首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2''‐O‐ribose cap needed for viral immune escape. We find that the host cap 2''‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.  相似文献   

3.
Protein phosphatase 2A (PP2A) is an abundant phosphoprotein phosphatase that acts as a tumor suppressor. For this reason, compounds able to activate PP2A are attractive anticancer agents. The compounds iHAP1 and DT‐061 have recently been reported to selectively stabilize specific PP2A‐B56 complexes to mediate cell killing. We were unable to detect direct effects of iHAP1 and DT‐061 on PP2A‐B56 activity in biochemical assays and composition of holoenzymes. Therefore, we undertook genome‐wide CRISPR‐Cas9 synthetic lethality screens to uncover biological pathways affected by these compounds. We found that knockout of mitotic regulators is synthetic lethal with iHAP1 while knockout of endoplasmic reticulum (ER) and Golgi components is synthetic lethal with DT‐061. Indeed we showed that iHAP1 directly blocks microtubule assembly both in vitro and in vivo and thus acts as a microtubule poison. In contrast, DT‐061 disrupts both the Golgi apparatus and the ER and lipid synthesis associated with these structures. Our work provides insight into the biological pathways perturbed by iHAP1 and DT‐061 causing cellular toxicity and argues that these compounds cannot be used for dissecting PP2A‐B56 biology.  相似文献   

4.
Parkinson''s disease‐related proteins, PINK1 and Parkin, act in a common pathway to maintain mitochondrial quality control. While the PINK1‐Parkin pathway can promote autophagic mitochondrial turnover (mitophagy) following mitochondrial toxification in cell culture, alternative quality control pathways are suggested. To analyse the mechanisms by which the PINK1–Parkin pathway operates in vivo, we developed methods to detect Ser65‐phosphorylated ubiquitin (pS65‐Ub) in Drosophila. Exposure to the oxidant paraquat led to robust, Pink1‐dependent pS65‐Ub production, while pS65‐Ub accumulates in unstimulated parkin‐null flies, consistent with blocked degradation. Additionally, we show that pS65‐Ub specifically accumulates on disrupted mitochondria in vivo. Depletion of the core autophagy proteins Atg1, Atg5 and Atg8a did not cause pS65‐Ub accumulation to the same extent as loss of parkin, and overexpression of parkin promoted turnover of both basal and paraquat‐induced pS65‐Ub in an Atg5‐null background. Thus, we have established that pS65‐Ub immunodetection can be used to analyse Pink1‐Parkin function in vivo as an alternative to reporter constructs. Moreover, our findings suggest that the Pink1‐Parkin pathway can promote mitochondrial turnover independently of canonical autophagy in vivo.  相似文献   

5.
Axon formation critically relies on local microtubule remodeling and marks the first step in establishing neuronal polarity. However, the function of the microtubule‐organizing centrosomes during the onset of axon formation is still under debate. Here, we demonstrate that centrosomes play an essential role in controlling axon formation in human‐induced pluripotent stem cell (iPSC)‐derived neurons. Depleting centrioles, the core components of centrosomes, in unpolarized human neuronal stem cells results in various axon developmental defects at later stages, including immature action potential firing, mislocalization of axonal microtubule‐associated Trim46 proteins, suppressed expression of growth cone proteins, and affected growth cone morphologies. Live‐cell imaging of microtubules reveals that centriole loss impairs axonal microtubule reorganization toward the unique parallel plus‐end out microtubule bundles during early development. We propose that centrosomes mediate microtubule remodeling during early axon development in human iPSC‐derived neurons, thereby laying the foundation for further axon development and function.  相似文献   

6.
In vitro studies conducted in Aplysia and chick sensory neurons indicate that in addition to microtubule assembly, long microtubules in the C-domain of the growth cone move forward as a coherent bundle during axonal elongation. Nonetheless, whether this mode of microtubule translocation contributes to growth cone motility in vivo is unknown. To address this question, we turned to the model system Drosophila. Using docked mitochondria as fiduciary markers for the translocation of long microtubules, we first examined motion along the axon to test if the pattern of axonal elongation is conserved between Drosophila and other species in vitro. When Drosophila neurons were cultured on Drosophila extracellular matrix proteins collected from the Drosophila Kc167 cell line, docked mitochondria moved in a pattern indicative of bulk microtubule translocation, similar to that observed in chick sensory neurons grown on laminin. To investigate whether the C-domain is stationary or advances in vivo, we tracked the movement of mitochondria during elongation of the aCC motor neuron in stage 16 Drosophila embryos. We found docked mitochondria moved forward along the axon shaft and in the growth cone C-domain. This work confirms that the physical mechanism of growth cone advance is similar between Drosophila and vertebrate neurons and suggests forward translocation of the microtubule meshwork in the axon underlies the advance of the growth cone C-domain in vivo. These results highlight the need for incorporating en masse microtubule translocation, in addition to assembly, into models of axonal elongation.  相似文献   

7.
Kinetochores form the link between chromosomes and microtubules of the mitotic spindle. The heterodecameric Dam1 complex (Dam1c) is a major component of the Saccharomyces cerevisiae outer kinetochore, assembling into 3 MDa‐sized microtubule‐embracing rings, but how ring assembly is specifically initiated in vivo remains to be understood. Here, we describe a molecular pathway that provides local control of ring assembly during the establishment of sister kinetochore bi‐orientation. We show that Dam1c and the general microtubule plus end‐associated protein (+TIP) Bim1/EB1 form a stable complex depending on a conserved motif in the Duo1 subunit of Dam1c. EM analyses reveal that Bim1 crosslinks protrusion domains of adjacent Dam1c heterodecamers and promotes the formation of oligomers with defined curvature. Disruption of the Dam1c‐Bim1 interaction impairs kinetochore localization of Dam1c in metaphase and delays mitosis. Phosphorylation promotes Dam1c‐Bim1 binding by relieving an intramolecular inhibition of the Dam1 C‐terminus. In addition, Bim1 recruits Bik1/CLIP‐170 to Dam1c and induces formation of full rings even in the absence of microtubules. Our data help to explain how new kinetochore end‐on attachments are formed during the process of attachment error correction.  相似文献   

8.
Enteric hyperoxaluria (EH) is a metabolic disease caused by excessive absorption of dietary oxalate leading to the formation of chronic kidney stones and kidney failure. There are no approved pharmaceutical treatments for EH. SYNB8802 is an engineered bacterial therapeutic designed to consume oxalate in the gut and lower urinary oxalate as a potential treatment for EH. Oral administration of SYNB8802 leads to significantly decreased urinary oxalate excretion in healthy mice and non‐human primates, demonstrating the strain''s ability to consume oxalate in vivo. A mathematical modeling framework was constructed that combines in vitro and in vivo preclinical data to predict the effects of SYNB8802 administration on urinary oxalate excretion in humans. Simulations of SYNB8802 administration predict a clinically meaningful lowering of urinary oxalate excretion in healthy volunteers and EH patients. Together, these findings suggest that SYNB8802 is a promising treatment for EH.  相似文献   

9.
Flowering plants contain a large number of cyclin families, each containing multiple members, most of which have not been characterized to date. Here, we analyzed the role of the B1 subclass of mitotic cyclins in cell cycle control during Arabidopsis development. While we reveal CYCB1;5 to be a pseudogene, the remaining four members were found to be expressed in dividing cells. Mutant analyses showed a complex pattern of overlapping, development‐specific requirements of B1‐type cyclins with CYCB1;2 playing a central role. The double mutant cycb1;1 cycb1;2 is severely compromised in growth, yet viable beyond the seedling stage, hence representing a unique opportunity to study the function of B1‐type cyclin activity at the organismic level. Immunolocalization of microtubules in cycb1;1 cycb1;2 and treating mutants with the microtubule drug oryzalin revealed a key role of B1‐type cyclins in orchestrating mitotic microtubule networks. Subsequently, we identified the GAMMA‐TUBULIN COMPLEX PROTEIN 3‐INTERACTING PROTEIN 1 (GIP1/MOZART) as an in vitro substrate of B1‐type cyclin complexes and further genetic analyses support a potential role in the regulation of GIP1 by CYCB1s.  相似文献   

10.
Adipose stem and precursor cells (ASPCs) give rise to adipocytes and determine the composition and plasticity of adipose tissue. Recently, several studies have demonstrated that ASPCs partition into at least three distinct cell subpopulations, including the enigmatic CD142+ cells. An outstanding challenge is to functionally characterise this population, as discrepant properties, from adipogenic to non‐ and anti‐adipogenic, have been reported for these cells. To resolve these phenotypic ambiguities, we characterised mammalian subcutaneous CD142+ ASPCs across various experimental conditions, demonstrating that CD142+ ASPCs exhibit high molecular and phenotypic robustness. Specifically, we find these cells to be firmly non‐ and anti‐adipogenic both in vitro and in vivo, with their inhibitory signals also impacting adipogenic human cells. However, these CD142+ ASPC‐specific properties exhibit surprising temporal phenotypic alterations, and emerge only in an age‐dependent manner. Finally, using multi‐omic and functional assays, we show that the inhibitory nature of these adipogenesis‐regulatory CD142+ ASPCs (Aregs) is driven by specifically expressed secretory factors that cooperate with the retinoic acid signalling pathway to transform the adipogenic state of CD142 ASPCs into a non‐adipogenic, Areg‐like state.  相似文献   

11.
Coordinated control of the growth cone cytoskeleton underlies axon extension and guidance. Members of the collapsin response mediator protein (CRMP) family of cytosolic phosphoproteins regulate the microtubule and actin cytoskeleton, but their roles in regulating growth cone dynamics remain largely unexplored. Here, we examine how CRMP4 regulates the growth cone cytoskeleton. Hippocampal neurons from CRMP4−/− mice exhibited a selective decrease in axon extension and reduced growth cone area, whereas overexpression of CRMP4 enhanced the formation and length of growth cone filopodia. Biochemically, CRMP4 can impact both microtubule assembly and F-actin bundling in vitro. Through a structure function analysis of CRMP4, we found that the effects of CRMP4 on axon growth and growth cone morphology were dependent on microtubule assembly, whereas filopodial extension relied on actin bundling. Intriguingly, anterograde movement of EB3 comets, which track microtubule protrusion, slowed significantly in neurons derived from CRMP4−/− mice, and rescue of microtubule dynamics required CRMP4 activity toward both the actin and microtubule cytoskeleton. Together, this study identified a dual role for CRMP4 in regulating the actin and microtubule growth cone cytoskeleton.  相似文献   

12.
Formin family actin nucleators are potential coordinators of the actin and microtubule cytoskeletons, as they can both nucleate actin filaments and bind microtubules in vitro. To gain a more detailed mechanistic understanding of formin-microtubule interactions and formin-mediated actin-microtubule cross-talk, we studied microtubule binding by Cappuccino (Capu), a formin involved in regulating actin and microtubule organization during Drosophila oogenesis. We found that two distinct domains within Capu, FH2 and tail, work together to promote high-affinity microtubule binding. The tail domain appears to bind microtubules through nonspecific charge-based interactions. In contrast, distinct residues within the FH2 domain are important for microtubule binding. We also report the first visualization of a formin polymerizing actin filaments in the presence of microtubules. Interestingly, microtubules are potent inhibitors of the actin nucleation activity of Capu but appear to have little effect on Capu once it is bound to the barbed end of an elongating filament. Because Capu does not simultaneously bind microtubules and assemble actin filaments in vitro, its actin assembly and microtubule binding activities likely require spatial and/or temporal regulation within the Drosophila oocyte.  相似文献   

13.
LincRNA‐EPS is an important regulator in inflammation. However, the role of lincRNA‐EPS in the host response against viral infection is unexplored. Here, we show that lincRNA‐EPS is downregulated in macrophages infected with different viruses including VSV, SeV, and HSV‐1. Overexpression of lincRNA‐EPS facilitates viral infection, while deficiency of lincRNA‐EPS protects the host against viral infection in vitro and in vivo. LincRNA‐EPS −/− macrophages show elevated expression of antiviral interferon‐stimulated genes (ISGs) such as Mx1, Oas2, and Ifit2 at both basal and inducible levels. However, IFN‐β, the key upstream inducer of these ISGs, is downregulated in lincRNA‐EPS −/− macrophages compared with control cells. RNA pulldown and mass spectrometry results indicate that lincRNA‐EPS binds to PKR and antagonizes the viral RNA–PKR interaction. PKR activates STAT1 and induces antiviral ISGs independent of IFN‐I induction. LincRNA‐EPS inhibits PKR‐STAT1‐ISGs signaling and thus facilitates viral infection. Our study outlines an alternative antiviral pathway, with downregulation of lincRNA‐EPS promoting the induction of PKR‐STAT1‐dependent ISGs, and reveals a potential therapeutic target for viral infectious diseases.  相似文献   

14.
Mechanical inputs give rise to p38 and JNK activation, which mediate adaptive physiological responses in various tissues. In skeletal muscle, contraction‐induced p38 and JNK signaling ensure adaptation to exercise, muscle repair, and hypertrophy. However, the mechanisms by which muscle fibers sense mechanical load to activate this signaling have remained elusive. Here, we show that the upstream MAP3K ZAKβ is activated by cellular compression induced by osmotic shock and cyclic compression in vitro, and muscle contraction in vivo. This function relies on ZAKβ''s ability to recognize stress fibers in cells and Z‐discs in muscle fibers when mechanically perturbed. Consequently, ZAK‐deficient mice present with skeletal muscle defects characterized by fibers with centralized nuclei and progressive adaptation towards a slower myosin profile. Our results highlight how cells in general respond to mechanical compressive load and how mechanical forces generated during muscle contraction are translated into MAP kinase signaling.  相似文献   

15.
Dendritic cell (DC) activation by viral RNA sensors such as TLR3 and MDA‐5 is critical for initiating antiviral immunity. Optimal DC activation is promoted by type I interferon (IFN) signaling which is believed to occur in either autocrine or paracrine fashion. Here, we show that neither autocrine nor paracrine type I IFN signaling can fully account for DC activation by poly(I:C) in vitro and in vivo. By controlling the density of type I IFN‐producing cells in vivo, we establish that instead a quorum of type I IFN‐producing cells is required for optimal DC activation and that this process proceeds at the level of an entire lymph node. This collective behavior, governed by type I IFN diffusion, is favored by the requirement for prolonged cytokine exposure to achieve DC activation. Furthermore, collective DC activation was found essential for the development of innate and adaptive immunity in lymph nodes. Our results establish how collective rather than cell‐autonomous processes can govern the initiation of immune responses.  相似文献   

16.
Regulation of microtubule dynamics in neurons is critical, as defects in the microtubule-based transport of axonal organelles lead to neurodegenerative disease. The microtubule motor cytoplasmic dynein and its partner complex dynactin drive retrograde transport from the distal axon. We have recently shown that the p150Glued subunit of dynactin promotes the initiation of dynein-driven cargo motility from the microtubule plus-end. Because plus end-localized microtubule-associated proteins like p150Glued may also modulate the dynamics of microtubules, we hypothesized that p150Glued might promote cargo initiation by stabilizing the microtubule track. Here, we demonstrate in vitro using assembly assays and TIRF microscopy, and in primary neurons using live-cell imaging, that p150Glued is a potent anti-catastrophe factor for microtubules. p150Glued alters microtubule dynamics by binding both to microtubules and to tubulin dimers; both the N-terminal CAP-Gly and basic domains of p150Glued are required in tandem for this activity. p150Glued is alternatively spliced in vivo, with the full-length isoform including these two domains expressed primarily in neurons. Accordingly, we find that RNAi of p150Glued in nonpolarized cells does not alter microtubule dynamics, while depletion of p150Glued in neurons leads to a dramatic increase in microtubule catastrophe. Strikingly, a mutation in p150Glued causal for the lethal neurodegenerative disorder Perry syndrome abrogates this anti-catastrophe activity. Thus, we find that dynactin has multiple functions in neurons, both activating dynein-mediated retrograde axonal transport and enhancing microtubule stability through a novel anti-catastrophe mechanism regulated by tissue-specific isoform expression; disruption of either or both of these functions may contribute to neurodegenerative disease.  相似文献   

17.
Mammalian cells utilize Akt‐dependent signaling to deploy intracellular Glut4 toward cell surface to facilitate glucose uptake. Low‐density lipoprotein receptor (LDLR) is the cargo receptor mediating endocytosis of apolipoprotein B‐containing lipoproteins. However, signaling‐controlled regulation of intracellular LDLR trafficking remains elusive. Here, we describe a unique amino acid stress response, which directs the deployment of intracellular LDLRs, causing enhanced LDL endocytosis, likely via Ca2+ and calcium/calmodulin‐dependent protein kinase II‐mediated signalings. This response is independent of induction of autophagy. Amino acid stress‐induced increase in LDL uptake in vitro is comparable to that by pravastatin. In vivo, acute AAS challenge for up to 72 h enhanced the rate of hepatic LDL uptake without changing the total expression level of LDLR. Reducing dietary amino acids by 50% for 2 to 4 weeks ameliorated high fat diet‐induced hypercholesterolemia in heterozygous LDLR‐deficient mice, with reductions in both LDL and VLDL fractions. We suggest that identification of signaling‐controlled regulation of intracellular LDLR trafficking has advanced our understanding of the LDLR biology, and may benefit future development of additional therapeutic strategies for treating hypercholesterolemia.  相似文献   

18.
Axon specification during neuronal polarization is closely associated with increased microtubule stabilization in one of the neurites of unpolarized neuron, but how this increased microtubule stability is achieved is unclear. Here, we show that extracellular matrix (ECM) component laminin promotes neuronal polarization via regulating directional microtubule assembly through β1 integrin (Itgb1). Contact with laminin coated on culture substrate or polystyrene beads was sufficient for axon specification of undifferentiated neurites in cultured hippocampal neurons and cortical slices. Active Itgb1 was found to be concentrated in laminin-contacting neurites. Axon formation was promoted and abolished by enhancing and attenuating Itgb1 signaling, respectively. Interestingly, laminin contact promoted plus-end microtubule assembly in a manner that required Itgb1. Moreover, stabilizing microtubules partially prevented polarization defects caused by Itgb1 downregulation. Finally, genetic ablation of Itgb1 in dorsal telencephalic progenitors caused deficits in axon development of cortical pyramidal neurons. Thus, laminin/Itgb1 signaling plays an instructive role in axon initiation and growth, both in vitro and in vivo, through the regulation of microtubule assembly. This study has established a linkage between an extrinsic factor and intrinsic cytoskeletal dynamics during neuronal polarization.  相似文献   

19.
Oxygen plays an important role in diverse biological processes. However, since quantitation of the partial pressure of cellular oxygen in vivo is challenging, the extent of oxygen perturbation in situ and its cellular response remains underexplored. Using two‐photon phosphorescence lifetime imaging microscopy, we determine the physiological range of oxygen tension in osteoclasts of live mice. We find that oxygen tension ranges from 17.4 to 36.4 mmHg, under hypoxic and normoxic conditions, respectively. Physiological normoxia thus corresponds to 5% and hypoxia to 2% oxygen in osteoclasts. Hypoxia in this range severely limits osteoclastogenesis, independent of energy metabolism and hypoxia‐inducible factor activity. We observe that hypoxia decreases ten‐eleven translocation (TET) activity. Tet2/3 cooperatively induces Prdm1 expression via oxygen‐dependent DNA demethylation, which in turn activates NFATc1 required for osteoclastogenesis. Taken together, our results reveal that TET enzymes, acting as functional oxygen sensors, regulate osteoclastogenesis within the physiological range of oxygen tension, thus opening new avenues for research on in vivo response to oxygen perturbation.  相似文献   

20.
Alternative splicing of pre‐mRNAs can regulate gene expression levels by coupling with nonsense‐mediated mRNA decay (NMD). In order to elucidate a repertoire of mRNAs regulated by alternative splicing coupled with NMD (AS‐NMD) in an organism, we performed long‐read RNA sequencing of poly(A)+ RNAs from an NMD‐deficient mutant strain of Caenorhabditis elegans, and obtained full‐length sequences for mRNA isoforms from 259 high‐confidence AS‐NMD genes. Among them are the S‐adenosyl‐L‐methionine (SAM) synthetase (sams) genes sams‐3 and sams‐4. SAM synthetase activity autoregulates sams gene expression through AS‐NMD in a negative feedback loop. We furthermore find that METT‐10, the orthologue of human U6 snRNA methyltransferase METTL16, is required for the splicing regulation in␣vivo, and specifically methylates the invariant AG dinucleotide at the distal 3′ splice site (3′SS) in␣vitro. Direct RNA sequencing coupled with machine learning confirms m6A modification of endogenous sams mRNAs. Overall, these results indicate that homeostasis of SAM synthetase in C. elegans is maintained by alternative splicing regulation through m6A modification at the 3′SS of the sams genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号