首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D Chen  K T Yue  C Martin  K W Rhee  D Sloan  R Callender 《Biochemistry》1987,26(15):4776-4784
We report the Raman spectra of reduced and oxidized nicotinamide adenine dinucleotide (NADH and NAD+, respectively) and adenosine 5'-diphosphate ribose (ADPR) when bound to the coenzyme site of liver alcohol dehydrogenase (LADH). The bound NADH spectrum is calculated by taking the classical Raman difference spectrum of the binary complex, LADH/NADH, with that of LADH. We have investigated how the bound NADH spectrum is affected when the ternary complexes with inhibitors are formed with dimethyl sulfoxide (Me2SO) or isobutyramide (IBA), i.e., LADH/NADH/Me2SO or LADH/NADH/IBA. Similarly, the difference spectra of LADH/NAD+/pyrazole or LADH/ADPR with LADH are calculated. The magnitude of these difference spectra is on the order of a few percent of the protein Raman spectrum. We report and discuss the experimental configuration and control procedures we use in reliably calculating such small difference signals. These sensitive difference techniques could be applied to a large number of problems where the classical Raman spectrum of a "small" molecule, like adenine, bound to the active site of a protein is of interest. The spectrum of bound ADPR allows an assignment of the bands of the bound NADH and NAD+ spectra to normal coordinates located primarily on either the nicotinamide or the adenine moiety. By comparing the spectra of the bound coenzymes with model compound data and through the use of deuterated compounds, we confirm and characterize how the adenine moiety is involved in coenzyme binding and discuss the validity of the suggestion that the adenine ring is protonated upon binding. The nicotinamide moiety of NADH shows significant molecular changes upon binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
M R Eftink  K Bystr?m 《Biochemistry》1986,25(21):6624-6630
The association of the coenzyme NAD+ to liver alcohol dehydrogenase (LADH) is known to be pH dependent, with the binding being linked to the shift in the pK of some group on the protein from a value of 9-10, in the free enzyme, to 7.5-8 in the LADH-NAD+ binary complex. We have further characterized the nature of this linkage between NAD+ binding and proton dissociation by studying the pH dependence (pH range 6-10) of the proton release, delta n, and enthalpy change, delta Ho(app), for formation of both binary (LADH-NAD+) and ternary (LADH-NAD+-I, where I is pyrazole or trifluoroethanol) complexes. The pH dependence of both delta n and delta Ho(app) is found to be consistent with linkage to a single acid dissociating group, whose pK is perturbed from 9.5 to 8.0 upon NAD+ binding and is further perturbed to approximately 6.0 upon ternary complex formation. The apparent enthalpy change for NAD+ binding is endothermic between pH 7 and pH 10, with a maximum at pH 8.5-9.0. The pH dependence of the delta Ho(app) for both binary and ternary complex formation is consistent with a heat of protonation of -7.5 kcal/mol for the coupled acid dissociating group. The intrinsic enthalpy changes for NAD+ binding and NAD+ plus pyrazole binding to LADH are determined to be approximately 0 and -11.0 kcal/mol, respectively. Enthalpy change data are also presented for the binding of the NAD+ analogues adenosine 5'-diphosphoribose and 3-acetylpyridine adenine dinucleotide.  相似文献   

3.
Interactions between the ligands Mg2+, K+, and substrate and the Na+/K+-activated ATPase were examined in terms of a rapid-equilibrium, random-order, terreactant kinetic scheme for the K+-nitrophenyl phosphatase reaction that is catalyzed by this enzyme. At 37 degrees C and pH 7.5 the derived values for the dissociation constants from the free enzyme were 0.2, 0.08, and 1.4 mM for Mg2+, K+, and substrate, respectively. For Mg2+ interactions, the presence of 20% (v/v) dimethyl sulfoxide (Me2SO) increased the calculated affinity 25-fold; higher concentrations increased affinity still further. Neither reducing the temperature to 20 degrees C nor altering the pH from 6.5 to 8.3 appreciably changed the affinity for Mg2+ in the absence or presence of Me2SO. The Mg2+ sites are thus characterized by an absence of functional groups ionizable in the pH range 6.5-8.3, with binding driven by entropy changes, and with Me2SO, probably through solvation effects on the protein, increasing affinity for Mg2+ close to that for Ca2+ and Mn2+. By contrast, for K+ interactions, the presence of 20% Me2SO increased the calculated affinity only by half; moreover, reducing the temperature to 20 degrees C and the pH to 6.5 both increased affinity and diminished the response to Me2SO. The K+ sites are thus characterized by a marked sensitivity to pH and temperature, presumably through alterations in enzyme conformational equilibria that in turn are modifiable by Me2SO. Inhibition by higher concentrations of Mg2+, which varies inversely with the K+ concentration, was decreased by Me2SO. Finally, for substrate interactions, the presence of 20% Me2SO increased the calculated affinity 4-fold, and, as for Mg2+-binding, neither reducing the temperature nor varying the pH over the range 6.5-8.3 appreciably altered the affinity in the absence or presence of Me2SO. Thus, the substrate sites, like the Mg2+ sites, are characterized by an absence of functional groups ionizable in this range, with binding driven by entropy changes, and with Me2SO increasing affinity for substrate, in this case probably through favoring the partitioning of substrate from the medium into the hydrophobic active site.  相似文献   

4.
An oxidized nicotinamide adenine dinucleotide phosphate/oxidized nicotinamide adenine dinucleotide (NADP+/NAD+) nonspecific L-glutamate dehydrogenase from Bacteroides thetaiotaomicron was purified 40-fold (NADP+ or NAD+ activity) over crude cell extract by heat treatment, (NH4)2SO2 fractionation, diethylaminoethyl-cellulose, Bio-Gel A 1.5m, and hydroxylapatite chromatography. Both NADP+- and NAD+-dependent activities coeluted from all chromatographic treatments. Moreover, a constant ratio of NADP+/NAD+ specific activities was demonstrated at each purification step. Both activities also comigrated in 6% nondenaturing polyacrylamide gels. Affinity chromatography of the 40-fold-purified enzyme using Procion RED HE-3B gave a preparation containing both NADP+- and NAD+-linked activities which showed a single protein band of 48,5000 molecular weight after sodium dodecyl sulfate-polyacrylamide gradient gel electrophoresis. The dual pyridine nucleotide nature of the enzyme was most readily apparent in the oxidative direction. Reductively, the enzyme was 30-fold more active with reduced NADP than with reduced NAD. Nonlinear concave 1/V versus 1/S plots were observed for reduced NADP and NH4Cl. Salts (0.1 M) stimulated the NADP+-linked reaction, inhibited the NAD+-linked reaction, and had little effect on the reduced NADP-dependent reaction. The stimulatory effect of salts (NADP+) was nonspecific, regardless of the anion or cation, whereas the degree of NAD+-linked inhibition decreased in the order to I- greater than Br- greater than Cl- greater than F-. Both NADP+ and NAD+ glutamate dehydrogenase activities were also detected in cell extracts from representative strains of other bacteroides deoxyribonucleic acid homology groups.  相似文献   

5.
We have examined aspects of the second catalytic activity of alcohol dehydrogenase from horse liver (LADH), which involves an apparent dismutation of an aldehyde substrate into alcohol and acid in the presence of LADH and NAD. Using the substrate p-trifluoromethylbenzaldehyde, we have observed various bound complexes by 19F NMR in an effort to further characterize the mechanism of the reaction. The mechanism appears to involve the catalytic activity of LADH · NAD · aldehyde complex which reacts to form an enzyme · NADH · acid complex. The affinity of the acid product for LADH · NADH is weak and the acid product readily desorbs from the ternary complex. The resulting LADH · NADH can then react with a second molecule of aldehyde to form NAD and the corresponding alcohol. The result is the conversion of two molecules of aldehyde to one each of acid and alcohol, with LADH and NAD acting catalytically. This sequence of reactions can also explain the slow formation of acid product observed when alcohol and NAD are incubated with the enzyme.  相似文献   

6.
In the present study we show that the enzymatic activity of the coenzyme nicotinamide adenine dinucleotide (NAD+) and its analogues (C(O)NH2 replaced by C(S)NH2, C(O)CH3, C(O)H and CN) with horse liver alcohol dehydrogenase (LADH) (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) can be rationalized by their conformation in the active site determined with molecular mechanics (AMBER, assisted model building with energy refinement). In order to establish the relation between the hydride transfer rate and the conformation of the NAD+ and its analogues, kinetic experiments with the poor substrate isopropanol were carried out. It appears that the enzymatic activity can be readily explained by the geometry of the pyridinium ring, in particular the magnitude of the 'out-of-plane' rotation of the carboxamide side chain (or analogues). The latter is nicely illustrated in the case of 3-cyanopyridine adenine dinucleotide which lacks any 'out-of-plane' rotation and concomitantly exhibits no significant enzymatic activity.  相似文献   

7.
1. The steady-state parameters kcat and Km and the rate constants of hydride transfer for the substrates isopropanol/acetone; (S)-2-butanol, (R)-2-butanol/2-butanone; (S)-2-pentanol, (R)-2-pentanol/2-pentanone; 3-pentanol/3-pentanone; (S)-2-octanol and (R)-2-octanol have been determined for the native Zn(II)-containing horse-liver alcohol dehydrogenase (LADH) and the specific active-site-substituted Co(II)LADH. 2. A combined evaluation of steady-state kinetic data and rate constants obtained from stopped-flow measurements, allowed the determination of all rate constants of the following ordered bi-bi mechanism: E in equilibrium E.NAD in equilibrium E.NAD.R1R2 CHOH in equilibrium E.NADH.R1R2CO in equilibrium E.NADH in equilibrium E. 3. On the basis of the different substrate specificities of LADH and yeast alcohol dehydrogenase (YADH), a procedure has been developed to evaluate the enantiomeric product composition of ketone reductions. 2-Butanone and 2-pentanone reductions revealed (S)-2-butanol (86%) and (S)-2-pentanol (95%) as the major products. 4. The observed enantioselectivity implies the existence of two productive ternary complexes; E.NADH.(pro-S) 2-butanone and E.NADH.(pro-R) 2-butanone. All rate constants describing the kinetic pathways of the system (S)-2-butanol, (R)-2-butanol/2-butanone have been determined. These data have been used to estimate the expected enantiomer product composition of 2-butanone reductions using apparent kcat/Km values for the two different ternary-complex configurations of 2-butanone. Additionally, these data have been used for computer simulations of the corresponding reaction cycles. Calculated, simulated and experimental data were found to be in good agreement. Thus, the system (S)-2-butanol, (R)-2-butanol/2-butanone is the first example of a LADH-catalyzed reaction for which the stereochemical course could be described in terms of rate constants of the underlying mechanism. 5. The effects of Co(II) substitution on the different steps of the kinetic pathway have been investigated. The free energy of activation is higher for alcohol oxidation and lower for ketone reduction when catalyzed by Co(II)LADH in comparison to Zn(II)LADH. However, the free energies of binding are affected by metal substitution in such a way that the enantioselectivity of ketone reduction is not significantly changed by the substitution of Co(II) for Zn(II). 6. Evaluation of the data shows that substrate specificity and stereoselectivity result from combination of the free energies of binding and activation, with differences in binding energies as the dominating factors. In this regard, the interactions of substrate molecules with the protein moiety are dominant over the interactions with the catalytic metal ion.  相似文献   

8.
A J Sytkowski  B L Vallee 《Biochemistry》1979,18(19):4095-4099
The noncatalytic and catalytic zinc atoms of horse liver alcohol dehydrogenase, [(LADH)Zn2Zn2] or LADH, have been replaced differentially with 109Cd by equilibrium dialysis, resulting in two new enzymatically active species, [(LADH)109Cd2Zn2] and [(LADH)109Cd2109Cd2]. The UV difference spectra of the cadmium enzymes vs. native [(LADH)Zn2Zn2] reveal maxima at 240 nm with molar absorptivities, delta epsilon 240, of 1.6 X 10(4) M-1 cm-1 per noncatalytic 109Cd atom and 0.9 X 10(4) M-1 cm-1 per catalytic 109Cd atom, consistent with coordination of the metals by four and two thiolate ligands, respectively, strikingly similar to the 250-nm charge-transfer absorbance in metallothionein. Carboxymethylation of the Cys-46 ligand to the catalytic metal in LADH presumably lowers the overall stability constant of the coordination complex and results in loss of catalytic 109Cd or catalytic cobalt but not catalytic zinc from the enzyme.  相似文献   

9.
The kinetics of the recombination of the metal-depleted active site of horse liver alcohol dehydrogenase (LADH) with metal ions have been studied over a range of pH and temperature. The formation rates were determined optically, by activity measurements, or by using the pH change during metal incorporation with a pH-indicator as monitor. The binding of Zn2+, Co2+, and Ni2+ ions occurs in a two-step process. The first step is a fast equilibrium reaction, characterized by an equilibrium constant K1. The spectroscopic and catalytic properties of the native or metal-substituted protein are recovered in a slow, monomolecular process with the rate constant k2. The rate constants k2 5.2 X 10(-2) sec-1 (Zn2+), 1.1 X 10(-3) sec-1 (Co2+), and 2 X 10(-4) sec-1 (Ni2+). The rate constants increase with increasing pH. Using temperature dependence, the activation parameters for the reaction with Co2+ and Ni2+ were determined. Activation energies of 51 +/- 2.5 kJ/mol (0.033 M N-Tris-(hydroxymethyl)methyl-2-aminomethane sulfonic acid (TES), pH 6, 9) for Co2+ and 48.5 +/- 4 kJ/mol (0.033 M TES, pH 7, 2) for Ni2+ at 23 degrees C were found. The correspondent activation entropies are - 146 +/- 10 kJ/mol K for Co2+ and - 163 +/- 9 kJ/mol K for Ni2+. Two protons are released during the binding of Zn2+ to H4Zn(n)2 LADH in the pH range 6.8-8.1. The binding of coenzyme, either reduced or oxidized, prevents completely the incorporation of metal ions, suggesting that the metal ions enter the catalytic site via the coenzyme binding domain and not through the hydrophobic substrate channel.  相似文献   

10.
The binding of Zn2+ to tubulin and the ability of this cation to promote the polymorphic assembly of the protein were examined. Equilibrium binding showed the existence of more than 60 potential Zn2+ binding sites on the dimer, including a number of high-affinity sites. The number of high-affinity sites, estimated by using a standard amount of phosphocellulose to remove more weakly bound Zn2+, reached a maximum of 6-7.5 with increasing levels of Zn2+ in the incubation solution. The number also increased with time of incubation at a single Zn2+ concentration. It is suggested that tubulin is slowly denatured in the presence of Zn2+, exposing more binding sites. Cu+ and Cd2+ were effective inhibitors of Zn2+ binding; Mg2+, Mn2+, and Co2+ were much less effective, and Ca2+ was without effect. Zn2+ does not replace the tightly bound Mg2+. GTP reduces the amount of Zn2+ binding under equilibrium conditions and the amount bound to high-affinity sites. Zinc-induced protofilament sheets are produced at a Zn2+/tubulin ratio of 5 in the presence of 0.5 mM GTP, conditions where about two to three Zn2+ ions would be bound to the dimer. At higher GTP concentrations, less assembly occurred, and the products were narrower sheets and microtubules. Zn2+-tubulin, isolated from phosphocellulose, will not assemble unless Mg2+ and dimethyl sulfoxide (Me2SO) or more Zn2+ is added. Broad protofilament sheets, formed from Zn2+-tubulin in the presence of Mg2+ and Me2SO, contain slightly more than one Zn2+ per dimer. It is concluded that Zn2+ stimulates tubulin assembly by binding directly to the protein, not via a ZnGTP complex.  相似文献   

11.
The interactions of the essential divalent cation, Zn2+, with the binary complex formed between glycerol dehydrogenase (glycerol:NAD+ 2-oxidoreductase, EC 1.1.1.6) and its coenzyme NADH have been examined by fluorescence spectroscopy. Both the metallo and non-metallo form of the enzyme bind the coenzyme NADH. The addition of Zn2+ ions to a solution of the binary complex formed between metal-depleted enzyme and NADH results in a rapid increase in fluorescence emission at 430 nm. This has been used to determine the on rate for Zn2+ to the enzyme/binary complex. A dissociation constant of 3.02 +/- 0.25.10(-9) M for the equilibrium between Zn2+ ions and the enzyme has been determined.  相似文献   

12.
We have studied the binding of 1,10-phenanthroline to specifically active-site cobalt(II)-substituted horse-liver alcohol dehydrogenase [Co(II)-LADH]. The dissociation constant is a factor of 6500 smaller than in the native enzyme. Spectral evidence is given which shows that 1,10-phenanthroline does not remove the catalytic Co(II) ion and that binding of 1,10-phenanthroline renders the catalytic metal ion pentacoordinate. The maximum limiting rate constant for the association of 1,10-phenanthroline to Co(II)-LADH is about 60 s-1. This is about a third of the value (169 s-1) determined for native horse-liver alcohol dehydrogenase, Zn(II)LADH [Frolich et al. (1978) Arch. Biochem. Biophys. 189, 471-480]. For cadmium(II)-substituted horse-liver alcohol dehydrogenase, [Cd(II)LADH] the maximum limiting rate constant for association of 1,10-phenanthroline increased to 590 s-1. These findings demonstrate that the rate-limiting step is strongly dependent on the chemical nature of the catalytic metal ion and its immediate environment. 1,10-Phenanthroline is shown to bind to the Co(II)-LADH.NAD+ complex in the open conformation. The maximum limiting rate constant remains unchanged in the presence of NAD+. The data have been used to derive a kinetic scheme for the formation of ternary complexes including NAD+ that involves a slow intermediary step.  相似文献   

13.
The technique of differential scanning calorimetry (DSC) has been applied to the study of temperature-induced irreversible denturation and thus to the heat stability of soluble and Sepharose-bound liver alcohol dehydrogenase (LADH, EC 1.1.1.1) and lactate dehydrogenase (LDH, EC 1.1.1.27) in the presence of various coenzymes or coenzyme fragments. The transition temperature (Ttr) of 82.5 degrees C obtained for soluble LADH was increased by 12.5 degrees C in the presence of a saturating concentration of NACH. In the presence of NAD+, Ttr increased by 8.5 degrees C, whereas ADP-ribose and AMP caused an increase in Ttr of only 2 and 1 degree C, respectively. The Ttr of 85.5 degrees C obtained for Sepharose-bound LADH was increased by about 12 degrees C after the addition of free NADH. However, when the enzyme was immobilized simultaneously with a NADH analogue (which also binds to the matrix), a broad endotherm with a Ttr of 91.5 degrees C was obtained, indicating the presence of immobilized enzyme molecules both with, and without, associated NADH. Corresponding increases in heat stability were observed for LDH in solution in the presence of NADH, NAD+, and AMP, leading to increases in Ttr from 72 to 79.5 and 74 and 73 degrees C, respectively. The addition of pyruvate and NAD+ to the enzyme to form an abortive ternary complex led to the same stabilization as that observed with NADH, attendant with a large increase in the enthalpy of transition, deltaHtr. In these studies the technique of DSC was utilized because it is applicable both to soluble and immobilized enzymes and (1) provides rapid information about Ttr and thus thermal stability of enzymes, (2) different energetic states of an enzyme molecule can be identified, and (3) an overall picture of the thermal process is rapidly obtained.  相似文献   

14.
Submicromolar zinc inhibits alpha-ketoglutarate-dependent mitochondrial respiration. This was attributed to inhibition of the alpha-ketoglutarate dehydrogenase complex (Brown, A. M., Kristal, B. S., Effron, M. S., Shestopalov, A. I., Ullucci, P. A., Sheu, K.-F. R., Blass, J. P., and Cooper, A. J. L. (2000) J. Biol. Chem. 275, 13441-13447). Lipoamide dehydrogenase, a component of the alpha-ketoglutarate dehydrogenase complex and two other mitochondrial complexes, catalyzes the transfer of reducing equivalents from the bound dihydrolipoate of the neighboring dihydrolipoamide acyltransferase subunit to NAD(+). This reversible reaction involves two reaction centers: a thiol pair, which accepts electrons from dihydrolipoate, and a non-covalently bound FAD moiety, which transfers electrons to NAD(+). The lipoamide dehydrogenase reaction catalyzed by the purified pig heart enzyme is strongly inhibited by Zn(2+) (K(i) approximately 0.15 microm) in both directions. Steady-state kinetic studies revealed that Zn(2+) competes with oxidized lipoamide for the two-electron-reduced enzyme. Interaction of Zn(2+) with the two-electron-reduced enzyme was directly detected in anaerobic stopped-flow experiments. Lipoamide dehydrogenase also catalyzes NADH oxidation by oxygen, yielding hydrogen peroxide as the major product and superoxide radical as a minor product. Zn(2+) accelerates the oxidase reaction up to 5-fold with an activation constant of 0.09 +/- 0.02 microm. Activation is a consequence of Zn(2+) binding to the reduced catalytic thiols, which prevents delocalization of the reducing equivalents between catalytic disulfide and FAD. A kinetic scheme that satisfactorily describes the observed effects has been developed and applied to determine a number of enzyme kinetic parameters in the oxidase reaction. The distinct effects of Zn(2+) on different LADH activities represent a novel example of a reversible switch in enzyme specificity that is modulated by metal ion binding. These results suggest that Zn(2+) can interfere with mitochondrial antioxidant production and may also stimulate production of reactive oxygen species by a novel mechanism.  相似文献   

15.
Phenothiazine cation radicals (PTZ + •) irreversibly inactivated Trypanosoma cruzi dihydrolipoamide dehydrogenase (LADH). These radicals were obtained by phenothiazine (PTZ) peroxidation with myeloperoxidase (MPO) or horseradish peroxidase (HRP/H 2 O 2 ) systems. LADH inactivation depended on PTZ structure and incubation time. After 10 min incubation of LADH with the MPO-dependent systems, promazine, trimeprazine and thioridazine were the most effective; after 30 min incubation, chlorpromazine, prochlorperazine and promethazine were similarly effective. HRP-dependent systems were equally or more effective than the corresponding MPO-dependent ones. Chloro, trifluoro, propionyl and nitrile groups at position 2 of the PTZ ring significantly decreased molecular activity, specially with the MPO/H 2 O 2 systems. Comparison of inactivation values for LADH and T. cruzi trypanothione reductase demonstrated a greater sensitivity of LADH to chlorpromazine and perphenazine and a 10-fold lower sensitivity to promazine, thioridazine and trimeprazine. Alkyl-amino, alkyl-piperidinyl or alkyl-piperazinyl groups at position 10 modulated PTZ activity to a limited degree. Production of PTZ + • radicals was demonstrated by optical and ESR spectroscopy methods. PTZ + • radicals stability depended on their structure as demonstrated by promazine and thioridazine radicals. Thiol compounds such as GSH and N -acetylcysteine, l -tyrosine, l -tryptophan, the corresponding peptides, ascorbate and Trolox, prevented LADH inactivation by the MPO/H 2 O 2 /thioridazine system, in close agreement with their action as PTZ + • scavengers. NADH (not NAD + ) produced transient protection of LADH against thioridazine and promazine radicals, the protection kinetics being affected by the relatively fast rate of NADH oxidation by these radicals. The role of the observed effects of PTZ radicals for PTZ cytotoxicity is discussed.  相似文献   

16.
Cultured Friend cells can be induced by dimethyl sulfoxide (Me2SO) and several other agents to mature along the erythroid pathway. Evidence has been presented that an increase in Ca2+ influx is an early and necessary prelude to the commitment to maturation by these cells (Levenson, R., Housman, D., and Cantley, L. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 5948-5952). The simplest hypothesis supporting all the available data is that Me2SO and other inducers elevate the cytosolic Ca2+ concentration. We have now measured cytosolic Ca2+ using the fluorescent indicator quin-2, and find, contrary to expectation, a small decrease upon treatment of cells with Me2SO. Cytosolic Ca2+ was increased by raising the Ca2+ in the medium, but was not dramatically altered by addition of ouabain or monensin or by incubation in Na+-free medium. Measurement of total cell Ca2+ by a triple-labeling technique using 3H2O and 125I-albumin to determine cell water and extracellular space, respectively, revealed no significant change upon treatment with Me2SO for up to 40 h. A decrease in the initial rate of 45Ca2+ influx was observed in Me2SO-treated cells, when measured at 4 degrees C. These data do not support the hypothesis that an increase in cell Ca2+ is necessary for the induction of Friend cell differentiation or that Na+/Ca2+ exchange is a significant regulator of cytosolic Ca2+ in Friend cells.  相似文献   

17.
K H Dahl  M F Dunn 《Biochemistry》1984,23(26):6829-6839
Liver alcohol dehydrogenase (LADH) carboxymethylated at Cys-46 (CMLADH) forms two different ternary complexes with 4-trans-(N,N-dimethylamino)cinnamaldehyde (DACA). The complex with reduced nicotinamide adenine dinucleotide (NADH) is characterized by a 38-nm red shift of the long-wavelength pi, pi* transition to 436 nm, while the complex with oxidized nicotinamide adenine dinucleotide (NAD+) is characterized by a 60-nm red shift to 458 nm. CMLADH also forms a ternary complex with NAD+ and the Z isomer of 4-trans-(N,N-dimethylamino)cinnamaldoxime in which the absorption of the oxime (lambda max = 354 nm) is red shifted 80 nm to 434 nm. Pyrazole and 4-methylpyrazole are weak competitive inhibitors of ligand binding to the substrate site of native LADH. These inhibitors were found to form ternary complexes with CMLADH and NADH which are more stable than the corresponding complexes with the native enzyme. The transient reductions of the aldehydes DACA and p-nitrobenzaldehyde (NBZA) were studied under single-turnover conditions. Carboxymethylation decreases the DACA reduction rate 80-fold and renders the process essentially independent of pH over the region 5-9, whereas this process depends on a pKa of 6.0 in the native enzyme. At pH 7.0, the rate constant for NBZA reduction also is decreased at least 80-fold to a value of 7.7 +/- 0.3 s-1. Since primary kinetic isotope effects are observed when NADH is substituted with (4R)-4-deuterio-NADH (kH/kD = 3.0 for DACA and kH/kD = 2.3 for NBZA), the rate-limiting step for both aldehydes involves hydride transfer. The altered pH dependence is concluded to be due to an increase in the pK value of the zinc-coordinated DACA-alcohol in the ternary complex with NAD+ by more than 3 units. This perturbation is brought about by the close proximity of the negatively charged carboxymethyl carboxylate.  相似文献   

18.
The quenching of the fluorescence of liver alcohol dehydrogenase (LADH) by molecular oxygen has been studied by both fluorescence lifetime and intensity measurements. This was done in the presence of 1 M acrylamide which selectively quenches the fluorescence of the surface tryptophan residue, Trp-15, thus allowing us to focus on the quenching of the deeply buried tryptophan, Trp-314, by molecular oxygen. Such studies yielded a Stern-Volmer plot of F0/F with a greater slope than the corresponding tau o/tau plot. This indicates that both dynamic and static quenching of Trp-314 occurs. The temperature dependence of the dynamic quenching of LADH by oxygen was also studied at three temperatures, from which we determined the activation enthalpy for the quenching of Trp-314 to be about 10 kcal/mol. The oxygen quenching of a ternary complex of LADH, NAD+ and trifluoroethanol was also studied. The rate constant for dynamic quenching of Trp-314 by oxygen was found to be approximately the same in the ternary complex as that in the unliganded enzyme.  相似文献   

19.
The tetrameric glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle binds NAD+ and some of its analogues in a negatively cooperative manner, whereas other NAD+ analogues bind non-cooperatively to this enzyme. Subsequent to alkylation of a fraction of the active sites of the enzyme with the fluorescent SH reagent N-iodoacetyl-N'-(5-sulfo-1-naphthyl)-ethylenediamine, it was found that the alkylated sites bind NAD+ and NAD+ analogues with a markedly reduced affinity as compared with non-alkylated sites. It was therefore feasible to measure the fluorescence and the circular polarization of the luminescence of the enzyme-bound alkyl groups as a function of binding of NAD+ and of NAD+ analogues to the non-alkylated sites. The changes observed indicate that ligand binding to the non-alkylated sites induces changes in the fluorescence properties of the alkyl groups bound to neighbouring subunits, most likely through the protein moiety. The nature of these changes appears to depend on the structure of the coenzyme analogue. The binding of the non-cooperative binders acetyl-pyridine--adenine dinucleotide, ATP and ADP-ribose induce different conformational changes in the neighbouring vacant subunit, as monitored by the spectroscopic properties of the bound alkyl group. These results in conjunction with other data support the view that the negative cooperativity in NAD+ binding to glyceraldehyde-3-phosphate dehydrogenase results from ligand-induced conformational changes. Furthermore, these results further support the view that subtle structural changes in the coenzyme molecule determine the nature of the conformational changes induced within the enzyme tetramer.  相似文献   

20.
Dihydrolipoamide dehydrogenase (LADH) is a FAD-linked subunit of alpha-ketoglutarate, pyruvate and branched-chain amino acid dehydrogenases and the glycine cleavage system. As an oxidoreductase it transfers electrons from the dihydrolipoic acid prosthetic group to the NAD(+) cofactor via its FAD center. Besides its physiological function it is capable of generating harmful reactive oxygen species (ROS) in pathological settings therefore it is implicated in neurodegeneration, ischemia-reperfusion, cancer and several other disorders. Pathological mutants of the enzyme cause severe, sometimes lethal syndromes like hypotonia, metabolic acidosis or inefficiency in development. Recently it has been revealed that LADH is a moonlighting protease when specific mutations in the dimerization surface destabilize the functional homodimer and expose a serine-protease-like catalytic dyad. As the basis of versatile functions of LADH is far from elucidation, there is a constant need for a pure and functional enzyme product for investigations. Several studies used recombinant human LADH before, however, it was generated by more complicated and/or physiologically less compatible protocols than reported here; most papers on functional and structural studies do not even report detailed protocols and characteristics (most importantly the purity) of their protein products. Here we describe the details of an optimized, easy-to-use periplasmic expression and one-step purification protocol for obtaining a highly pure, active and authentic (tag-cleaved) enzyme with the characterization of the protein product. The purified LADH can be used in biophysical and structural studies while the published protocol is easily convertible to a protein labeling procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号