synthase (iNOS) and modification of gene promoter methylation.  相似文献   

11.
12.
Osteoarthritis (OA) is a whole‐joint disease characterized by synovial inflammation and cartilage degeneration. However, the relationship between synovial inflammation and cartilage degeneration remains unclear. The modified Hulth''s method was adopted to establish a knee OA (KOA) rabbit model. Synovial tissue was collected after 8 weeks, and synovial tissue‐derived extracellular vesicles (ST‐EVs) were extracted by filtration combined with size exclusion chromatography (SECF), followed by identification through transmission electron microscopy (TEM), nanoparticle tracer analysis (NTA) and Western blot (WB). The collagenase digestion method was used to extract normal rabbit chondrocytes, which were then treated with the SF‐EVs to observe the effect and mechanism of SF‐EVs on chondrocytes. The morphology, particle size and labelled protein marker detection confirmed that SECF successfully extract ST‐EVs. The ST‐EVs in the KOA state significantly inhibited chondrocyte proliferation and promoted chondrocytes apoptosis. Moreover, the ST‐EVs also promoted the expression of pro‐inflammatory cytokines (IL‐1β, IL‐6, TNF‐α and COX‐2) and cartilage degradation‐related enzymes (MMP13, MMP9 and ADAMTS5) in the chondrocytes. Mechanistically, the ST‐EVs significantly promoted the activation of NF‐κB signalling pathway in chondrocytes. Inhibition the activation of the NF‐κB signalling pathway significantly rescued the expression of inflammatory cytokines and cartilage degradation‐related enzymes in the ST‐EVs–induced chondrocytes. In conclusion, the ST‐EVs promote chondrocytes inflammation and degradation by activating the NF‐κB signalling pathway, providing novel insights into the occurrence and development of OA.  相似文献   

13.
γδ T cells are a conserved population of lymphocytes that contributes to anti‐tumor responses through its overt type 1 inflammatory and cytotoxic properties. We have previously shown that human γδ T cells acquire this profile upon stimulation with IL‐2 or IL‐15, in a differentiation process dependent on MAPK/ERK signaling. Here, we identify microRNA‐181a as a key modulator of human γδ T cell differentiation. We observe that miR‐181a is highly expressed in patients with prostate cancer and that this pattern associates with lower expression of NKG2D, a critical mediator of cancer surveillance. Interestingly, miR‐181a expression negatively correlates with an activated type 1 effector profile obtained from in vitro differentiated γδ T cells and miR‐181a overexpression restricts their levels of NKG2D and TNF‐α. Upon in silico analysis, we identify two miR‐181a candidate targets, Map3k2 and Notch2, which we validate via overexpression coupled with luciferase assays. These results reveal a novel role for miR‐181a as critical regulator of human γδ T cell differentiation and highlight its potential for manipulation of γδ T cells in next‐generation immunotherapies.  相似文献   

14.
Alzheimer''s disease (AD), the major cause of dementia, affects the elderly population worldwide. Previous studies have shown that depletion of receptor‐interacting protein kinase 1 (RIPK1) expression reverted the AD phenotype in murine AD models. Necroptosis, executed by mixed lineage kinase domain‐like (MLKL) protein and activated by RIPK1 and RIPK3, has been shown to be involved in AD. However, the role of RIPK1 in beta‐amyloid (Aβ)‐induced necroptosis is not yet fully understood. In this study, we explored the role of RIPK1 in the SH‐SY5Y human neuroblastoma cells treated with Aβ 1–40 or Aβ 1–42. We showed that Aβ‐induced neuronal cell death was independent of apoptosis and autophagy pathways. Further analyses depicted that activation of RIPK1/MLKL‐dependant necroptosis pathway was observed in vitro. We demonstrated that inhibition of RIPK1 expression rescued the cells from Aβ‐induced neuronal cell death and ectopic expression of RIPK1 was found to enhance the stability of the endogenous APP. In summary, our findings demonstrated that Aβ can potentially drive necroptosis in an RIPK1‐MLKL‐dependent manner, proposing that RIPK1 plays an important role in the pathogenesis of AD.  相似文献   

15.
Ventricular arrhythmias (VAs) triggers by sympathetic nerve hyperactivity contribute to sudden cardiac death in myocardial infarction (MI) patients. Microglia‐mediated inflammation in the paraventricular nucleus (PVN) is involved in sympathetic hyperactivity after MI. N6‐methyladenosine (m6A), the most prevalent mRNA and epigenetic modification, is critical for mediating cell inflammation. We aimed to explore whether METTL3‐mediated m6A modification is involved in microglia‐mediated sympathetic hyperactivity after MI in the PVN. MI model was established by left coronary artery ligation. METTL3‐mediated m6A modification was markedly increased in the PVN at 3 days after MI, and METTL3 was primarily located in microglia by immunofluorescence. RNA‐seq, MeRIP‐seq, MeRIP‐qPCR, immunohistochemistry, ELISA, heart rate variability measurements, renal sympathetic nerve activity recording and programmed electrical stimulation confirmed that the elevated toll‐like receptor 4 (TLR4) expression by m6A modification on TLR4 mRNA 3''‐UTR region combined with activated NF‐κB signalling led to the overwhelming production of pro‐inflammatory cytokines IL‐1β and TNF‐α in the PVN, thus inducing the sympathetic hyperactivity and increasing the incidence of VAs post‐MI. Targeting METTL3 attenuated the inflammatory response and sympathetic hyperactivity and reduced the incidence of VAs post‐MI.  相似文献   

16.
Aberrant activation of inflammation signaling triggered by tumor necrosis factor α (TNF‐α), interleukin‐1 (IL‐1), and interleukin‐17 (IL‐17) is associated with immunopathology. Here, we identify neural precursor cells expressed developmentally down‐regulated gene 4‐like (NEDD4L), a HECT type E3 ligase, as a common negative regulator of signaling induced by TNF‐α, IL‐1, and IL‐17. NEDD4L modulates the degradation of mitogen‐activated protein kinase kinase kinase 2 (MEKK2) via constitutively and directly binding to MEKK2 and promotes its poly‐ubiquitination. In interleukin‐17 receptor (IL‐17R) signaling, Nedd4l knockdown or deficiency enhances IL‐17‐induced p38 and NF‐κB activation and the production of proinflammatory cytokines and chemokines in a MEKK2‐dependent manner. We further show that IL‐17‐induced MEKK2 Ser520 phosphorylation is required not only for downstream p38 and NF‐κB activation but also for NEDD4L‐mediated MEKK2 degradation and the subsequent shutdown of IL‐17R signaling. Importantly, Nedd4l‐deficient mice show increased susceptibility to IL‐17‐induced inflammation and aggravated symptoms of experimental autoimmune encephalomyelitis (EAE) in IL‐17R signaling‐dependent manner. These data suggest that NEDD4L acts as an inhibitor of IL‐17R signaling, which ameliorates the pathogenesis of IL‐17‐mediated autoimmune diseases.  相似文献   

17.
METTL3 is an important regulatory molecule in the process of RNA biosynthesis. It mainly regulates mRNA translation, alternative splicing and microRNA maturation by mediating m6A‐dependent methylation. Interleukin 1β (IL‐1β) is an important inducer of cartilage degeneration that can induce an inflammatory cascade reaction in chondrocytes and inhibit the normal biological function of cells. However, it is unclear whether IL‐1β is related to METTL3 expression or plays a regulatory role in endplate cartilage degeneration. In this study, we found that the expression level of METTL3 and methylation level of m6A in human endplate cartilage with different degrees of degeneration were significantly different, indicating that the methylation modification of m6A mediated by METTL3 was closely related to the degeneration of human endplate cartilage. Next, through a series of functional experiments, we found that miR‐126‐5p can play a significant role in IL‐1β–induced degeneration of endplate chondrocytes. Moreover, we found that miR‐126‐5p can inhibit the PI3K/Akt signalling pathway by targeting PIK3R2 gene, leading to the disorder of cell vitality and functional metabolism. To further determine whether METTL3 could regulate miR‐126‐5p maturation, we first confirmed that METTL3 can bind the key protein underlying pri‐miRNA processing, DGCR8. Additionally, when METTL3 expression was inhibited, the miR‐126‐5p maturation process was blocked. Therefore, we hypothesized that METTL3 can promote cleavage of pri‐miR‐126‐5p and form mature miR‐126‐5p by combining with DGCR8.  相似文献   

18.
19.
Inflammation is a major risk factor for osteoporosis, and reducing inflammatory levels is important for the prevention of osteoporosis. Although nuclear receptor 77 (Nur77) protects against inflammation in a variety of diseases, its role in osteoporosis is unknown. Therefore, the main purpose of this study was to investigate the osteoprotective and anti‐inflammatory effects of Nur77. The microCT and haematoxylin and eosin staining results indicated that knockout of Nur77 accelerated femoral bone loss in mice. The enzyme‐linked immunosorbent assay (ELISA) results showed that knockout of Nur77 increased the serum levels of hsCRP and IL‐6. The expression levels of NF‐κB, IL‐6, TNF‐α and osteoclastogenesis factors (TRAP, NFATC1, Car2, Ctsk) in the femurs of Nur77 knockout mice were increased significantly. Furthermore, in vitro, shNur77 promoted the differentiation of RAW264.7 cells into osteoclasts by activating NF‐κB, which was confirmed by PDTC treatment. Mechanistically, Nur77 inhibited osteoclast differentiation by inducing IκB‐α and suppressing IKK‐β. In RAW264.7 cells, overexpression of Nur77 alleviated inflammation induced by siIκB‐α, while siIKK‐β alleviated inflammation induced by shNur77. Consistent with the in vivo studies, we found that compared with control group, older adults with high serum hsCRP levels were more likely to suffer from osteoporosis (OR = 1.76, p < 0.001). Our data suggest that Nur77 suppresses osteoclast differentiation by inhibiting the NF‐κB signalling pathway, strongly supporting the notion that Nur77 has the potential to prevent and treat osteoporosis.  相似文献   

20.
Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS‐CoV‐2 infection is critical for developing treatments for severe COVID‐19. Here, we find decreasing number of circulating plasmacytoid dendritic cells (pDCs) in COVID‐19 patients early after symptom onset, correlating with disease severity. pDC depletion is transient and coincides with decreased expression of antiviral type I IFNα and of systemic inflammatory cytokines CXCL10 and IL‐6. Using an in vitro stem cell‐based human pDC model, we further demonstrate that pDCs, while not supporting SARS‐CoV‐2 replication, directly sense the virus and in response produce multiple antiviral (interferons: IFNα and IFNλ1) and inflammatory (IL‐6, IL‐8, CXCL10) cytokines that protect epithelial cells from de novo SARS‐CoV‐2 infection. Via targeted deletion of virus‐recognition innate immune pathways, we identify TLR7‐MyD88 signaling as crucial for production of antiviral interferons (IFNs), whereas Toll‐like receptor (TLR)2 is responsible for the inflammatory IL‐6 response. We further show that SARS‐CoV‐2 engages the receptor neuropilin‐1 on pDCs to selectively mitigate the antiviral interferon response, but not the IL‐6 response, suggesting neuropilin‐1 as potential therapeutic target for stimulation of TLR7‐mediated antiviral protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号