首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Layers containing Auerbach's and Meissner's plexuses were dissected from the small intestine of guinea pig and immunostained with affinity-purified antibodies against brain-specific microtubule-associated proteins (MAPs): MAP1, MAP2 and tau and a MAP with a molecular weight of 190000 dalton purified from bovine adrenal cortex (190-kDa MAP). MAP1 antibody stained the network of nerve fibers and the cell bodies of enteric neurons in both Auerbach's and Meissner's plexuses. Staining with anti-tau antibody gave the same results. Antibody against MAP2 stained neuronal cell bodies and short thin processes extending from them. Interganglionic strands composed mainly of long processes were unstained. Anti-190-kDa MAP antibody stained both the neuronal cell bodies and bundles of nerve fibers. However, the staining was less intense than that with anti-MAP1 and tau antibodies. Differentiation in the structure of the cytoskeleton probably exists in the neuronal processes of the enteric neurons as is shown in the dendrites and axons in some neurons of the central nervous system. Thus, enteric neurons possess axon-like processes containing MAP1, tau and probably lower amounts of 190-kDa MAP. Cell bodies and dendrite-like structures of these neurons contain MAP2 in addition to MAP1, tau and 190-kDa MAP.  相似文献   

2.
This immunohistochemical study in zebrafish aims to extend the neurochemical characterization of enteric neuronal subpopulations and to validate a marker for identification of interstitial cells of Cajal (ICC). The expression of neuropeptides and anoctamin 1 (Ano1), a selective ICC marker in mammals, was analyzed in both embryonic and adult intestine. Neuropeptides were present from 3 days postfertilization (dpf). At 3 dpf, galanin-positive nerve fibers were found in the proximal intestine, while calcitonin gene-related peptide (CGRP)- and substance P-expressing fibers appeared in the distal intestine. At 5 dpf, immunoreactive fibers were present along the entire intestinal length, indicating a well-developed peptidergic innervation at the onset of feeding. In the adult intestine, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), galanin, CGRP and substance P were detected in nerve fibers. Colchicine pretreatment enhanced only VIP and PACAP immunoreactivity. VIP and PACAP were coexpressed in enteric neurons. Colocalization stainings revealed three neuronal subpopulations expressing VIP and PACAP: a nitrergic noncholinergic subpopulation, a serotonergic subpopulation and a subpopulation expressing no other markers. Ano1-immunostaining revealed a 3-dimensional network in the adult intestine containing multipolar cells at the myenteric plexus and bipolar cells interspersed between circular smooth muscle cells. Ano1 immunoreactivity first appeared at 3 dpf, indicative of the onset of proliferation of ICC-like cells. It is shown that the Ano1 antiserum is a selective marker of ICC-like cells in the zebrafish intestine. Finally, it is hypothesized that ICC-like cells mediate the spontaneous regular activity of the embryonic intestine.  相似文献   

3.
Antisera specific for different regions of porcine VIP have been used in radioimmunoassay and immunohistochemical studies of immunoreactive VIP in rat small and large intestine. Cation exchange chromatography of intestinal extracts separated two major and one minor peak of immunoreactivity. One major peak eluted in a similar position to natural porcine VIP and was read equally by NH2-terminal-specific, and mid- and COOH-terminal-specific antisera. A second major peak, and the minor peak, eluted earlier than porcine VIP, and were read significantly less well with mid- and COOH-terminal antisera compared with NH2-terminal-specific antisera. All forms of VIP occurred mainly in extracts of muscle layers of the gut, and no antiserum revealed more than trace amounts of immunoreactivity in mucosal extracts. In immunohistochemical studies all antisera demonstrated fluorescent nerve fibres in the enteric plexuses, circular smooth muscle and lamina propria; some antisera demonstrated nerve cell bodies predominantly in the submucous plexus. NH2-terminal-specific antisera also demonstrated a sparse population of mucosal endocrine-like cells in the ileum and colon that were not seen with other antisera. It is concluded that VIPergic neurons of the rat gut contain a peptide closely resembling porcine VIP and at least two less basic variants with similar NH2-terminal antigenic determinants. VIP-like peptides may also occur in endocrine cells, but since these peptides appearto fact that the majority of neuronal VIP in rat gut exists in a form that is both chromatographically and immunochemically distinct from porcine VIP, and may well possess different biological properties.  相似文献   

4.
Sayegh AI  Ritter RC 《Peptides》2003,24(2):237-244
Cholecystokinin (CCK) is a peptide hormone released from the I-cells of the upper small intestine. CCK evokes a variety of physiological responses, such as stimulation of pancreatic secretion, reduction of food intake and inhibition of gastric emptying. Previously, we reported that CCK activates enteric neurons in the rat. However the specific subpopulations of enteric neurons activated by CCK have not been identified. In the work reported here, we utilized immunohistochemical detection of nuclear Fos, a marker for neuronal activation, and selected phenotypic markers to identify some of the neuronal subpopulations activated by CCK. The phenotypic markers that we examined were: nitric oxide synthase (NOS), neurokinin-1 receptor (NK-1R), calbindin (Cal), Calretinin (Calr), and neurofilament-M (NF-M). We found that in the myenteric plexus of the rat duodenum and jejunum, CCK activated NOS immunoreactive neurons. In the submucosal plexus of duodenum and jejunum, CCK activated Cal, Calr and NF-M immunoreactive neurons. CCK failed to activate NK-1R immunoreactive neurons in either plexus. Our results indicate that CCK activates distinct enteric neurons in the rat upper small intestine. Furthermore the fact that NOS immunoreactive neurons were activated suggests that CCK modulates the activity of inhibitory motor neurons in the myenteric plexus. Expression of Fos immunoreactivity in Calr and Cal immunoreactive neurons is consistent with a role for CCK in modulation of intrinsic sensory and/or secretomotor neuronal activity in the submucosal plexus.  相似文献   

5.
Calcitonin gene-related peptide (CGRP)-containing perikarya and axonal processes were localized by preembedding electron-microscopic immunocytochemistry in the porcine small intestine. Immunoreactive well-defined type II neurons were localized in the plexus myentericus, and plexus submucosus externus and internus. In some cases, they were found in direct contact to the basal lamina surrounding the ganlion, thus being in close apposition to the interstitial space. The perikarya are generally larger than the immunogative nerve cell bodies and have a typical smooth outline. The electron-microscopic features of the labeled nerve processes investigated provide evidence for their axonal nature. These ultrastructural observations confirm previous light-microscopic results which showed that CGRP-containing nerve cells in the porcine small intestine belong to the neuronal population of the type II cells, the processes of which display the ultrastructural features of axons. A large number of reactive varicosities show synaptic specializations on immunonegative nerve cell bodies, suggesting that at least part of the type II neurons have post-synaptic effects on CGRP-negative neurons.  相似文献   

6.
Recent studies have suggested that enteric inhibitory neurotransmission is mediated via interstitial cells of Cajal in some gastrointestinal tissues. This study describes the physical relationships between enteric neurons and interstitial cells of Cajal in the deep muscular plexus (IC-DMP) of the guinea-pig small intestine. c-Kit and vimentin were colocalized in the cell bodies and fine cellular processes of interstitial cells of the deep muscular plexus. Anti-vimentin antibodies were subsequently used to examine the relationships of interstitial cells with inhibitory motor neurons (as identified by nitric oxide synthase-like immunoreactivity) and excitatory motor neurons (using substance P-like immunoreactivity). Neurons with nitric oxide synthase- and substance P-like immunoreactivities were closely associated with the cell bodies of interstitial cells and ramified along their processes for distances greater than 300 7m. With transmission electron microscopy, we noted close relationships between interstitial cells and the nitric oxide synthase- and substance P-like immunoreactive axonal varicosities. Varicosities of nitric oxide synthase and substance P neurons were found as close as 20 and 25 nm from interstitial cells, respectively. Specialized junctions with increased electron density of pre- and postsynaptic membranes were observed at close contact points between nitric oxide synthase- and substance P-like immunoreactive neurons and interstitial cells. Close structural relationships (approximately 25 nm) were also occasionally observed between either nitric oxide synthase- and substance P-like immunoreactive varicosities and smooth muscle cells of the outer circular muscle layer. The data suggest that interstitial cells in the deep muscle plexus are heavily innervated by excitatory and inhibitory enteric motor neurons. Thus, these interstitial cells may provide an important, but probably not exclusive, pathway for nerve-muscle communication in the small intestine.  相似文献   

7.
Summary The formaldehyde-induced fluorescence technique had shown 5-hydroxytryptamine-containing enteric neurons in the intestine of the teleost Platycephalus bassensis, but did not reveal such neurons in the intestine of Tetractenos glaber or Anguilla australis. Re-examination of these animals with 5-hydroxytryptamine immunohistochemistry showed immunoreactive enteric neurons in the intestine of all three teleost species. The 5-hydroxytryptamine-containing enteric neurons showed essentially the same morphology in all species examined: the somata were situated in the myenteric plexus, extending down into the circular muscle layer, but none were found in the submucosa; processes were found in the myenteric plexus, the circular muscle layer and the lamina propria. It was concluded that the neurons may innervate the muscle layers or the mucosal epithelium, but were unlikely to be interneurons. In a range of teleosts, enterochromaffin cells were found in the intestine of only those species in which the formaldehyde technique did not visualize neuronal 5-hydroxytryptamine. Available evidence suggests that, in vertebrates, 5-HT-containing enterochromaffin cells are lacking only where there is an innervation of the gut mucosa by nerve fibres containing high concentrations of 5-HT.  相似文献   

8.
The myenteric plexus of the porcine small intestine is studied using a combined method for the simultaneous visualization of enteric intramural neuronal cell bodies and peptidergic nerve fibers. As earlier reported, the histochemical method for demonstration of the NADH-dependent dehydrogenase reaction allows the identification of the three neuron types of Dogiel but, in addition, the afore mentioned staining method creates fair conditions in the tissue for the subsequent indirect immunocytochemical visualization of neuropeptides, as demonstrated in this work by means of the indirect immunofluorescence method for enkephalin-like immunoreactivity. Intense fluorescent varicosities of enkephalin-like nerve fibres were found to ramify around dark-blue stained ganglionic cells of type I, type II and type III in a manner suggestive of innervation.  相似文献   

9.
The small intestine of the pig has been investigated for its topographical distribution of enteric neurons projecting to the cranial mesenteric ganglion, by using Fast Blue or Fluorogold as a retrogradely transported neuronal tracer. Contrary to the situation in small laboratory animals such as rat and guinea-pig, the intestinofugally projecting neurons in the porcine small intestine were not restricted to the myenteric plexus, but were observed in greater numbers in ganglia of the outer submucous plexus. The inner submucous plexus was devoid of labelled neurons. Retrogradely labelled neurons were mostly found, either singly or in small aggregates, in ganglia located within a narrow border on either side of the mesenteric attachment. For both nerve networks, their number increased from duodenum to ileum. All the retrogradely labelled neurons exhibited a multidendritic uniaxonal appearance. Some of them displayed type-III morphology and stained for serotonin. This study indicates that, in the pig, not only the myenteric plexus but also one submucous nerve network is involved in the afferent component of intestino-sympathico-intestinal reflex pathways. The finding that some of the morphologically defined type-III neurons participate in these reflexes is in accord with the earlier proposal that type-III neurons are supposed to fulfill an interneuronal role, whether intra- or extramurally.  相似文献   

10.
MAP1B and MAP2 are major members of neuronal microtubule-associated proteins (MAPs). To gain insights into the function of MAP2 in vivo, we generated MAP2-deficient (map2(-/-)) mice. They developed without any apparent abnormalities, which indicates that MAP2 is dispensable in mouse survival. Because previous reports suggest a functional redundancy among MAPs, we next generated mice lacking both MAP2 and MAP1B to test their possible synergistic functions in vivo. Map2(-/-)map1b(-/-) mice died in their perinatal period. They showed not only fiber tract malformations but also disrupted cortical patterning caused by retarded neuronal migration. In spite of this, their cortical layer maintained an "inside-out" pattern. Detailed observation of primary cultures of hippocampal neurons from map2(-/-)map1b(-/-) mice revealed inhibited microtubule bundling and neurite elongation. In these neurons, synergistic effects caused by the loss of MAP2 and MAP1B were more apparent in dendrites than in axons. The spacing of microtubules was reduced significantly in map2(-/-)map1b(-/-) mice in vitro and in vivo. These results suggest that MAP2 and MAP1B have overlapping functions in neuronal migration and neurite outgrowth by organizing microtubules in developing neurons both for axonal and dendritic morphogenesis but more dominantly for dendritic morphogenesis.  相似文献   

11.
The distribution of nitric oxide synthase (NOS), an enzyme involved in the synthesis of the presumed non-adrenergic noncholinergic inhibitory neurotransmitter nitric oxide (NO), was demonstrated in the enteric nervous system of the porcine caecum, colon and rectum. Techniques used were NOS-immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-histochemistry. Throughout the entire large intestine, NOS-immunoreactive (IR) and NADPHd-positive neurons were abundant in the myenteric and outer submucous plexus. In the inner submucous plexus, only a small number of positive neurons were found in the caecum and colon, while a moderate number was observed in the rectum. The nitrergic neurons in the porcine enteric nerve plexuses were of a range of sizes and shapes, with a small proportion showing immunostaining for vasoactive intestinal polypeptide. Varicose and non-varicose NOS-IR and NADPHd-positive nerve fibres were present in the ganglia and connecting strands of all three plexuses. Nerve fibres were also numerous in the circular muscle layer, scarce in the longitudinal muscle coat and negligible in the mucosal region. The abundance of NOS/NADPHd in the intrinsic innervation of the caecum, colon and rectum of the pig implicates NO as an important neuronal messenger in these regions of the gastrointestinal tract.  相似文献   

12.
It was hypothesised that P2X(3) receptors, predominantly labelling spinal and cranial sensory ganglionic neurons, are also expressed in intrinsic sensory enteric neurons, although direct evidence is lacking. The aim of this study was to localise P2X(3) receptors in the enteric nervous system of the guinea-pig ileum, and to neurochemically identify the P2X(3)-expressing neurons. In the submucous plexus, cholinergic neurons expressing calretinin (CRT), were immunostained for P2X(3). These neurons made up about 12% of the submucous neurons. In the myenteric plexus, approximately 36% of the neurons expressed P2X(3). Half of the latter neurons were immunoreactive for CRT, whereas about 20% were immunoreactive for nitric oxide synthase (NOS). Based on earlier neurochemical analysis of enteric neurons in the guinea-pig, the myenteric neurons exhibiting P2X(3)/CRT immunoreactivity were identified as longitudinal muscle motor neurons, and those expressing P2X(3)/NOS immunoreactivity as short inhibitory circular muscle motor neurons. In both plexuses, no colocalisation was observed between P2X(3) and calbindin, a marker for intrinsic sensory neurons. Multiple staining with antisera raised against somatostatin, neuropeptide Y, substance P or neurofilament protein did not reveal any costaining. It can be concluded that in the guinea-pig ileum, intrinsic sensory neurons do not express P2X(3) receptors. However, this does not negate the possibility that extrinsic sensory nerves expressing P2X(3) are involved in a purinergic mechanosensory transduction pathway as demonstrated in other organs.  相似文献   

13.
Calcitonin-gene-related-peptide (CGRP)-like immunoreactivity was localized in nerve fibres, neuronal somata and in mucosal endocrine cells of the human small intestine. Immunoreactive enteric neurons were more numerous in the submucous plexuses than in the myenteric plexus. Morphologically, they predominantly had the appearance of type II neurons. The majority of the CGRP-like immunoreactive nerve fibres ran within the ganglionic nerve plexuses. Only a small proportion could be observed in the lamina propria, the lamina muscularis mucosae, or the circular and longitudinal outer smooth muscle layer. These findings suggest that within the wall of the human small intestine neuronal CGRP of either extrinsic or intrinsic origin exerts its effect chiefly on other enteric neurons, and might be indirectly involved in the regulatory functions of the human small intestine.  相似文献   

14.
Lax P  Fucile S  Eusebi F 《Cell calcium》2002,31(2):53-58
The distribution of the calcium binding protein neurocalcin a has been examined in the enteric nervous system of young adult (3 months) and aged (24+ months) male rats by immunofluorescence. Neurocalcin-immunoreactive (NC-ir) neurons were observed in the submucous and myenteric plexuses throughout the gastrointestinal tract from the oesophagus to the distal large intestine. NC-ir nerve terminals were also seen on NC-ir and NC-negative neurons. Semiquantitative estimates revealed fewer NC-ir neurons in the submucous plexus than in the myenteric plexus. The greatest occurrence of NC-ir neurons was in the small and large intestine. NC-ir axons were seen in the mucosa and also in between the ganglia of the myenteric plexus. In the aged rats, there were no discernible changes in the numbers of NC-ir neurons in th e oesophagus and stomach, with an increase in the pylorus and slight decreases in the small and large intestines. No decrease in NC-ir was observed in the distal large intestine. NC-ir neurons never contained lipofuscin age pigment and many enteric neuro ns devoid of NC-ir contained age pigment. Like other previously investigated calcium-binding proteins in enteric neurons, the distribution of NC shows much variability from one part of the intestine to another. The observed slight decreases in the number of NC-ir enteric neurons in aged rats may compromise the regulation of calcium in these neurons.  相似文献   

15.
The distribution of intrinsic enteric neurons and extrinsic autonomic and sensory neurons in the large intestine of the toad, Bufo marinus, was examined using immunohistochemistry and glyoxylic acid-induced fluoresecence. Three populations of extrinsic nerves were found: unipolar neurons with morphology and location typical of parasympathetic postganglionic neurons containing immunoreactivity to galanin, somatostatin and 5-hydroxytryptamine were present in longitudinally running nerve trunks in the posterior large intestine and projected to the muscle layers and myenteric plexus throughout the large intestine. Sympathetic adrenergic fibres supplied a dense innervation to the circular muscle layer, myenteric plexus and blood vessels. Axons containing colocalized calcitonin gene-related peptide immunoractivity and substance P immunoreactivity distributed to all layers of the large intestine and are thought to be axons of primary afferent neurons. Five populations of enteric neurons were found. These contained immunoreactivity to vasoactive intestinal peptide, which distributed to all layers of the large intestine; galanin/vasoactive intestinal peptide, which projected to the submucosa and mucosa; calcitonin gene-related peptide/vasoactive intestinal peptide, which supplied the circular muscle, submucosa and mucosa; galanin, which projected to the submucosa and mucosa; and enkephalin, which supplied the circular muscle layer.  相似文献   

16.
豚鼠小肠神经节丛的NADPH—黄递酶组织化学观察   总被引:2,自引:0,他引:2  
目前已知,NADPH--黄递酶组化法可选择性地显示--氧化氮合成酶(NOsynthase,NOS)神经元。因此,我们以NADPH-黄递酶组化法,观察了豚鼠小肠肌间神经丛和粘膜下神经丛的神经网格以及NOS神经元。结果表明,三段小肠肌间神经丛的神经网眼大小和形态有明显差异,与对应的粘膜下神经丛相比,差异更显著。在肌间神经丛中,NADPH-黄递酶阳性神经元胞体大小不等;其长突起伸入节间束,而短突起较多,并可见短突起彼此连接.构成节内偶见的局部神经元回路。从小肠上段到下段,NOS神经元数量呈下降趋势。在粘膜下神经丛,我们也观察到少数NOS神经元。  相似文献   

17.
Summary Bombesin-like and gastrin-releasing peptide (GRP)-like immunoreactivities were localized in nerves of the guinea-pig small intestine and celiac ganglion with the use of antibodies raised against the synthetic peptides. The anti-bombesin serum (preincubated to avoid cross reactivity with substance P) and the anti-GRP serum revealed the same population of neurons. Preincubation of the antibombesin serum with bombesin abolished the immunoreactivity in nerves while absorption of the anti-GRP serum with either bombesin or the 14–27 C-terminal of GRP only reduced the immunoreactivity. The immunoreactivity was abolished by incubation with GRP 1–27.Immunoreactive nerves were found in the myenteric plexus, circular muscle, submucous plexus and in the celiac ganglion. Faintly reactive nerve cell bodies were found in the myenteric ganglia (3.2% of all neurons) but not in submucous ganglia. After all ascending and descending pathways in the myenteric plexus had been cut, reactive terminals disappeared in the myenteric plexus, circular muscle (including the deep muscular plexus) and the submucous plexus on the anal side. After the mesenteric nerves were cut no changes were observed in the intestinal wall but the reactive fibres in celiac ganglia disappeared. It is deduced that GRP/bombesin-immunoreactive nerve cell bodies in myenteric ganglia project from the myenteric plexus to other myenteric ganglia situated further anally (average length 12 mm), anally to the circular muscle (average length 9 mm), anally to submucous ganglia (average length 13 mm) and external to the intestine to the celiac ganglia.It is concluded that the GRP/bombesin-reactive neurons in the intestinal wall represent a distinct population of enteric neurons likely to be involved in controlling motility and in the coordination of other intestinal functions.  相似文献   

18.
Summary For the simultaneous demonstration of intramural enteric ganglion cells and the adrenergic nerve fibres in the porcine small intestine a combined histochemical method was developed using a hypertonic solution, the main chemicals of which were glyoxylic acid, Nitro-BT* and NADH. By means of the enzymatic histochemical method reaction for the NADH-dependent dehydrogenase activity with Nitro-BT as an electron acceptor, the identification of the three neuron types of Dogiel (i.e. type I, type II, type III) was for the first time realized in relation with the glyoxylic acid induced fluorescence (GIF) of the plexus myentericus (Auerbach) and the plexus submucosus externus (Schabadasch). Besides the close topographic relationship between the adrenergic varicose axons on the one hand and the perikarya and dendrites of the multidendritic uniaxonal type I cells characterized by radially oriented short and lamellar dendrites and the multidendritic uniaxonal type III cells, characterized by radially oriented long and tapering dendrites on the other hand, it is striking that for the adendritic multiaxonal type II cells the fluorescent varicose fibres adhere closer to the cell bodies and their processes. In principle, the relation between adrenergic varicose axons and neuron types is identical in plexus myentericus (Auerbach) and plexus submucosus externus (Schabadasch), yet with the exception that in the latter no type I neurons are observed.2,2-Di-p-nitrophenyl-5,5-diphenyl-3,3-(3,3-dimethoxy-4,4-diphenylene) ditetrazolium chloride  相似文献   

19.
Calcitonin receptor-immunoreactivity (CTR-ir) was found in enteric neurons of the mouse gastrointestinal tract from embryonic day 13.5 (E13.5) to post-natal day 28 (P28). CTR-ir occurred in cell bodies in ganglia of the myenteric plexus extending from the esophagus to the colon and in nerve cells of the submucosal ganglia of the small and large intestines. CTR-ir was also found in vagal nerve trunks and mesenteric nerves. Counts in the ileal myenteric plexus revealed CTR-ir in 80% of neurons. CTR-ir was clearly evident in the cell bodies of enteric neurons by E15.5. The immunoreactivity reached maximum intensity between P1.5 and P12 but was weaker at P18 and barely detectable at P28. The receptor was detected in nerve processes in the intestine for only a brief period around E17.5, when it was present in one to two axonal processes per villus in the small intestine. In late gestation and soon after birth, CTR-ir was also evident in the mucosal epithelium. The perinatal expression of CTR within the ENS suggests that the calcitonin/CTR system may have a role in the maturation of enteric neurons. Signals may reach enteric neurons in milk, which contains high levels of calcitonin.  相似文献   

20.
The enteric nervous system consists of a number of interconnected networks of neuronal cell bodies and fibers as well as satellite cells, the enteric glia. Basic fibroblast growth factor (bFGF) is a mitogen for a variety of mesodermal and neuroectodermal-derived cells and its presence has been described in many tissues. The present work employs immunohistochemistry to analyze neurons and glial cells in the esophageal and colic enteric plexus of the Wistar rat for neurofilament (NF) and glial fibrillary acidic proteins (GFAP) immunoreactivity as well as bFGF immunoreactivity in these cells. Rats were processed for immunohistochemistry; the distal esophagus and colon were opened and their myenteric plexuses were processed as whole-mount preparations. The membranes were immunostained for visualization of NF, GFAP, and bFGF. NF immunoreactivity was seen in neuronal cell bodies of esophageal and colic enteric ganglia. GFAP-immunoreactive enteric glial cells and processes were present in the esophageal and colic enteric plexuses surrounding neuronal cell bodies and axons. A dense net of GFAP-immunoreactive processes was seen in the ganglia and connecting strands of the myenteric plexus. bFGF immunoreactivity was observed in the cytoplasm of the majority of the neurons in the enteric ganglia of esophagus and colon. The two-color immunoperoxidase and immunofluorescence methods revealed bFGF immunoreactivity also in the nucleus of GFAP-positive enteric glial cells. The results suggest that immunohistochemical localization of NF and GFAP may be an important tool in the study of the plasticity in the enteric nervous system. The presence of bFGF in neurons and glia of the myenteric plexus of the esophagus and the colon indicates that this neurotrophic factor may exert autocrine and paracrine actions in the enteric nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号