首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ulcerative colitis (UC), a major form of inflammatory bowel disease (IBD), is on the rise worldwide. Approximately three million people suffer from IBD in the United States alone, but the current therapeutic options (e.g., corticosteroids) come with adverse side effects including reduced ability to fight infections. Thus, there is a critical need for developing effective, safe and evidence-based food products with anti-inflammatory activity. This study evaluated the antiinflammatory potential of purple-fleshed potato using a dextran sodium sulfate (DSS) murine model of colitis. Mice were randomly assigned to control (AIN-93G diet), P15 (15% purple-fleshed potato diet) and P25 (25% purple-fleshed potato diet) groups. Colitis was induced by 2% DSS administration in drinking water for six days. The results indicated that purple-fleshed potato supplementation suppressed the DSS-induced reduction in body weight and colon length as well as the increase in spleen and liver weights. P15 and P25 diets suppressed the elevation in the intestinal permeability, colonic MPO activity, mRNA expression and protein levels of pro-inflammatory interleukins IL-6 and IL-17, the relative abundance of specific pathogenic bacteria such as Enterobacteriaceae, Escherichia coli (E. coli) and pks+ E. coli, and the increased flagellin levels induced by DSS treatment. P25 alone suppressed the elevated systemic MPO levels in DSS-exposed mice, and elevated the relative abundance of Akkermansia muciniphila (A. muciniphila) as well as attenuated colonic mRNA expression level of IL-17 and the protein levels of IL-6 and IL-1β. Therefore, the purple-fleshed potato has the potential to aid in the amelioration of UC symptoms.  相似文献   

2.
The beneficial effects exerted by probiotics in inflammatory bowel disease (IBD) are well known, although their exact mechanisms have not been fully elucidated, and only few studies have focused on their impact on selected miRNAs and the gut microbiota composition. Therefore, our aim was to correlate the intestinal anti-inflammatory activity of the probiotic Saccharomyces boulardii in the dextran sodium sulphate (DSS) model of mouse colitis and the changes induced in miRNA expression and gut microbiota populations. Probiotic was given orally (5×109 CFU) to C57BL/6 mice for 26 days. After 2 weeks, the colitis was induced adding DSS to the drinking water. Mice were scored daily using a Disease Activity Index (DAI). After sacrifice, the colonic specimens were evaluated by determining the expression of inflammatory markers and micro-RNAs by qRT-PCR. Moreover, changes in microbiota populations were evaluated by pyrosequencing. Probiotic ameliorated the colonic damage induced by DSS, as evidenced by lower DAI values and colonic weight/length compared with untreated mice. The treatment modified the colonic expression of different inflammatory markers and the epithelial integrity proteins, and induced changes in micro-RNAs expression. Moreover, microbiota characterization showed that probiotic treatment increased bacterial diversity, thus ameliorating the dysbiosis produced by DSS-colitis. Saccharomyces boulardii exerted intestinal anti-inflammatory effects in DSS-mouse colitis, through the modulation in the immune response, involving modification of altered miRNA expression, being associated to the improvement of the inflammation-associated dysbiosis in the intestinal lumen, which could be of great interest to control the complex pathogenesis of IBD.  相似文献   

3.
4.
5.

Background

Inflammatory bowel diseases (IBD), including mainly ulcerative colitis (UC) and Crohn''s disease (CD), are inflammatory disorders of the gastrointestinal tract caused by an interplay of genetic and environmental factors. Murine colitis model induced by Dextran Sulfate Sodium (DSS) is an animal model of IBD that is commonly used to address the pathogenesis of IBD as well as to test efficacy of therapies. In this study we systematically analyzed clinical parameters, histological changes, intestinal barrier properties and cytokine profile during the colitic and recovery phase.

Methods

C57BL/6 mice were administered with 3.5% of DSS in drinking water for various times. Clinical and histological features were determined using standard criteria. Myeloperoxidase (MPO) activity, transepithelial permeability and proinflammatory mediators were determined in whole colon or proximal and distal parts of colon.

Results

As expected after administration of DSS, mice manifest loss of body weight, shortening of colon length and bloody feces. Histological manifestations included shortening and loss of crypts, infiltration of lymphocytes and neutrophil, symptoms attenuated after DSS withdrawal. The MPO value, as inflammation indicator, also increases significantly at all periods of DSS treatment, and even after DSS withdrawal, it still held at very high levels. Trans-mucosal permeability increased during DSS treatment, but recovered to almost control level after DSS withdrawal. The production of proinflammatory mediators by colonic mucosa were enhanced during DSS treatment, and then recovered to pre-treated level after DSS withdrawal. Finally, enhanced expression of proinflammatory mediators also revealed a different profile feature in proximal and distal parts of the colon.

Conclusion

Experimental colitis induced by DSS is a good animal model to study the mechanisms underlying the pathogenesis and intervention against IBD, especially UC.  相似文献   

6.
Pattern recognition receptors (PRRs) may contribute to inflammatory bowel diseases (IBD) development due to their microbial-sensing ability and the unique microenvironment in the inflamed gut. In this study, the PRR mRNA expression profile together with T cell-associated factors in the colon was examined using a chronic colitis mice model. 8–12 week old C57BL/6 mice were exposed to multiple dextran sodium sulfate (DSS) treatments interspersed with a rest period to mimic the course of chronic colitis. The clinical features and histological data were collected. The mRNA expressions of colonic PRRs, T cell-associated components were measured. Finally, the colons were scored for Foxp3+ cells. During chronic colitis, the histological data, but not the clinical manifestations demonstrated characteristic inflammatory symptoms in the distal colon. In contrast to acute colitis, the expression of all Toll-like receptors (Tlrs), except Tlr5 and Tlr9, was unaffected after repeated DSS treatments. The expression of Nod1 was decreased, while Nod2 increased. After third DSS treatment, only the expressions of Tlr3 and Tlr4 were significantly enhanced. Unlike other PRRs, decreased Tlr5 and increased Tlr9 mRNA expression persisted during the chronic colitis period. As the colitis progress, only the mRNA expression of Ifnγ and Il17 staid increased during chronic colitis, while the acute colitis-associated increase of Il23, and Il10 and Il12 was abolished. Finally, increased histological score of Foxp3+ cell in colon was found during the chronic colitis period. This study provides an expression pattern of PRRs during chronic colitis that is accompanied by a Th1- and Th17 cell-mediated immune response.  相似文献   

7.
Adult mice were treated with dextran sulfate sodium (DSS) and infected with Citrobacter rodentium for developing a novel murine colitis model. C57BL/6N mice (7-week-old) were divided into four groups. Each group composed of control, dextran sodium sulfate-treated (DSS), C. rodentium-infected (CT), and DSS-treated and C. rodentium-infected (DSS-CT) mice. The DSS group was administered 1% DSS in drinking water for 7 days. The CT group was supplied with normal drinking water for 7 days and subsequently infected with C. rodentium via oral gavage. The DSS-CT group was supplied with 1% DSS in drinking water for 7 days and subsequently infected with C. rodentium via oral gavage. The mice were sacrificed 10 days after the induction of C. rodentium infection. The DSS-CT group displayed significantly shorter colon length, higher spleen to body weight ratio, and higher histopathological score compared to the other three groups. The mRNA expression levels of tumor necrosis factor (TNF)-α and interferon (INF)-γ were significantly upregulated; however, those of interleukin (IL)-6 and IL-10 were significantly downregulated in the DSS-CT group than in the control group. These results demonstrated that a combination of low DSS concentration (1%) and C. rodentium infection could effectively induce inflammatory bowel disease (IBD) in mice. This may potentially be used as a novel IBD model, in which colitis is induced in mice by the combination of a chemical and a pathogen.  相似文献   

8.
Inflammatory bowel diseases (IBD) have become highly prevalent in developed countries. Environmentally triggered exaggerated immune responses against the intestinal microbiome are thought to mediate the disorders. The potential dietary origins of the disease group have been implicated. However, the effects of environmental influences on prenatal developmental programming in respect to orchestrating postnatal microbiome composition and predilection towards mammalian colitis have not been examined. We tested how transient prenatal exposure to methyl donor micronutrient (MD) supplemented diets may impact predilection towards IBD in a murine dextran sulfate sodium (DSS) colitis model. Prenatal MD supplementation was sufficient to modulate colonic mucosal Ppara expression (3.2 fold increase; p=0.022) and worsen DSS colitis in young adulthood. The prenatal dietary exposure shifted the postnatal colonic mucosal and cecal content microbiomes. Transfer of the gut microbiome from prenatally MD supplemented young adult animals into germ free mice resulted in increased colitis susceptibility in the recipients compared to controls. Therefore, the prenatal dietary intervention induced the postnatal nurturing of a colitogenic microbiome. Our results show that prenatal nutritional programming can modulate the mammalian host to harbor a colitogenic microbiome. These findings may be relevant for the nutritional developmental origins of IBD.  相似文献   

9.
BackgroundInflammatory bowel disease (IBD) is an autoimmune disease. The pathogenesis of IBD is complicated and intestinal mucosal barrier damage is considered as the trigger factor for the initiation and recurrence of IBD. Total Glucosides of Paeony (TGP) has shown good inhibitory effects on immune-inflammation in clinic studies. However, its effect and mechanism on IBD are largely unknown.PurposeThe purpose of this study is to evaluate the effect and mechanism of TGP on IBD.Study designDSS-induced colitis mouse model was used. TGP was given by gavage. Caco-2 cells were stimulated by outer membrane vesicles (OMV) to establish an in vitro model.MethodsC57BL/6 mice were divided into normal control group, model group, mesalazine group, paeoniflorin (PA) group, high-dose group of TGP, and low-dose group of TGP. The model was induced with 2.5% DSS for 7 days, and TGP was intragastrically administered for 10 days. The therapeutic effect of TGP was evaluated by symptoms, histochemical analysis, RT-qPCR and ELISA. The mechanism was explored by intestinal permeability, Western blot and immunofluorescence in vivo and in vitro.ResultsOur results showed that TGP could significantly improve the symptoms and pathological changes, with reduced levels of TNF-α, IL-17A, IL-23 and IFN-γ in the colon tissues and serum under a dose-dependent manner. TGP also reduced the intestinal permeability and restored the protein expression of tight junction and adherens junction proteins of intestinal epithelial cells in vivo and in vitro. Furthermore, TGP could inhibit the expression of p-Lyn and Snail and prevent Snail nuclear localization, thereby maintaining tight and adherens junctions.ConclusionTGP effectively improves the symptoms of DSS-induced colitis in mice, protects the intestinal epithelial barrier by inhibiting the Lyn/Snail signaling pathway, and maybe a promise therapeutic agent for IBD treatment.  相似文献   

10.

Background

Inflammatory bowel disease (IBD) therapies are modestly successful and associated with significant side effects. Thus, the investigation of novel approaches to prevent colitis is important. Probiotic bacteria can produce immunoregulatory metabolites in vitro such as conjugated linoleic acid (CLA), a polyunsaturated fatty acid with potent anti-inflammatory effects. This study aimed to investigate the cellular and molecular mechanisms underlying the anti-inflammatory efficacy of probiotic bacteria using a mouse model of colitis.

Methodology/Principal Findings

The immune modulatory mechanisms of VSL#3 probiotic bacteria and CLA were investigated in a mouse model of DSS colitis. Colonic specimens were collected for histopathology, gene expression and flow cytometry analyses. Immune cell subsets in the mesenteric lymph nodes (MLN), spleen, blood and colonic lamina propria cells were phenotypically and functionally characterized. Fecal samples and colonic contents were collected to determine the effect of VSL#3 and CLA on gut microbial diversity and CLA production. CLA and VSL#3 treatment ameliorated colitis and decreased colonic bacterial diversity, a finding that correlated with decreased gut pathology. Colonic CLA concentrations were increased in response to probiotic bacterial treatment, but without systemic distribution in blood. VSL#3 and CLA decreased macrophage accumulation in the MLN of mice with DSS colitis. The loss of PPAR γ in myeloid cells abrogated the protective effect of probiotic bacteria and CLA in mice with DSS colitis.

Conclusions/Significance

Probiotic bacteria modulate gut microbial diversity and favor local production of CLA in the colon that targets myeloid cell PPAR γ to suppress colitis.  相似文献   

11.
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the gastrointestinal tract. It is unknown whether β-1,3;1,6-glucan can induce immune suppressive effects. Here, we study intestinal anti-inflammatory activity of Lentinula edodes-derived β-1,3;1,6-glucan, which is known as lentinan. Dextran sulfate sodium (DSS)-induced colitis mice were used to elucidate effects of lentinan in vivo. In the cellular level assessment, lentinan was added into a co-culture model consisting of intestinal epithelial Caco-2 cells and LPS-stimulated macrophage RAW264.7 cells. Ligated intestinal loop assay was performed for assessing effects of lentinan on intestinal epithelial cells (IECs) in vivo. Oral administration of lentinan (100 µg/mouse) significantly ameliorated DSS-induced colitis in body weight loss, shortening of colon lengths, histological score, and inflammatory cytokine mRNA expression in inflamed tissues. Lentinan reduced interleukin (IL)-8 mRNA expression and nuclear factor (NF)-κB activation in Caco-2 cells without decreasing of tumor necrosis factor (TNF)-α production from RAW264.7 cells. Flow cytometric analysis revealed that surface levels of TNF receptor (TNFR) 1 were decreased by lentinan treatment. A clathrin-mediated endocytosis inhibitor, monodansylcadaverine, canceled lentinan inhibition of IL-8 mRNA expression. Moreover, lentinan inhibited TNFR1 expression in Caco-2 cells in both protein and mRNA level. Lentinan also inhibited TNFR1 mRNA expression in mouse IECs. These results suggest that lentinan exhibits intestinal anti-inflammatory activity through inhibition of IL-8 mRNA expression associated with the inhibition of NF-κB activation which is triggered by TNFR1 endocytosis and lowering of their expression in IECs. Lentinan may be effective for the treatment of gut inflammation including IBD.  相似文献   

12.
13.
Several probiotic bacteria have been proposed for treatment or prevention of inflammatory bowel diseases (IBD), showing a protective effect in animal models of experimental colitis and for some of them also in human clinical trials. While most of these probiotic bacteria are isolated from the digestive tract, we recently reported that a Lactobacillus strain isolated from cheese, L. delbrueckii subsp. lactis CNRZ327 (Lb CNRZ327), also possesses anti-inflammatory effects in vitro and in vivo, demonstrating that common dairy bacteria may be useful in the treatment or prevention of IBD. Here, we studied the mechanisms underlying the protective effects of Lb CNRZ327 in vivo, in a mouse dextran sodium sulfate (DSS) colitis model. During colitis, Lb CNRZ327 modulated the production of TGF-β, IL-6, and IL-12 in colonic tissue and of TGF-β and IL-6 in the spleen, and caused an expansion of CD4+Foxp3+ regulatory T cells in the cecal lymph nodes. Moreover, a strong tendency to CD4+Foxp3+ expansion was also observed in the spleen. The results of this study for the first time show that orally administered dairy lactobacilli can not only modulate mucosal but also systemic immune responses and constitute an effective treatment of IBD.  相似文献   

14.
Conventional therapies for the treatment of inflammatory bowel disease (IBD) have demonstrated limited efficacy and potential toxicity; therefore, there is a need for novel therapies that can safely and effectively treat IBD. Recent evidence has indicated that amino acids may play a role in maintaining gut health. l-Tryptophan has been shown to reduce oxidative stress and improve neurological states. The objective of this study was to assess the therapeutic effects of l-tryptophan in a porcine model of dextran sodium sulfate (DSS)-induced colitis. DSS was administered to piglets via intragastric catheter for 5 days followed by tryptophan administration at 80% of the daily recommended intake. The severity of colitis was assessed macroscopically and histopathologically, and intestinal permeability was monitored in vivo by d-mannitol analysis. The effect of tryptophan on the local expression of key mediators of inflammation and IBD pathogenesis was examined at the protein and gene expression levels. Supplementation with tryptophan ameliorated clinical symptoms and improved weight gain to feed intake conversion ratios. Histological scores and measurements were also improved, and gut permeability was notably reduced in tryptophan-supplemented animals. Moreover, tryptophan reduced the expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, interferon (IFN)-γ, IL-12p40, IL-1β and IL-17, as well as IL-8 and intracellular adhesion molecule-1, and resulted in increased expression of apoptosis initiators caspase-8 and Bax. These results demonstrate that l-tryptophan supplementation can reduce inflammation and enhance the rate of recovery in DSS-induced colitis and may be an effective immunomodulating agent for the treatment of IBD.  相似文献   

15.
A decrease in the abundance and biodiversity of intestinal bacteria within the Firmicutes phylum has been associated with inflammatory bowel disease (IBD). In particular, the anti-inflammatory bacterium Faecalibacterium prausnitzii, member of the Firmicutes phylum and one of the most abundant species in healthy human colon, is underrepresented in the microbiota of IBD patients. The aim of this study was to investigate the immunomodulatory properties of F. prausnitzii strain A2-165, the biofilm forming strain HTF-F and the extracellular polymeric matrix (EPM) isolated from strain HTF-F. For this purpose, the immunomodulatory properties of the F. prausnitzii strains and the EPM were studied in vitro using human monocyte-derived dendritic cells. Then, the capacity of the F. prausnitzii strains and the EPM of HTF-F to suppress inflammation was assessed in vivo in the mouse dextran sodium sulphate (DSS) colitis model. The F. prausnitzii strains and the EPM had anti-inflammatory effects on the clinical parameters measured in the DSS model but with different efficacy. The immunomodulatory effects of the EPM were mediated through the TLR2-dependent modulation of IL-12 and IL-10 cytokine production in antigen presenting cells, suggesting that it contributes to the anti-inflammatory potency of F. prausnitzii HTF-F. The results show that F. prausnitzii HTF-F and its EPM may have a therapeutic use in IBD.  相似文献   

16.
BackgroundMosla chinensis Maxim. cv. Jiangxiangru (JXR), a traditional Chinese medicine, commonly used for the therapy of cold, fever, diarrhea, digestive disorders, and other diseases. Inflammatory bowel disease (IBD) is a chronic disorder of the human gastrointestinal tract. Research about the effect of JXR on IBD and the active ingredient composition of JXR remains deficiency.PurposeThis study aims to determine the phytochemical composition and the anti-inflammatory property of JXR, as well as the possible anti-inflammatory mechanisms.MethodsThe bioactive profile of JXR extracts was determined by UPLC-LTQ-Orbitrap-MS. A DSS induced colitis mouse model was applied to explore the anti-inflammatory activity of JXR. The body weight, colon length and histopathological status of colon tissue were evaluated. The content of inflammatory mediators (nitric oxide (NO), prostaglandin E2 (PGE2)) and cytokines (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β)), corresponding mRNA and protein expression levels were analyzed. Oxidation pressure and gut microbial composition were also explored.ResultsTotally 63 constitutes were identified from JXR, among them, phenolic acids and flavonoids comprised a large part, and rosmarinic acid (RA) was the main compound. The results of DSS-induced colitis mice model indicated that JXR effectively ameliorated inflammation, restore the redox balance in the gut. JXR treatment significantly reduced the production of reactive oxygen species (ROS), increased the activity of antioxidative enzyme, suppressed the secretion of inflammatory mediators (NO, PGE2) and cytokines (TNF-α, IL-6, IL-1β). JXR also restrained the activation of mitogen-activated protein kinases (MAPKs) signaling pathway. Furthermore, JXR could restore the microbial diversity by suppressing Bacteroidaceae, increasing Bifidobacteriales and Melainabacteria in DSS colitis mouse model.ConclusionsThis study demonstrated that JXR composed with various bioactive compounds, effectively ameliorated colitis, restored the redox balance and regulated gut microbiota. Results from the present study provide an insight of therapeutic potential of JXR in IBD based on its anti-inflammatory and antioxidant properties, also provide a scientific basis for using JXR as a functional ingredient to promote colon health.  相似文献   

17.

Background

To investigate the function of the intestinal Vdr gene in inflammatory bowel disease (IBD), in conjunction with the discovery of possible metabolic markers for IBD using intestine-specific Vdr knockout mice.

Methods

VdrΔIEpC mice were generated, phenotyped and treated with a time-course of 3% dextran sulfate sodium (DSS) to induce colitis. Colitis was diagnosed by evaluating clinical symptoms and intestinal histopathology. Gene expression analysis was carried out. In addition, metabolic markers of IBD were explored by metabolomics.

Results

VdrΔIEpC mice showed abnormal body size, colon structures and feces color. Calcium, collagen, and intestinal proliferation-related gene expression were all decreased, and serum alkaline phosphatase was highly increased. In the acute model which was treated with 3% DSS for six days, VdrΔIEpC mice showed a high score of IBD symptoms; enlarged mucosal layer and damaged muscularis layer. In the recovery experiment model, where mice were treated with 3% DSS for four days and water for three days, VdrΔIEpC mice showed a high score of IBD symptoms; severe damage of mucosal layer and increased expression of genes encoding proinflammatory cytokines. Feces metabolomics revealed decreased concentrations of taurine, taurocholic acid, taurodeoxycholic acid and cholic acid in VdrΔIEpC mice.

Conclusions

Disruption of the intestinal Vdr gene showed phenotypical changes that may exacerbate IBD. These results suggest that VDR may play an important role in IBD.General significanceVDR function has been implicated in IBD. This is of value for understanding the etiology of IBD and for development of diagnostic biomarkers for IBD.  相似文献   

18.
Inflammatory bowel disease (IBD) is a continual ailment condition which engrosses the entire alimentary canal. The IBD can be primarily distinguished into two forms, ulcerative colitis, and Crohn's disease. The major symptoms of IBD include pustules or abscesses, severe abdominal pain, diarrhea, fistula, and stenosis, which may directly affect the patient's quality of life. A variety of mediators can stimulate the circumstances of IBD, some examples include infections by microbes such as bacteria, perturbation of the immune system and the surrounding environment of the intestines. Severe colitis was stimulated in the experimental animals through administering 4% dextran sulfate sodium (DSS) which is mixed in water ad libitum for 6 days. Eriocitrin (30 mg/kg) was then administered to the experimental animals followed by the induction of severe colitis to evaluate the therapeutic prospective of eriocitrin against the colon inflammation stimulated by DSS. In this study, eriocitrin (30 mg/kg) demonstrated significant (P < .05) attenuation activity against the DSS‐stimulated severe colitis in experimental animals. Eriocitrin counteracted all of the clinical deleterious effects induced by DSS, such as body‐weight loss, colon shortening, histopathological injury, accretion of infiltrated inflammatory cells at the inflamed region and the secretion of inflammatory cytokines. The results clearly showed that eriocitrin effectively attenuated DSS‐induced acute colitis in experimental animals.  相似文献   

19.

Background

There have been conflicting reports of the role of Type I interferons (IFN) in inflammatory bowel disease (IBD). Clinical trials have shown potent efficacy of systemic interferon-beta (IFN-β) in inducing remission of ulcerative colitis. Likewise, IFNAR1−/− mice display an increased sensitivity to dextran sulfate sodium (DSS)-induced colitis, suggesting Type I IFN play a protective role during inflammation of the gut. Curiously, however, there have also been reports detailing the spontaneous development of IBD in patients receiving systemic IFN-β therapy for multiple sclerosis or hepatitis.

Methodology/Principal Findings

To investigate the effects of local administration of IFN-β on a murine model of colitis, we developed a transgenic Lactobacillus acidophilus strain that constitutively expresses IFN-β (La-IFN-β). While pretreatment of mice with control Lactobacillus (La-EV) provided slight protective benefits, La-IFN-β increased sensitivity to DSS. Analysis showed colitic mice pretreated with La-IFN-β had increased production of TNF-α, IFN-γ, IL-17A and IL-13 by intestinal tissues and decreased regulatory T cells (Tregs) in their small intestine. Examination of CD103+ dendritic cells (DCs) in the Peyer''s patches revealed that IFNAR1 expression was dramatically reduced by La-IFN-β. Similarly, bone marrow-derived DCs matured with La-IFN-β experienced a 3-fold reduction of IFNAR1 and were impaired in their ability to induce Tregs.

Conclusions/Significance

Our IFNAR1 expression data identifies a correlation between the loss/downregulation of IFNAR1 on DCs and exacerbation of colitis. Our data show that Lactobacillus secreting IFN-β has an immunological effect that in our model results in the exacerbation of colitis. This study underscores that the selection of therapeutics delivered by a bacterial vehicle must take into consideration the simultaneous effects of the vehicle itself.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号