首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

New approaches are needed for large-scale predictive modeling of cellular signaling networks. While mass action and enzyme kinetic approaches require extensive biochemical data, current logic-based approaches are used primarily for qualitative predictions and have lacked direct quantitative comparison with biochemical models.  相似文献   

2.

Background  

Systematic approaches for identifying proteins involved in different types of cancer are needed. Experimental techniques such as microarrays are being used to characterize cancer, but validating their results can be a laborious task. Computational approaches are used to prioritize between genes putatively involved in cancer, usually based on further analyzing experimental data.  相似文献   

3.
Statistical analysis of real-time PCR data   总被引:1,自引:0,他引:1  

Background  

Even though real-time PCR has been broadly applied in biomedical sciences, data processing procedures for the analysis of quantitative real-time PCR are still lacking; specifically in the realm of appropriate statistical treatment. Confidence interval and statistical significance considerations are not explicit in many of the current data analysis approaches. Based on the standard curve method and other useful data analysis methods, we present and compare four statistical approaches and models for the analysis of real-time PCR data.  相似文献   

4.

Background  

Multivariate ordination methods are powerful tools for the exploration of complex data structures present in microarray data. These methods have several advantages compared to common gene-by-gene approaches. However, due to their exploratory nature, multivariate ordination methods do not allow direct statistical testing of the stability of genes.  相似文献   

5.

Background  

Mass spectrometry (MS) coupled with online separation methods is commonly applied for differential and quantitative profiling of biological samples in metabolomic as well as proteomic research. Such approaches are used for systems biology, functional genomics, and biomarker discovery, among others. An ongoing challenge of these molecular profiling approaches, however, is the development of better data processing methods. Here we introduce a new generation of a popular open-source data processing toolbox, MZmine 2.  相似文献   

6.

Background  

Expression array data are used to predict biological functions of uncharacterized genes by comparing their expression profiles to those of characterized genes. While biologically plausible, this is both statistically and computationally challenging. Typical approaches are computationally expensive and ignore correlations among expression profiles and functional categories.  相似文献   

7.

Background  

The advancements of proteomics technologies have led to a rapid increase in the number, size and rate at which datasets are generated. Managing and extracting valuable information from such datasets requires the use of data management platforms and computational approaches.  相似文献   

8.

Background  

Censored data are increasingly common in many microarray studies that attempt to relate gene expression to patient survival. Several new methods have been proposed in the last two years. Most of these methods, however, are not available to biomedical researchers, leading to many re-implementations from scratch of ad-hoc, and suboptimal, approaches with survival data.  相似文献   

9.

Background  

Co-expression network-based approaches have become popular in analyzing microarray data, such as for detecting functional gene modules. However, co-expression networks are often constructed by ad hoc methods, and network-based analyses have not been shown to outperform the conventional cluster analyses, partially due to the lack of an unbiased evaluation metric.  相似文献   

10.

Background  

Various software tools are available for the display of pairwise linkage disequilibrium across multiple single nucleotide polymorphisms. The HapMap project also presents these graphics within their website. However, these approaches are limited in their use of data from multiallelic markers and provide limited information in a graphical form.  相似文献   

11.

Background  

Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations (ODEs) and information theory are widely applied to deriving causal relationships among different elements such as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal data. There are several well-established reverse-engineering approaches to explore causal relationships in a dynamic network, such as ordinary differential equations (ODE), Bayesian networks, information theory and Granger Causality.  相似文献   

12.
13.

Background  

Proteogenomics aims to utilize experimental proteome information for refinement of genome annotation. Since mass spectrometry-based shotgun proteomics approaches provide large-scale peptide sequencing data with high throughput, a data repository for shotgun proteogenomics would represent a valuable source of gene expression evidence at the translational level for genome re-annotation.  相似文献   

14.

Background  

Microarray technologies have evolved rapidly, enabling biologists to quantify genome-wide levels of gene expression, alternative splicing, and sequence variations for a variety of species. Analyzing and displaying these data present a significant challenge. Pathway-based approaches for analyzing microarray data have proven useful for presenting data and for generating testable hypotheses.  相似文献   

15.
16.

Background  

The alignment of biological sequences is of chief importance to most evolutionary and comparative genomics studies, yet the two main approaches used to assess alignment accuracy have flaws: reference alignments are derived from the biased sample of proteins with known structure, and simulated data lack realism.  相似文献   

17.

Background  

Surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI) is a proteomics tool for biomarker discovery and other high throughput applications. Previous studies have identified various areas for improvement in preprocessing algorithms used for protein peak detection. Bottom-up approaches to preprocessing that emphasize modeling SELDI data acquisition are promising avenues of research to find the needed improvements in reproducibility.  相似文献   

18.

Introduction  

Cartilage thickness and volume loss measurements using quantitative magnetic resonance imaging (qMRI) are suggested to detect significant cartilage changes over short time intervals. We aimed to compare these two different approaches looking at the global knee and subregions, using data from an osteoarthritis (OA) multicentre randomised clinical trial.  相似文献   

19.

Bacskground  

Single Nucleotide Polymorphism (SNP) genotyping is a major activity in biomedical research. The Taqman technology is one of the most commonly used approaches. It produces large amounts of data that are difficult to process by hand. Laboratories not equipped with a Laboratory Information Management System (LIMS) need tools to organize the data flow.  相似文献   

20.

Background  

Genes work coordinately as gene modules or gene networks. Various computational approaches have been proposed to find gene modules based on gene expression data; for example, gene clustering is a popular method for grouping genes with similar gene expression patterns. However, traditional gene clustering often yields unsatisfactory results for regulatory module identification because the resulting gene clusters are co-expressed but not necessarily co-regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号