首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calmodulin-activated adenylate cyclase of Bordetella pertussis and Bacillus anthracis are two cognate bacterial toxins. Three short regions of 13-24 amino acid residues in these proteins exhibit between 66 and 80% identity. Site-directed mutagenesis of four residues in B. pertussis adenylate cyclase situated in the second (Asp188, Asp190) and third (His298, Glu301) segments of identity were accompanied by important decrease, or total loss, of enzyme activity. The calmodulin-binding properties of mutated proteins showed no important differences when compared to the wild-type enzyme. Apart from the loss of enzymatic activity, the most important change accompanying replacement of Asp188 by other amino acids was a dramatic decrease in binding of 3'-anthraniloyl-2'-deoxyadenosine 5'-triphosphate, a fluorescent analogue of ATP. From these results we concluded that the two neighbouring aspartic acid residues in B. pertussis adenylate cyclase, conserved in many other ATP-utilizing enzymes, are essential for binding the Mg(2+)-nucleotide complex, and for subsequent catalysis. Replacement of His298 and Glu301 by other amino acid residues affected the nucleotide-binding properties of adenylate cyclase to a lesser degree suggesting that they might be important in the mechanism of enzyme activation by calmodulin, rather than being involved directly in catalysis.  相似文献   

2.
Kinetic parameters of mouse thymocyte adenylate cyclase activity were determined. NaF and cholera toxin stimulated adenylate cyclase. Stimulation by either agent did not change the pH or Mg2+ optima relative to control (unstimulated cyclase). The Km value for ATP of adenylate cyclase stimulated by NaF was significantly reduced from control. By contrast, cholera toxin treatment did not change the Km relative to control. Adenylate cyclase, when stimulated by NaF, had an optimum for Mn2+ alone, or Mn2+ in combination with Mg2+, at least twice that of control. In contrast, cyclase activity prepared from cells treated with cholera toxin remained unchanged with regard to these divalent cations when compared to control. Addition of NaF to adenylate cyclase prepared from cells treated with cholera toxin resulted in a significant reduction (30%) in activity suggesting that both NaF and cholera toxin were acting on the same cyclase. NaF inhibition of cholera toxin-stimulated activity was shown to be a direct interaction of fluoride on the stimulated cyclase enzyme. This inhibition appeared to be immediate and independent on pH, Mg2+ or ATP concentrations. Although NaF inhibition was lost when Mn2+ was present in the reaction mixture, the activity expressed by addition of NaF to cyclase prepared from cholera toxin-treated cells was much less than by addition of NaF to control. As observed with cholera toxin stimulation alone, activity expressed by the inhibited enzyme (cholera toxin treated + NaF) exhibited a Km for ATP and an optimum for Mn2+ alone or in combination with Mg2+ similar to control.  相似文献   

3.
The active site of glucosamine-6-phosphate deaminase (EC 3.5.99.6, formerly 5.3.1.10) from Escherichia coli was first characterized on the basis of the crystallographic structure of the enzyme bound to the competitive inhibitor 2-amino-2-deoxy-glucitol 6-phosphate. The structure corresponds to the R allosteric state of the enzyme; it shows the side-chain of His143 in close proximity to the O5 atom of the inhibitor. This arrangement suggests that His143 could have a role in the catalysis of the ring-opening step of glucosamine 6-phosphate whose alpha-anomer is the true substrate. The imidazole group of this active-site histidine contacts the carboxy groups from Glu148 and Asp141, via its Ndelta1 atom [Oliva et al. (1995) Structure 3, 1323-1332]. These interactions change in the T state because the side chain of Glu148 moves toward the allosteric site, leaving at the active site the dyad Asp141-His143 [Horjales et al. (1999) Structure 7, 527-536]. In this research, a dual approach using site-directed mutagenesis and controlled chemical modification of histidine residues has been used to investigate the role of the active-site histidine. Our results support a multifunctional role of His143; in the forward reaction, it is involved in the catalysis of the ring-opening step of the substrate, glucosamine 6-P. In the reverse reaction, the substrate fructose 6-P binds in its open chain, carbonylic form. The role of His143 in the binding of both glucosamine 6-P and reaction intermediates in their extended-chain forms was demonstrated by binding experiments using the reaction intermediate analogue, 2-amino-2-deoxy-D-glucitol 6-phosphate. His143 was also shown to be a critical residue for the conformational coupling between active and allosteric sites. From the pH dependence of the reactivity of the active site histidine to diethyl dicarbonate, we observed a pK(a) change of 1.2 units to the acid side when the enzyme undergoes the allosteric T to R transition during which the side chain of Glu148 moves toward the active site. The kinetic study of the Glu148-Gln mutant deaminase shows that the loss of the carboxy group and its replacement with the corresponding amide modifies the k(cat) versus pH profile of the enzyme, suggesting that the catalytic step requiring the participation of His143 has become rate-limiting. This, in turn, indicates that the interaction Glu148-His143 in the wild-type enzyme in the R state contributes to make the enzyme functional over a wide pH range.  相似文献   

4.
The properties of adenylate kinase in 2 ADP in equilibrium ATP + AMP reaction have been studied. The dependence of the enzyme activity on medium pH, protein concentration, substrates, Mg++ ions, AMP, adenine and adenosine has been also investigated. pH optimum is found to be 8.5 for forward reaction and 8-9--for the reverse one. The Michaelis constants are as follows: for ADP--1.17-10(-4) M, for ATP--3.33-10(-4) M at 24 degrees C, in 50 mM tris-HCl pH 7.6. The optimal ratio, Mg++ ions/substrates (ADP, ATP + AMP), is 1:2. The chelates of adenine nucleotides with Mg++ ions are proved to be "true" reaction substrates. Unlike adenine and adenosine, the product of AMP reaction inhibits adenylate kinase activity. It is concluded that the properties of adenylate kinase in plants are similar to those of animals and humans (moikinase).  相似文献   

5.
In two fractions obtained from the bovine A. coronaria adenylate cyclase activity was identified and characterized. The adenylate cyclase activity of the 75,000 X g sediment shows a pH optimum at 7.4. The temperature dependence of this adenylate cyclase activity is linear when represented in the Arrhenius plot, and an Arrhenius activation energy of 13.2 kcal Mol-1 can be calculated for the enzyme reaction. The Km-value of the enzyme to ATP is 6 +/- 0.6 - 10(-4) M. The adenylate cyclase activity of the 75,000 X g sediment can be stimulated by NaF. 5'AMP and adenosine inhibit the adenylate cyclase activity of the 75,000 X g sediment. With regard to the enzyme activity, Mn++ and Co++ replace Mg++, but not Ca++. The monovalentcations Na+ and K+ do not influence the adenylate cyclase activity. In a particulate fraction containing plasma membranes, adenylate cyclase activity was also identified. This adenylate cyclase activity can be stimulated by catecholamines, noradrenaline, and isoproterenol. This stimulation can, however, only be proved for the enzyme in the coronaries of 9-week-old and 2-year-old animals. The adenylate cyclase activity from the coronaries of adult animals is not affected by catecholamines. These findings are discussed with regard to hypertension frequently found in adult animals.  相似文献   

6.
Hung HC  Chien YC  Hsieh JY  Chang GG  Liu GY 《Biochemistry》2005,44(38):12737-12745
Human mitochondrial NAD(P)+-dependent malic enzyme is inhibited by ATP. The X-ray crystal structures have revealed that two ATP molecules occupy both the active and exo site of the enzyme, suggesting that ATP might act as an allosteric inhibitor of the enzyme. However, mutagenesis studies and kinetic evidences indicated that the catalytic activity of the enzyme is inhibited by ATP through a competitive inhibition mechanism in the active site and not in the exo site. Three amino acid residues, Arg165, Asn259, and Glu314, which are hydrogen-bonded with NAD+ or ATP, are chosen to characterize their possible roles on the inhibitory effect of ATP for the enzyme. Our kinetic data clearly demonstrate that Arg165 is essential for catalysis. The R165A enzyme had very low enzyme activity, and it was only slightly inhibited by ATP and not activated by fumarate. The values of K(m,NAD) and K(i,ATP) to both NAD+ and malate were elevated. Elimination of the guanidino side chain of R165 made the enzyme defective on the binding of NAD+ and ATP, and it caused the charge imbalance in the active site. These effects possibly caused the enzyme to malfunction on its catalytic power. The N259A enzyme was less inhibited by ATP but could be fully activated by fumarate at a similar extent compared with the wild-type enzyme. For the N259A enzyme, the value of K(i,ATP) to NAD+ but not to malate was elevated, indicating that the hydrogen bonding between ATP and the amide side chain of this residue is important for the binding stability of ATP. Removal of this side chain did not cause any harmful effect on the fumarate-induced activation of the enzyme. The E314A enzyme, however, was severely inhibited by ATP and only slightly activated by fumarate. The values of K(m,malate), K(m,NAD), and K(i,ATP) to both NAD+ and malate for E314A were reduced to about 2-7-folds compared with those of the wild-type enzyme. It can be concluded that mutation of Glu314 to Ala eliminated the repulsive effects between Glu314 and malate, NAD+, or ATP, and thus the binding affinities of malate, NAD+, and ATP in the active site of the enzyme were enhanced.  相似文献   

7.
Inosine monophosphate dehydrogenase (IMPDH) catalyzes an essential step in the biosynthesis of guanine nucleotides. This reaction involves two different chemical transformations, an NAD-linked redox reaction and a hydrolase reaction, that utilize mutually exclusive protein conformations with distinct catalytic residues. How did Nature construct such a complicated catalyst? Here we employ a “Wang-Landau” metadynamics algorithm in hybrid quantum mechanical/molecular mechanical (QM/MM) simulations to investigate the mechanism of the hydrolase reaction. These simulations show that the lowest energy pathway utilizes Arg418 as the base that activates water, in remarkable agreement with previous experiments. Surprisingly, the simulations also reveal a second pathway for water activation involving a proton relay from Thr321 to Glu431. The energy barrier for the Thr321 pathway is similar to the barrier observed experimentally when Arg418 is removed by mutation. The Thr321 pathway dominates at low pH when Arg418 is protonated, which predicts that the substitution of Glu431 with Gln will shift the pH-rate profile to the right. This prediction is confirmed in subsequent experiments. Phylogenetic analysis suggests that the Thr321 pathway was present in the ancestral enzyme, but was lost when the eukaryotic lineage diverged. We propose that the primordial IMPDH utilized the Thr321 pathway exclusively, and that this mechanism became obsolete when the more sophisticated catalytic machinery of the Arg418 pathway was installed. Thus, our simulations provide an unanticipated window into the evolution of a complex enzyme.  相似文献   

8.
An adenylate cyclase present in the brain of the moth Mamestra configurata Wlk. that is stimulated selectively by low (micromolar) concentrations of octopamine has been characterized with respect to several properties. The optimum pH, optimum ATP:Mg2+ ratio, the concentration of ATP required for half-maximal and maximal reaction velocity, metal ion specificity, effect of NaF, and effects of GTP and 5'-guanylylimidodiphosphate were in general similar to those of catecholamine-sensitive adenylate cyclases from various regions of mammalian brain. However, ethylene glycol bis-(beta-aminoethyl ether)-N,N-tetraacetic acid (EGTA), a calcium chelator, stimulated both basal and octopamine-sensitive enzyme activity in the insect brain, whereas in mammalian brain EGTA is usually observed to inhibit basal activity but not catecholamine-stimulated activity. Adenylate cyclase activity of the 47,000 g particulate fraction of the insect brain was almost undetectable in the absence of added GTP. Addition of saturating concentrations (100 micrometer) of GTP to the particles restored about 30% of the basal and octopamine-sensitive enzyme activity present in the homogenate. Addition of 100,000 g supernatant to the particles doubled both basal and octopamine-sensitive enzyme activity in the presence of saturating concentrations of GTP, indicating that in addition to GTP, a cytosolic factor(s) is necessary for enhanced adenylate cyclase activity.  相似文献   

9.
A gene encoding a thermostable Acremonium ascorbate oxidase (ASOM) was randomly mutated to generate mutant enzymes with altered pH optima. One of the mutants, which exhibited a significantly higher activity in the pH range 4.5-7 compared to ASOM, had a Gln183Arg substitution in the region corresponding to SBR1, one of the substrate binding regions of the zucchini enzyme. The other mutant with almost the same pH profile as Gln183Arg had a Thr527Ala substitution near the type 3 copper center and became more sensitive to azide than ASOM. Site-directed mutagenesis in the substrate binding regions with reference to the amino acid sequences of plant enzymes led to isolation of mutants shifted upward in the pH optimum; Val193Pro and Val193Pro/Pro190Ile increased the pH optimum by 1 and 0.5 units, respectively, while retaining the near-wild-type thermostability and azide sensitivity. The homology model of ASOM constructed from the zucchini enzyme coordinates suggested that replacement of Val193 by Pro could disturb the ion pair networks among Arg309, Glu192, Arg194 and Glu311. This perturbation could affect either the molecular recognition between the substrate and ASOM or the electron transfer from the substrate to the type 1 copper center, leading to the alkaline shift of the catalytic activity of the mutant enzyme. The other mutations, Val193Pro/Pro190Ile, could also induce similar structural perturbations involving the ion pair networks.  相似文献   

10.
The Bacillus anthracis cya gene encodes a calmodulin-dependent adenylate cyclase. A deletion cya gene product obtained by removing 261 codons at the 5' end was expressed in a protease-deficient lon- E. coli strain and purified to homogeneity. This truncated enzyme (CYA 62) exhibits catalytic and calmodulin-binding properties similar to the properties of wild-type adenylate cyclase from B. anthracis culture supernatants, i.e., a kcat of 1100 s-1 at 30 degrees C and pH 8, an apparent Km for ATP of 0.25 mM, and a Kd for bovine brain calmodulin of 23 nM. The calmodulin-binding domain of the CYA 62 truncated enzyme was labeled with a cleavable radioactive photoaffinity cross-linker coupled to calmodulin. The labeled CYA 62 protein was then cleaved with cyanogen bromide and N-chlorosuccinimide. We show that the calmodulin-binding domain of B. anthracis adenylate cyclase is located within the last 150 amino acid residues of the protein. A further deletion at the 3' end of the CYA 62 coding sequence yielded an adenylate cyclase species (CYA 57) lacking 127 C-terminal amino residues. CYA 57, still sensitive to activation by high concentrations of calmodulin, exhibits less than 0.1% of the specific activity of CYA 62. Binding of 3'dATP (a competitive inhibitor) to CYA 62 was determined by equilibrium dialysis. In the absence of calmodulin, binding of the ATP analogue to this truncated protein was severely impaired, which explains, at least in part, the absolute requirement for calmodulin for the catalytic activity of B. anthracis adenylate cyclase.  相似文献   

11.
Gossypol, a polyphenolic binaphthalene -dialdehyde reputed to exert contraceptive action in males, reversibly inhibits adenylate cyclase [ATP pyrophosphate lyase (cyclizing), EC 4.6.1.1] in a concentration-dependent manner. In membranes prepared from a variety of organs, the half-maximal inhibitory concentration (IC50) ranges from 75 microM (rat Leydig tumor cells) to 250 microM (rat liver membranes). Kinetic studies using partially purified catalytic subunit isolated from bovine testis show that gossypol is competitive with ATP with an apparent Ki of 110 microM. These data suggest that gossypol inhibition of adenylate cyclase is due to direct interaction at the nucleotide-binding domain of the catalytic subunit of the enzyme.  相似文献   

12.
ATP-dependent DNA ligases catalyze the sealing of 5′-phosphate and 3′-hydroxyl termini at DNA nicks by means of a series of three nucleotidyl transfer steps. Here we have analyzed by site-directed mutagenesis the roles of conserved amino acids of Chlorella virus DNA ligase during the third step of the ligation pathway, which entails reaction of the 3′-OH of the nick with the DNA–adenylate intermediate to form a phosphodiester and release AMP. We found that Asp65 and Glu67 in nucleotidyltransferase motif III and Glu161 in motif IV enhance the rate of step 3 phosphodiester formation by factors of 20, 1000 and 60, respectively. Asp29 and Arg32 in nucleotidyltransferase motif I enhance the rate of step 3 by 60-fold. Gel shift analysis showed that mutations of Arg32 and Asp65 suppressed ligase binding to a pre-adenylated nick, whereas Asp29, Glu67 and Glu161 mutants bound stably to DNA–adenylate. We infer that Asp29, Glu67 and Glu161 are involved directly in the step 3 reaction. In several cases, the effects of alanine or conservative mutations on step 3 were modest compared to their effects on the composite ligation reaction and individual upstream steps. These results, in concert with available crystallographic data, suggest that the active site of DNA ligase is remodeled during the three steps of the pathway and that some of the catalytic side chains play distinct roles at different stages.  相似文献   

13.
Electrostatic interactions are important in protein folding, binding, flexibility, stability and function. The pH at which the enzyme is maximally active is determined by the pKas of the active site residues, which are modulated by several factors including the change in electrostatics in its vicinity. As the acidic xylanases are important in food and animal feed industries, electrostatic interactions are introduced in Bacillus circulans xylanase to shift their pH optima towards the acidic side. Arg substitutions are made to modulate the pKas of the active site residues. Neutral residues are substituted by Arg in such a way that the substituted residue can make direct interaction with the catalytic residues. However, the mutations with other titratable residues (Asp, Arg, Lys, His, Tyr, and Ser) present in between the catalytic sites and the substituted sites are avoided. Site directed mutagenesis was conducted to confirm the strategy. The results show the shift in pH optima of the mutants towards the acidic side by 0.5–1.5 unit. Molecular dynamics simulation of the mutant V37R reveals that the decrease in activity is due to the increase in distance between the substrate oxygen atoms and catalytic glutamates.  相似文献   

14.
Adenylate cyclase activity in the lymph node particles from rats undergoing graft-versus-host reaction was found to increase markedly. Such a change in the enzyme activity does not appear to be due to a shift in pH optima. Sodium fluoride failed to stimulate the adenylate cyclase activity in preparations from animals with graft-versus-host disease. These results suggest that the cellular immune process is associated with alteration in the adenylate cyclase activity.  相似文献   

15.
Prolyl 4-hydroxylase (EC 1.14.11.2), an alpha2beta2 tetramer, catalyzes the formation of 4-hydroxyproline in collagens. We converted 16 residues in the human alpha subunit individually to other amino acids, and expressed the mutant polypeptides together with the wild-type beta subunit in insect cells. Asp414Ala and Asp414Asn inactivated the enzyme completely, whereas Asp414Glu increased the K(m) for Fe2+ 15-fold and that for 2-oxoglutarate 5-fold. His412Glu, His483Glu and His483Arg inactivated the tetramer completely, as did Lys493Ala and Lys493His, whereas Lys493Arg increased the K(m) for 2-oxoglutarate 15-fold. His501Arg, His501Lys, His501Asn and His501Gln reduced the enzyme activity by 85-95%; all these mutations increased the K(m) for 2-oxoglutarate 2- to 3-fold and enhanced the rate of uncoupled decarboxylation of 2-oxoglutarate as a percentage of the rate of the complete reaction up to 12-fold. These and other data indicate that His412, Asp414 and His483 provide the three ligands required for the binding of Fe2+ to a catalytic site, while Lys493 provides the residue required for binding of the C-5 carboxyl group of 2-oxoglutarate. His501 is an additional critical residue at the catalytic site, probably being involved in both the binding of the C-1 carboxyl group of 2-oxoglutarate and the decarboxylation of this cosubstrate.  相似文献   

16.
We have used site-specific mutagenesis to study the contribution of Glu 74 and the active site residues Gln 38, Glu 41, Glu 54, Arg 65, and His 85 to the catalytic activity and thermal stability of ribonuclease Sa. The activity of Gln38Ala is lowered by one order of magnitude, which confirms the involvement of this residue in substrate binding. In contrast, Glu41Lys had no effect on the ribonuclease Sa activity. This is surprising, because the hydrogen bond between the guanosine N1 atom and the side chain of Glu 41 is thought to be important for the guanine specificity in related ribonucleases. The activities of Glu54Gln and Arg65Ala are both lowered about 1000-fold, and His85Gln is totally inactive, confirming the importance of these residues to the catalytic function of ribonuclease Sa. In Glu74Lys, k(cat) is reduced sixfold despite the fact that Glu 74 is over 15 A from the active site. The pH dependence of k(cat)/K(M) is very similar for Glu74Lys and wild-type RNase Sa, suggesting that this is not due to a change in the pK values of the groups involved in catalysis. Compared to wild-type RNase Sa, the stabilities of Gln38Ala and Glu74Lys are increased, the stabilities of Glu41Lys, Glu54Gln, and Arg65Ala are decreased and the stability of His85Gln is unchanged. Thus, the active site residues in the ribonuclease Sa make different contributions to the stability.  相似文献   

17.
The adenylate cyclase system of normal mouse islets was characterized. The pH optimum of the system was 7.6. The enzyme preparation contained particulate phosphodiesterase activity. This could be removed by treatment with 0.4% (v/v) Triton X-100 or inhibited by 8mm-theophylline in the presence of 2mm-cyclic AMP (adenosine 3':5'-cyclic monophosphate). ATP at 0.32mm produced one-half maximal enzyme activity. The enzyme was stimulated in the presence of F(-) and strongly inhibited by Ca(2+). The isolated enzyme retained hormonal sensitivity and was stimulated by glucagon, pancreozymin and secretin at physiological concentrations. Glucose at 17mm, 8mm and 2mm had no direct effect on the activity of the enzyme; neither did galactose at the same concentrations. Groups of islets incubated in 17mm- or 2mm-glucose for 5 or 15min and then homogenized and assayed for adenylate cyclase activity showed no differences in adenylate cyclase activity. The results suggest that the mechanism of glucose-mediated insulin release is not via the adenylate cyclase system. Hormones, however, could mediate insulin secretion via their effects on the adenylate cyclase system.  相似文献   

18.
A histidine residue with a pKa of 7 has been inferred to act as a general acid-base catalyst for the reaction of creatine kinase (CK), catalyzing the reversible phosphorylation of creatine by ATP. The chicken sarcomeric muscle mitochondrial isoenzyme Mib-CK contains several histidine residues that are conserved throughout the family of creatine kinases. By X-ray crystal structure analysis, three of them (His 61, His 92, and His 186) were recently shown to be located close to the active site of the enzyme. These residues were exchanged against alanine or aspartate by in vitro mutagenesis, and the six mutant proteins were expressed in E. coli and purified. Structural integrity of the mutant proteins was checked by small-angle X-ray scattering. Kinetic analysis showed the mutant His 61 Asp to be completely inactive in the direction of ATP consumption while exhibiting a residual activity of 1.7% of the wild-type (wt) activity in the reverse direction. The respective His to Ala mutant of residue 61 showed approximately 1% wt activity in the forward and 10% wt activity in the reverse reaction. All other mutants showed near wt activities. Changes in the kinetic parameters K(m) or Vmax, as well as a significant loss of synergism in substrate binding, could be observed with all active mutants. These effects were most pronounced for the binding of creatine and phosphocreatine, whereas ATP or ADP binding were less severely affected. Based on our results, we assume that His 92 and His 186 are involved in the binding of creatine and ATP in the active site, whereas His 61 is of importance for the catalytic reaction but does not serve as an acid-base catalyst in the transphosphorylation of creatine and ATP. In addition, our data support the idea that the flexible loop bearing His 61 is able to move towards the active site and to participate in catalysis.  相似文献   

19.
The CyaC protein, a cyanobacterial adenylate cyclase, has a unique primary structure composed of the catalytic domain of adenylate cyclase and the conserved domains of bacterial two-component regulatory systems, one transmitter domain and two receiver domains. In the present work, CyaC was produced in Escherichia coli as a histidine-tagged recombinant protein and purified to homogeneity. CyaC showed ability to autophosphorylate in vitro with the gamma-phosphate of [gamma-32P]ATP. CyaC derivatives were constructed by site-directed mutagenesis in which the highly conserved phosphorylation sites in the transmitter domain (His572) and receiver domains (Asp60 or Asp895) were replaced by glutamine and alanine residues, respectively. After autophosphorylation of the CyaC derivatives, the chemical stabilities of the phosphoryl groups bound to the derivatives were determined. It was found that His572 is the initial phosphorylation site and that the phosphoryl group once bound to His572 is transferred to Asp895. The enzyme activities of the CyaC derivatives defective in His572 or Asp895 were considerably reduced. Asp895 is phosphorylated by acetyl [32P]phosphate, a small phosphoryl molecule, but Asp60 is not. Acetyl phosphate stimulates adenylate cyclase activity only when Asp895 is intact. These results suggest that the phosphorylation of Asp895 is essential for the activation of adenylate cyclase and that Asp60 functions differently from Asp895 in regulating the enzyme activity.  相似文献   

20.
B G Nair  T B Patel 《Life sciences》1991,49(12):915-923
Adenylate cyclase activity in isolated rat liver plasma membranes was inhibited by NADH in a concentration-dependent manner. Half-maximal inhibition of adenylate cyclase was observed at 120 microM concentration of NADH. The effect of NADH was specific since adenylate cyclase activity was not altered by NAD+, NADP+, NADPH, and nicotinic acid. The ability of NADH to inhibit adenylate cyclase was not altered when the enzyme was stimulated by activating the cyclase was not altered when the enzyme was stimulated by activating the Gs regulatory element with either glucagon or cholera toxin. Similarly, inhibition of Gi function by pertussis toxin treatment of membranes did not attenuate the ability of NADH to inhibit adenylate cyclase activity. Inhibition of adenylate cyclase activity to the same extent in the presence and absence of the Gpp (NH) p suggested that NADH directly affects the catalytic subunit. This notion was confirmed by the finding that NADH also inhibited solubilized adenylate cyclase in the absence of Gpp (NH)p. Kinetic analysis of the NADH-mediated inhibition suggested that NADH competes with ATP to inhibit adenylate cyclase; in the presence of NADH (1 mM) the Km for ATP was increased from 0.24 +/- 0.02 mM to 0.44 +/- 0.08 mM with no change in Vmax. This observation and the inability of high NADH concentrations to completely inhibit the enzyme suggest that NADH interacts at a site(s) on the enzyme to increase the Km for ATP by 2-fold and this inhibitory effect is overcome at high ATP concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号