首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Estradiol (E2) accelerates oviductal egg transport through nongenomic pathways involving oviductal protein phosphorylation in non-mated rats, and through genomic pathways in mated rats. Here we investigated the ability of cervico-vaginal stimulation (CVS) to switch the mode of action of E2 in the absence of other male-associated components. Pro-estrous rats were subjected to CVS with a glass rod and 12 hours later were injected subcutaneously with E2 and intrabursally with the RNA synthesis inhibitor Actinomycin D or the protein phosphorylation inhibitor H-89. The number of eggs in the oviduct, assessed 24 h later, showed that Actinomycin D, but not H-89 blocked the E2-induced egg transport acceleration. This clearly indicates that CVS alone, without other mating-associated signals, is able to shift E2 signaling from nongenomic to genomic pathways. Since mating and CVS activate a neuroendocrine reflex that causes iterative prolactin (PRL) surges, the involvement of PRL pathway in this phenomenon was evaluated. Prolactin receptor mRNA and protein expression in the rat oviduct was demonstrated by RT-PCR and Western blot, but their levels were not different on day 2 of the cycle (C2) or pregnancy (P2). Activated ST AT 5a/b (phosphorylated) was detected by Western blot on P2 in the ovary, but not in the oviduct, showing that mating does not stimulate this PRL signalling pathway in the oviduct. Other rats subjected to CVS in the evening of pro-estrus were treated with bromoergocriptine to suppress PRL surges. In these rats, H-89 did not block the E2-induced acceleration of egg transport suggesting that PRL surges are not essential to shift E2 signaling pathways in the oviduct. We conclude that CVS is one of the components of mating that shifts E2 signaling in the oviduct from nongenomic to genomic pathways, and this effect is independent of PRL surges elicited by mating.  相似文献   

2.
This investigation examined the role of estrogen receptor (ER) on the stimulatory effect of estradiol (E2) on protein phosphorylation in the oviduct as well as on E2-induced acceleration of oviductal oocyte transport in cyclic rats. Estrous rats were injected with E2 s.c. and with the ER antagonist ICI 182 780 intrabursally (i.b.), and 6 h later, oviducts were excised and protein phosphorylation was determined by Western blot analysis. ICI 182 780 inhibited the E2-induced phosphorylation of some oviductal proteins. Other estrous rats were treated with E2 s.c. and ICI 182 780 i.b. The number of eggs in the oviduct, assessed 24 h later, showed that ICI 182 780 blocked the E2-induced egg transport acceleration. The possible involvement of adenylyl cyclase, protein kinase A (PK-A), protein kinase C (PK-C), or tyrosine kinases on egg transport acceleration induced by E2 was then examined. Selective inhibitors of adenylyl cyclase or PK-A inhibited the E2-induced egg transport acceleration, whereas PK-C or tyrosine kinase inhibitors had no effect. Furthermore, forskolin, an adenylyl cyclase activator, mimicked the effect of E2 on ovum transport and E2 increased the level of cAMP in the oviduct of cycling rats. Finally, we measured PK-A activity in vitro in the presence of E2 or E2-ER complex. Activity of PK-A in the presence of E2 or E2-ER was similar to PK-A alone, showing that E2 or E2-ER did not directly activate PK-A. We conclude that the nongenomic pathway by which E2 accelerates oviductal egg transport in the rat requires absolute participation of ER and cAMP and partial participation of PK-A signaling pathways in the oviduct.  相似文献   

3.
In order to explore nongenomic actions of estradiol (E2) and progesterone (P4) in the oviduct, we determined the effect of E2 and P4 on oviductal protein phosphorylation. Rats on Day 1 of the cycle (C1) or pregnancy (P1) were treated with E2, P4, or E2 + P4, and 0.5 h or 2.5 h later their oviducts were incubated in medium with 32P-orthophosphate for 2 h. Oviducts were homogenized and proteins were separated by SDS-PAGE. Following autoradiography, protein bands were quantitated by densitometry. The phosphorylation of some proteins was increased by hormonal treatments, exhibiting steroid specificity and different individual time courses. Possible mediation of the E2 effect by mRNA synthesis or protein kinases A (PK-A) or C (PK-C) was then examined. Rats on C1 treated with E2 also received an intrabursal (i.b.) injection of alpha-amanitin (Am), or the PK inhibitors H-89 or GF 109203X, and 0.5 h later their oviducts were incubated as above plus the corresponding inhibitors in the medium. Increased incorporation of 32P into total oviductal protein induced by E2 was unchanged by Am, whereas it was completely suppressed by PK inhibitors. Local administration of H-89 was utilized to determine whether or not E2-induced egg transport acceleration requires protein phosphorylation. Rats on C1 or P1 were treated with E2 s.c. and H-89 i.b. The number and distribution of eggs in the genital tract assessed 24 h later showed that H-89 blocked the E2-induced oviductal egg loss in cyclic rats and had no effect in mated rats. It is concluded that E2 and P4 change the pattern of oviductal protein phosphorylation. Estradiol increases oviductal protein phosphorylation in cyclic rats due to a nongenomic action mediated by PK-A and PK-C. In the absence of mating, this action is essential for its oviductal transport accelerating effect. Mating changes the mechanism of action of E2 in the oviduct by waiving this nongenomic action as a requirement for E2-induced embryo transport acceleration.  相似文献   

4.
Previously, we found that the dose of estradiol (E2) required to accelerate egg transport increases 5- to 10-fold, in mated compared to cyclic rats. Here we examined protein synthesis in the oviduct of mated and cyclic rats following a single injection of E2 known to accelerate oviductal egg transport or after concomitant treatment with progesterone (P4) known to block this acceleration. On Day 1 of the cycle or pregnancy, E2, P4, or E2 + P4 were injected s.c., and 4 h later oviducts were removed and incubated for 8 h in medium with 35S-methionine. Tissue proteins were separated by SDS-PAGE, and protein bands were quantitated by fluorography and densitometry. In mated rats, E2 and P4 increased different protein bands and P4 did not affect the fluorographic pattern induced by E2. In contrast with mated rats, none of these treatments changed the fluorographic pattern of the oviductal proteins in cyclic rats. Estradiol-induced egg transport acceleration was then compared under conditions in which oviductal protein synthesis was suppressed. Mated and cyclic rats treated with equipotent doses of E2 for accelerating egg transport also received actinomycin D (Act D) locally. Estradiol-induced oviductal egg loss was partially blocked by Act D in mated but had no effect in cyclic rats. We conclude that the oviduct of mated and cyclic rats differs in that only the former responds with increased protein synthesis to a pulse of exogenous E2 and P4 and requires an intact protein synthesis machinery in order to accelerate egg transport in response to E2.  相似文献   

5.

Background  

Mating changes the mode of action of 17beta-estradiol (E2) to accelerate oviductal egg transport from a nongenomic to a genomic mode, although in both pathways estrogen receptors (ER) are required. This change was designated as intracellular path shifting (IPS).  相似文献   

6.
We investigated the temporal relationships between ovum transport and changes in the concentration of nuclear steroid receptors in the oviduct of cyclic and pregnant rats. A lack of parallelism between estrogen and progesterone fluctuations in plasma and their respective nuclear receptor concentrations in the oviduct predominated during egg transport. In pregnant animals, oviductal egg transport took 24 h longer than in nonpregnant animals. In both conditions, transport was initiated while the action of estrogen and progesterone on the oviduct--measured as nuclear receptor accumulation--was decreasing. Three or four days later, depending on whether the animal was pregnant, the eggs entered the uterus shortly after an increase in the nuclear receptor accumulation of both hormones. Treatment with RU486, a progesterone receptor-blocking agent known to cause premature arrival of eggs in the uterus, advanced estrogen receptor accumulation in the oviduct of pregnant rats. These data suggest that the arrival of eggs in the uterus is timed by a transitory increase in nuclear estrogen receptor in the oviduct that does not necessarily reflect a similar change of circulating estradiol. Moreover, in pregnant rats, the onset of this estrogenic action is delayed by a progesterone receptor-mediated effect that hinders nuclear estrogen receptor accumulation.  相似文献   

7.
In cycling and pregnant rats, the eggs stay in the oviduct for approximately 66 and 90 h, respectively. The influence of progesterone in these timings was investigated. An excess or a simulated deficit of progesterone was induced with exogenous progesterone or the antiprogesterone RU486, respectively, beginning on the day of ovulation. The effect of these treatments on egg transport in cycling and pregnant rats was assessed in detail and complemented with determinations of estradiol and progesterone circulating levels and progesterone receptor levels in the oviduct. Accelerated transport of ova followed treatment with RU486 in cycling and pregnant rats but with different features. In cycling rats, acceleration began 24 h after the onset of treatment and was not associated with changes in estradiol levels; in pregnant rats, it started 72 h after treatment and was associated with a 5-fold increase in estradiol circulating levels. Thus, RU486 failed to accelerate ovum transport during the first three days of treatment in pregnant rats, in spite of the fact that no progesterone receptors were available in the oviduct as early as 24 h of treatment. Progesterone administration caused egg retention in the oviducts and a 50% reduction in circulating estradiol levels in cycling rats, whereas in pregnant rats progesterone excess did not change estradiol circulating levels and had no effect on the location of embryos on Days 4 and 5. These results demonstrate a different physiological importance of endogenous progesterone in slowing down oviductal ovum transport in cycling and pregnant rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Zacharia LC  Dubey RK  Jackson EK 《Steroids》2004,69(4):255-261
We have developed a gas chromatography/mass spectrometry (GC/MS) assay to measure 17beta-estradiol (E) and its biologically active metabolites 2-hydroxyestradiol (2OHE) and 4-hydroxyestradiol (4OHE), and 2-methoxyestradiol (2MEOE) and 4-methoxyestradiol (4MEOE) in rat plasma. All analytes are well separated and show a linear relationship between concentration (0.25-5 pg/microl) and signal, and coefficients of variation (CVs) are low. Intra-assay CV for the lowest quality control samples (QCs) (0.375 pg/microl) were on average for 17beta-estradiol 20.5%, for 2-hydroxyestradiol 15.6%, for 4-hydroxyestradiol 16.5%, for 2-methoxyestradiol 16.5%, and for 4-methoxyestradiol 11.5%. The inter-assay CVs for the lowest QCs were for 17beta-estradiol 12.1%, for 2-hydroxyestradiol 7.1%, for 4-hydroxyestradiol 15.5%, for 2-methoxyestradiol 16.7%, and for 4-methoxyestradiol 9.7%. The highest sensitivity for this assay was observed for hydroxyestradiols followed by the methoxyestradiols and 17beta-estradiol. In summary, we describe a convenient, sensitive, and specific assay to measure 17beta-estradiol and its biologically active metabolites.  相似文献   

9.
Progesterone has synergistic or antagonistic effects on several estrogenic actions. The effects of progesterone on estrogen-induced accelerated ovum transport and on the dynamics of estrogen receptors in the rat oviduct were examined. The involvement of the progesterone receptors in these phenomena was assessed. On Day 1 of pregnancy, rats were treated with estradiol, estradiol plus progesterone, or either one plus the progesterone receptor-blocking agent RU486. Control animals received the oil vehicle alone. The number of eggs remaining in the oviduct was assessed 24 h after treatment. Cytoplasmic and nuclear estrogen receptor levels in the oviduct, as well as plasma concentrations of estradiol and progesterone, were measured at various intervals--up to 11 h and 24 h after treatment, respectively. Accelerated oviductal egg transport induced by estrogen was blocked by the concomitant administration of progesterone. This effect of progesterone was not associated with changes in estrogen circulating levels and was preceded by a reduction in the total amount of estrogen receptors and by a shortened retention of estrogen receptors in the nucleus. The effects of progesterone on egg transport and on the levels of estrogen receptors were reversed by blocking the progesterone receptor with RU486, suggesting that both effects were receptor-mediated. These findings demonstrate that progesterone antagonizes the effect of estrogen on oviductal egg transport in the rat, and suggest that this antagonism is mediated by a reduction both in the amount of estrogen receptors and in their retention time in the nucleus.  相似文献   

10.
The effect of the inhibition of nitric oxide synthase (NOS) on ovum transport and oviductal motility in rats was investigated. Three different NOS inhibitors were injected into the ovarian bursa at oestrus or day 3 of pregnancy. Oviducts and uteri were flushed 24 h later and the presence of ova was recorded. In oestrous and pregnant rats, treatment resulted in accelerated egg transport, as shown by a decrease in the number of ova present in the oviducts. In cyclic rats, intrabursal injection of 1 mg kg-1 of either N-monomethyl-L-arginine (L-NMMA) or N omega nitro-L-arginine methyl ester (L-NAME) elicited a 30% reduction in the number of ova present in the oviducts, whereas in pregnant animals, the same dose of L-NMMA produced a reduction of 40%. Simultaneous administration of the NO donor spermine NONOate (5 mg kg-1) completely reversed the effect of L-NMMA. Tubal motility was assessed by microsphere displacement analysis within the oviduct. Surrogate ova were transferred to the oviductal lumen at oestrus and 24 h later the effect of intraoviductal injection of 1 microgram L-NMMA or vehicle was assessed. The microspheres in the isthmus showed an oscillating motion, and periods in which movement was not detectable. However, L-NMMA treatment produced a 3.6-fold increase in the maximum instant velocities and a significant reduction in the resting periods of the microspheres compared with the control group (P < 0.001). These results provide evidence that NO inhibition increases tubal motility that results in accelerated ovum transport, and indicate that NO could act as a paracrine signal between different layers of the oviductal wall, providing a role for endogenous NO in regulation of tubal function.  相似文献   

11.
Intra-oviductal administration of RNA obtained from oviducts of estradiol-treated rats resulted in accelerated egg transport (Ríos et al., 1997). It is probable that estradiol-induced messenger RNA (mRNA) entered oviductal cells and was translated into the proteins involved in accelerated egg transport. In order to test this interpretation we deposited in vivo 50 micrograms of pure beta-galactosidase (beta-gal) mRNA, 50 micrograms of pure DNA from the reporter gene beta-gal under SV40 promoter or the vehicle (control oviducts) into the oviductal lumen of rats. Twenty four hours later the beta-gal activity was assayed in oviductal tissue homogenates using o-nitrophenyl-beta-D-galactopyranoside as a substrate. The administration of beta-gal mRNA and pSVBgal plasmid increased beta-gal activity by 71% and 142%, respectively, over the control oviducts. These results indicate that naked DNA and mRNA coding for beta-gal can enter oviductal cells and be translated into an active enzyme. They are consistent with the interpretation that embryo transport acceleration caused by the injection of estradiol-induced RNA in the oviduct involves translation of the injected mRNA.  相似文献   

12.
The cyclic patterns of hormones which regulate the activity of the oviduct in the cow have not been adequately reported. We studied progesterone (P4), estradiol 17 beta (E2), prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha), oxytocin (OT) and endothelin-1 (ET-1) concentrations in the cow oviduct. Reproductive tracts from cyclic Holstein cows in the follicular phase (n = 5), post ovulation phase (n = 5) and luteal phase (n = 5) were collected at a slaughterhouse. Oviducts were separated from the uterus, the lumen vas washed with physiological saline, and the enveloping connective tissues were removed. The fimbria was then separated at first and then the rest was divided into 2 parts of equal length (proximal and distal). After extraction, levels of different hormones in the tissues were measured using double antibody enzyme immunoassays (EIAs). There were no differences in any hormone concentration between the 3 parts of the oviduct at any stage of the estrous cycle. The highest concentration of oviductal P4 was observed during the luteal phase and in the oviduct ipsilateral to the functioning CL. Oviductal OT was unchanged throughout the cycle. The highest E2 concentration was observed during the follicular phase in the oviduct ipsilateral to the dominant follicle. The oviduct ipsilateral to the dominant follicle during the follicular phase and ipsilateral to the ovulation site post ovulation showed higher levels of PGE2, PGF2 alpha and ET-1 than those on the contralateral side or during the luteal phase. The highest PGE2 was observed in the oviduct ipsilateral to the ovulation site during the post ovulation phase. The results suggest that the ovarian products (P4, OT and E2) and the local oviductal products (PGE2, PGF2 alpha, and ET-1) may synergistically control oviductal contraction for optimal embryo transport during the periovulatory period, and provide further evidence for the local delivery of ovarian steroids to the adjacent reproductive tract.  相似文献   

13.
《Reproductive biology》2022,22(1):100616
The oviduct is a dynamic organ that has not been assigned specific functions during advanced pregnancy. However, since changes in the oviductal epithelium during the estrous cycle are attributed mainly to variations in estradiol (E2) levels, and E2 levels increase along pregnancy, we hypothesized that advanced pregnant cows should present changes in the oviductal epithelium. In advanced pregnant cows, the oviducts showed higher leaf-like folds and lower mucosa width and epithelium height than those of cycling animals. Also, PAS-positive apical protrusions and TUNEL-positive extruded cytoplasmic material were observed in advanced pregnant cows. Oviductal fluid from advanced pregnant cows showed lower protein concentration than that from cycling cows. Transglutaminase 2 (TG2) was detected exclusively in oviductal fluid of pregnant cows but not in cells from any stage, whereas its mRNA was detected in different amounts in cells from all stages. This protein was identified by LC/MS-MS and its identity was corroborated by Western blot. The observations in histology of the epithelium and the presence of TG2 in oviductal fluid correlate with high levels of E2 in serum. In conclusion, important histological changes in the oviductal epithelium and secretion of TG2 to the oviductal fluid appear to be triggered by the high E2 levels exclusive of advanced pregnancy.  相似文献   

14.
15.
Vascular endothelial growth factor (VEGF) is a potent angiogenic and permeability enhancing factor, which shows the highest activity in the oviduct during the periovulatory period of the estrous cycle in cattle. It has also been shown that the contraction activity of oviduct is highest during the periovulatory period. The present study therefore focused on the possible involvement of VEGF in the regulation of biosynthesis and secretion of contraction-relaxation-related substances in the cow oviduct. Possible autonomous VEGF system in the oviduct as well as its endocrine control was also studied. Bovine oviductal epithelial cells (BOEC) in the second passage were cultured with VEGF (1 ng/ml) alone or with luteinizing hormone (LH; 10 ng/ml), estradiol 17-beta (E2; 1 ng/ml), and/or progesterone (P4; 1 ng/ml). The levels of prostaglandins (PGs), endothelin-1 (ET-1), and angiotensin II (Ang II) in the medium were measured using second antibody enzymeimmunoassay (EIA). The mRNA expressions for cycloxygenase-2 (Cox-2), prostaglandin F synthase (PGFS), prostaglandin E synthase (PGES), prepro-ET-1, endothelin converting enzyme-1 (Ece-1), angiotensin converting enzyme-1 (Ace-1), VEGF and its receptors were investigated using real-time RT-PCR. The results indicate that, (1) VEGF dose-dependently stimulated the release of prostaglandin E2 (PGE2), prostaglandin F2alpha (PGF2alpha), and ET-1, but not Ang II. VEGF and VEGF with LH, E2, and P4 upregulated mRNA expression for biosynthesis cascade of PG, ET-1 as well as their release. However, only the combination of VEGF with LH, E2, and P4 upregulated mRNA for Ace-1 and Ang II release, but not VEGF alone. (2) Treatments of LH, with E2 and/or P4 increased the mRNA expression for VEGF, Flk-1 and Flt-1, and (3) VEGF itself downregulated the expression of mRNA for VEGF, and LH, E2, and P4 enhanced this downregulatory effect. The results of the present study provide the first evidence that (1) VEGF directly stimulates the biosynthesis and release of PGE2, PGF2alpha, and ET-1 in the bovine oviduct, (2) LH stimulates the oviductal VEGF system, and (3) VEGF downregulates the oviductal VEGF system and this downregulation was further intensified in the presence of LH. The data suggest that the preovulatory LH-surge, together with increasing E2 secretion from the Graffian follicle and basal P4 levels from the regressing corpus luteum (CL), upregulates the oviductal VEGF system, inducing the maximum oviductal production of contraction-relaxation-related substances for active oviduct contraction and rapid transport of gametes to the fertilization site. However, the oviductal VEGF elevation caused by the LH-surge, appears to downregulate the oviductal VEGF system immediately after ovulation thereby may contribute to suppress oviductal contraction to secure slow transport of the embryo to the uterus at the optimal time.  相似文献   

16.
17.
The mechanisms regulating oviduct function were investigated. In Experiment 1, porcine oviductal secretory protein (pOSP) mRNA, and pOSP and insulin-like growth factor (IGF-I) in oviductal flushings, decreased through the peri-ovulatory period. In Experiment 2, higher plasma steroids in oviductal veins, ipsilateral (INT), rather than contralateral (OVX), to the remaining ovary in unilaterally ovariectomized gilts, were associated with higher pOSP in INT oviductal flushings. In Experiment 3, oviduct function was assessed as part of a collaborative study in cyclic gilts. Feed restriction in the late, compared to the early, luteal phase reduced estradiol concentrations in oviductal plasma, pOSP mRNA in oviductal tissue, and IGF-I concentrations and pOSP abundance in oviduct flushings. Previous insulin treatment differentially affected oviduct function. These data provide the first direct evidence for effects of previous feed restriction and insulin treatment on the oviduct environment in the peri-ovulatory period, which may contribute to nutritional effects on embryonic survival.  相似文献   

18.
19.
Time of embryo transport through the mare oviduct   总被引:1,自引:0,他引:1  
The objectives of this study were 1) to determine the time of embryo transport through the mare oviduct, 2) to determine whether equine embryos increase in diameter prior to the time of oviductal transport, and 3) to assess the stage of equine embryonic development at the time of oviductal transport. The time of oviductal transport (interval from ovulation to uterine entry) was estimated by collecting embryos from the mare oviduct or uterus at 2-hour intervals from 120 to 168 h postovulation. The time of oviductal transport was 130 to 142 h, since 9 9 embryos were located in the oviduct from 120 to 128 h; 7 14 embryos were in the oviduct and 7 14 embryos were in the uterus from 130 to 142 h; and 13 14 embryos were in the uterus from 144 to 168 h postovulation. Embryos collected during the period of oviductal transport (130 h to 142 h) were not significantly larger (P>0.1) in diameter than embryos collected prior to the period of oviductal transport (162.5+/-3.7 vs 156.7+/-3.1 mum, respectively). During the period of oviductal transport, embryos collected from the uterus were not significantly larger (P>0.1) in diameter than embryos collected from the oviduct (160.7+/-3.2 vs 164.3+/-7.0 mum, respectively). During this same period 12 14 embryos were compact morulae, and 2 14 embryos were blastocysts.  相似文献   

20.
In order to examine whether sperm migration into and through the oviduct follows an invariable pattern or is subject to regulation, rats in proestrus, estrus, metestrus, or diestrus were inseminated in the upper third of each uterine horn with 10-20 million epididymal spermatozoa. Three or eight hours later, the numbers of spermatozoa free and adhering to the epithelium in the ampullary and isthmic segments were determined. A significantly higher number of spermatozoa were recovered in estrus than in other stages, at 3 h than at 8 h, and at all stages from the isthmus than from the ampulla. Spermatozoa adhering to the epithelium were observed only in proestrus and estrus and in the isthmus. The effect of exogenous estradiol-17beta (E2) and progesterone (P4) on sperm migration was investigated in rats in which the estrous cycle was inhibited pharmacologically. E2 facilitated sperm migration into the oviduct and P4 antagonized this effect, whereas P4 alone had no effect. Concomitant treatment with E2+P4 induced adhesion of spermatozoa to the oviductal epithelium. In conclusion, the pattern of sperm migration into and through the rat oviduct varies with the stage of the cycle, being dependent on E2 and P4. The adhesion of spermatozoa to the rat oviductal epithelium is stage- and segment-specific and requires the combined action of both hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号