首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterial infection that involves antimicrobial resistance is a rising global threat to public health. Chlorine-based water disinfection processes can inactivate antibiotic resistant bacteria. However, at the same time, these processes may cause the release of antibiotic resistance genes into the water as free DNA, and consequently increase the risk to disseminate antibiotic resistance via natural transformation. Presently, little is known about the contribution of residual chlorine affecting the transformation of extracellular antibiotic resistance genes (ARGs). This study investigates whether chloramine and free chlorine promote the transformation of ARGs and how this may occur. We reveal that both chloramine and free chlorine, at practically relevant concentrations, significantly stimulated the transformation of plasmid-encoded ARGs by the recipient Acinetobacter baylyi ADP1, by up to a 10-fold increase. The underlying mechanisms underpinning the increased transformations were revealed. Disinfectant exposure induced a series of cell responses, including increased levels of reactive oxygen species (ROS), bacterial membrane damage, ROS-mediated DNA damage, and increased stress response. These effects thus culminated in the enhanced transformation of ARGs. This promoted transformation was observed when exposing disinfectant-pretreated A. baylyi to free plasmid. In contrast, after pretreating free plasmid with disinfectants, the transformation of ARGs decreased due to the damage of plasmid integrity. These findings provide important insight on the roles of disinfectants affecting the horizontal transfer of ARGs, which could be crucial in the management of antibiotic resistance in our water systems.Subject terms: Antibiotics, Public health  相似文献   

2.
Antimicrobial resistance (AMR) poses a worldwide threat to human health and biosecurity. The spread of antibiotic resistance genes (ARGs) via conjugative plasmid transfer is a major contributor to the evolution of this resistance. Although permitted as safe food additives, compounds such as saccharine, sucralose, aspartame, and acesulfame potassium that are commonly used as nonnutritive sweeteners have recently been associated with shifts in the gut microbiota similar to those caused by antibiotics. As antibiotics can promote the spread of antibiotic resistance genes (ARGs), we hypothesize that these nonnutritive sweeteners could have a similar effect. Here, we demonstrate for the first time that saccharine, sucralose, aspartame, and acesulfame potassium could promote plasmid-mediated conjugative transfer in three established conjugation models between the same and different phylogenetic strains. The real-time dynamic conjugation process was visualized at the single-cell level. Bacteria exposed to the tested compounds exhibited increased reactive oxygen species (ROS) production, the SOS response, and gene transfer. In addition, cell membrane permeability increased in both parental bacteria under exposure to the tested compounds. The expression of genes involved in ROS detoxification, the SOS response, and cell membrane permeability was significantly upregulated under sweetener treatment. In conclusion, exposure to nonnutritive sweeteners enhances conjugation in bacteria. Our findings provide insight into AMR spread and indicate the potential risk associated with the presence of nonnutritive sweeteners.Subject terms: Microbial ecology, Water microbiology  相似文献   

3.
环境中抗生素抗性基因与I型整合子的研究进展   总被引:3,自引:1,他引:3  
抗生素抗性基因(Antibiotic resistance genes,ARGs)作为一种新型污染物在不同环境中广泛分布、来源复杂,对生态环境和人类健康造成了很大的潜在风险。同时,Ⅰ型整合子(Int Ⅰ)介导的ARGs水平转移是环境中微生物产生耐药性的重要途径,Ⅰ型整合子整合酶基因(intI1)与ARGs丰度在环境中表现出了较高的正相关性,Int Ⅰ可以作为标记物在一定程度上反映ARGs在环境中的迁移转化规律和人类活动影响程度。本文介绍ARGs与Int Ⅰ在环境中的来源与分布,总结Int Ⅰ介导的ARGs迁移转化机制以及相关研究方法,并展望未来的研究发展趋势。  相似文献   

4.
The spread and propagation of antibiotic resistance genes (ARGs) is a worldwide public health concern. Ionic liquids (ILs), considered as “environmentally friendly” replacements for industrial organic solvents, have been widely applied in modern industry. However, few data have been collected regarding the potential ecological and environmental risks of ILs, which are important for preparing for their potential discharge into the environment. In this paper, the IL 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]) (0.001-5.0 g/L) was tested for its effects on facilitating ARGs horizontal transfer mediated by plasmid RP4 in freshwater microcosms. In the horizontal transfer microcosms, the transfer frequency of plasmid RP4 was significantly enhanced (60-fold higher than untreated groups) by the IL [BMIm][PF6] (1.0 g/L). Meanwhile, two strains of opportunistic pathogen Acinetobacter spp. and Salmonella spp. were isolated among the transconjugants, illustrating plasmid RP4 mediated horizontal transfer of ARGs occurred in pathogen. This could increase the risk of ARGs dissemination to human pathogens and pose great threat to public health. The cause that [BMIm[PF6] enhanced the transfer frequency of plasmid RP4 was proposed by suppressed cell membrane barrier and enhanced cell membrane permeability, which was evidenced by flow cytometry (FCM). This is the first report that some ILs facilitate horizontal transfer of plasmid RP4 which is widely distributed in the environment and thus add the adverse effects of the environmental risk of ILs.  相似文献   

5.
Antimicrobial and antibiotics resistance caused by misuse or overuse of antibiotics exposure is a growing and significant threat to global public health. The spread and horizontal transfer of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) by the selective pressure of antibiotics in an aquatic environment is a major public health issue. To develop a better understanding of potential ecological risks die to antibiotics and ARGs, this study mainly summarizes research progress about: (i) the occurrence, concentration, fate, and potential ecological effects of antibiotics and ARGs in various aquatic environments, (ii) the threat, spread, and horizontal gene transfer (HGT) of ARGs, and (iii) the relationship between antibiotics, ARGs, and ARB. Finally, this review also proposes future research direction on antibiotics and ARGs.  相似文献   

6.
Plasmids remain important microbial components mediating the horizontal gene transfer (HGT) and dissemination of antimicrobial resistance. To systematically explore the relationship between mobile genetic elements (MGEs) and antimicrobial resistance genes (ARGs), a novel strategy using single-molecule real-time (SMRT) sequencing was developed. This approach was applied to pooled conjugative plasmids from clinically isolated multidrug-resistant (MDR) Klebsiella pneumoniae from a tertiary referral hospital over a 9-month period. The conjugative plasmid pool was obtained from transconjugants that acquired antimicrobial resistance after plasmid conjugation with 53 clinical isolates. The plasmid pool was then subjected to SMRT sequencing, and 82 assembled plasmid fragments were obtained. In total, 124 ARGs (responsible for resistance to β-lactam, fluoroquinolone, and aminoglycoside, among others) and 317 MGEs [including transposons (Tns), insertion sequences (ISs), and integrons] were derived from these fragments. Most of these ARGs were linked to MGEs, allowing for the establishment of a relationship network between MGEs and/or ARGs that can be used to describe the dissemination of resistance by mobile elements. Key elements involved in resistance transposition were identified, including IS26, Tn3, IS903B, ISEcp1, and ISKpn19. As the most predominant IS in the network, a typical IS26-mediated multicopy composite transposition event was illustrated by tracing its flanking 8-bp target site duplications (TSDs). The landscape of the pooled plasmid sequences highlights the diversity and complexity of the relationship between MGEs and ARGs, underpinning the clinical value of dominant HGT profiles.  相似文献   

7.
环境中抗生素抗性基因的水平传播扩散   总被引:1,自引:0,他引:1  
抗生素抗性基因作为一类新型环境污染物,其在不同环境介质中的传播扩散可能比抗生素本身的环境危害更大,其中,水平基因转移是抗生素抗性基因传播的重要方式,是造成抗性基因环境污染日益严重的原因之一.本文系统阐述了抗生素抗性基因在环境中发生水平转移的主要分子传播元件及其影响因素,这对于正确揭示抗性基因的分子传播机制具有重要意义.结合多重抗药性的传播扩散机制,探讨了行之有效的遏制抗生素抗性基因传播扩散的方法和途径,并针对目前的污染现状,对今后有关抗生素抗性基因水平转移的研究重点进行了展望.  相似文献   

8.
Horizontal transfer of antibiotic resistance genes in a membrane bioreactor   总被引:1,自引:0,他引:1  
Growing attention has been paid to the dissemination of antibiotic resistance genes (ARGs) in wastewater microbial communities. The application of membrane bioreactors (MBRs) in wastewater treatment is becoming increasingly widespread. We hypothesized that the transfer of ARGs among bacteria could occur in MBRs, which combine a high density of bacterial cells, biofilms, and antibiotic resistance bacteria or ARGs. In this study, the transfer discipline and dissemination of the RP4 plasmid in MBRs were investigated by the counting plate method, the MIDI microorganism identification system, and quantitative polymerase chain reaction (qPCR) techniques. The results showed that the average transfer frequency of the RP4 plasmid from the donor strain to cultivable bacteria in activated sludge was 2.76 × 10−5 per recipient, which was greater than the transfer frequency in wastewater and bacterial sludge reported previously. In addition, many bacterial species in the activated sludge had received RP4 by horizontal transfer, while the genera of Shewanella spp., Photobacterium spp., Pseudomonas spp., Proteus spp., and Vibrio spp. were more likely to acquire this plasmid. Interestingly, the abundance of the RP4 plasmid in total DNA remained at high levels and relatively stable at 104 copies/mg of biosolids, suggesting that ARGs were transferred from donor strains to activated sludge bacteria in our study. Thus, the presence of ARGs in sewage sludge poses a potential health threat.  相似文献   

9.
土壤中抗生素耐药性的扩散对全球的公共卫生和食品安全造成威胁,严重挑战人类感染类疾病的预防与治疗.噬菌体介导的抗生素抗性基因(ARGs)的水平转移是环境中抗性基因扩散的重要机制.但是,噬菌体对土壤环境中抗性基因传播的贡献尚未见报道.本文综述了土壤环境中噬菌体的分布特征与影响因子,总结了纯化和富集土壤噬菌体的主要研究方法;...  相似文献   

10.
土壤中抗生素抗性基因(ARGs)污染是全世界面临的重大环境和健康挑战,开发有效技术以减少其负面影响对维护土壤和人类健康至关重要。生物炭具有高碳含量、大表面积、良好的吸附性能和经济优势,可能是一种非常合适的阻控材料。其对ARGs的阻控作用可能归因于以下3种机制: 1) 吸附某些污染物,如抗生素和重金属,减弱ARGs的共选择性压力;2) 通过改变土壤理化特性影响微生物种群结构,从而限制细菌之间ARGs的水平转移;3) 通过吸附或破坏质粒、转座子、整合子等水平转移载体,直接减弱基因水平转移能力。但生物炭对ARGs的阻控效果取决于生物炭的物料来源、热解工艺和添加水平等。此外,生物炭的老化可能会降低其阻控ARGs的效果。生物炭的内源性污染物,如多环芳烃和重金属,也可能导致环境中特定抗生素抗性细菌的富集或诱导水平基因转移。在后续研究中,应根据土壤环境选择合适的生物炭种类,并采取生物炭老化控制措施,以进一步提高生物炭对ARGs的阻控作用。  相似文献   

11.
Animal manures and municipal biosolids recycled onto crop production land carry antibiotic-resistant bacteria that can influence the antibiotic resistome of agricultural soils, but little is known about the contribution of bacteriophage to the dissemination of antibiotic resistance genes (ARGs) in this context. In this work, we quantified a set of ARGs in the bacterial and bacteriophage fractions of agricultural soil by quantitative PCR. All tested ARGs were present in both the bacterial and phage fractions. We demonstrate that fertilization of soil with dairy manure or human biosolids increases ARG abundance in the bacterial fraction but not the bacteriophage fraction and further show that pretreatment of dairy manure can impact ARG abundance in the bacterial fraction. Finally, we show that purified bacteriophage can confer increased antibiotic resistance to soil bacteria when combined with selective pressure. The results indicate that soilborne bacteriophage represents a substantial reservoir of antibiotic resistance and that bacteriophage could play a significant role in the horizontal transfer of resistance genes in the context of an agricultural soil microbiome. Overall, our work reinforces the advisability of composting or digesting fecal material prior to field application and suggests that application of some antibiotics at subclinical concentrations can promote bacteriophage-mediated horizontal transfer of ARGs in agricultural soil microbiomes.  相似文献   

12.
The expanding antibiotic resistance crisis calls for a more in depth understanding of the importance of antimicrobial resistance genes (ARGs) in pristine environments. We, therefore, studied the microbiome associated with Sphagnum moss forming the main vegetation in undomesticated, evolutionary old bog ecosystems. In our complementary analysis of culture collections, metagenomic data and a fosmid library from different geographic sites in Europe, we identified a low abundant but highly diverse pool of resistance determinants, which targets an unexpectedly broad range of 29 antibiotics including natural and synthetic compounds. This derives both, from the extraordinarily high abundance of efflux pumps (up to 96%), and the unexpectedly versatile set of ARGs underlying all major resistance mechanisms. Multi-resistance was frequently observed among bacterial isolates, e.g. in Serratia, Rouxiella, Pandoraea, Paraburkholderia and Pseudomonas. In a search for novel ARGs, we identified the new class A β-lactamase Mm3. The native Sphagnum resistome comprising a highly diversified and partially novel set of ARGs contributes to the bog ecosystem´s plasticity. Our results reinforce the ecological link between natural and clinically relevant resistomes and thereby shed light onto this link from the aspect of pristine plants. Moreover, they underline that diverse resistomes are an intrinsic characteristic of plant-associated microbial communities, they naturally harbour many resistances including genes with potential clinical relevance.Subject terms: Environmental microbiology, Metagenomics, Microbial ecology  相似文献   

13.
14.
Transfer of antibiotic resistance genes by conjugation is thought to play an important role in the spread of resistance. Yet virtually no information is available about the extent to which such horizontal transfers occur in natural settings. In this paper, we show that conjugal gene transfer has made a major contribution to increased antibiotic resistance in Bacteroides species, a numerically predominant group of human colonic bacteria. Over the past 3 decades, carriage of the tetracycline resistance gene, tetQ, has increased from about 30% to more than 80% of strains. Alleles of tetQ in different Bacteroides species, with one exception, were 96 to 100% identical at the DNA sequence level, as expected if horizontal gene transfer was responsible for their spread. Southern blot analyses showed further that transfer of tetQ was mediated by a conjugative transposon (CTn) of the CTnDOT type. Carriage of two erythromycin resistance genes, ermF and ermG, rose from <2 to 23% and accounted for about 70% of the total erythromycin resistances observed. Carriage of tetQ and the erm genes was the same in isolates taken from healthy people with no recent history of antibiotic use as in isolates obtained from patients with Bacteroides infections. This finding indicates that resistance transfer is occurring in the community and not just in clinical environments. The high percentage of strains that are carrying these resistance genes in people who are not taking antibiotics is consistent with the hypothesis that once acquired, these resistance genes are stably maintained in the absence of antibiotic selection. Six recently isolated strains carried ermB genes. Two were identical to erm(B)-P from Clostridium perfringens, and the other four had only one to three mismatches. The nine strains with ermG genes had DNA sequences that were more than 99% identical to the ermG of Bacillus sphaericus. Evidently, there is a genetic conduit open between gram-positive bacteria, including bacteria that only pass through the human colon, and the gram-negative Bacteroides species. Our results support the hypothesis that extensive gene transfer occurs among bacteria in the human colon, both within the genus Bacteroides and among Bacteroides species and gram-positive bacteria.  相似文献   

15.
16.
Anthropogenic environments such as those created by intensive farming of livestock, have been proposed to provide ideal selection pressure for the emergence of antimicrobial-resistant Escherichia coli bacteria and antimicrobial resistance genes (ARGs) and spread to humans. Here, we performed a longitudinal study in a large-scale commercial poultry farm in China, collecting E. coli isolates from both farm and slaughterhouse; targeting animals, carcasses, workers and their households and environment. By using whole-genome phylogenetic analysis and network analysis based on single nucleotide polymorphisms (SNPs), we found highly interrelated non-pathogenic and pathogenic E. coli strains with phylogenetic intermixing, and a high prevalence of shared multidrug resistance profiles amongst livestock, human and environment. Through an original data processing pipeline which combines omics, machine learning, gene sharing network and mobile genetic elements analysis, we investigated the resistance to 26 different antimicrobials and identified 361 genes associated to antimicrobial resistance (AMR) phenotypes; 58 of these were known AMR-associated genes and 35 were associated to multidrug resistance. We uncovered an extensive network of genes, correlated to AMR phenotypes, shared among livestock, humans, farm and slaughterhouse environments. We also found several human, livestock and environmental isolates sharing closely related mobile genetic elements carrying ARGs across host species and environments. In a scenario where no consensus exists on how antibiotic use in the livestock may affect antibiotic resistance in the human population, our findings provide novel insights into the broader epidemiology of antimicrobial resistance in livestock farming. Moreover, our original data analysis method has the potential to uncover AMR transmission pathways when applied to the study of other pathogens active in other anthropogenic environments characterised by complex interconnections between host species.  相似文献   

17.
抗生素耐药基因作为一种新型的环境污染物已引起研究者的高度关注。畜禽养殖业长期将抗生素添加到饲料中,在促进动物生长、预防和治疗动物疾病等方面起了重要作用。这些抗生素大多数不能被动物完全吸收,在动物肠道中诱导出耐抗生素细菌和抗生素耐药基因,并随着粪便排出体外。畜禽粪便作为重要的抗生素、耐抗生素细菌和抗生素耐药基因储存库,通过堆粪、施肥等农业活动进入土壤环境中,可刺激土壤中耐抗生素细菌和抗生素耐药基因的富集。耐药基因借助于基因水平转移等方式在土壤介质中进一步传播扩散,甚至进入植物中随食物链传播,对生态环境和人类健康造成极大的威胁。为了正确评估抗生素耐药基因的生态风险,本文结合国内外相关研究,系统阐述了畜禽粪便-土壤系统中抗生素耐药基因的来源、分布及扩散机制,同时探讨了细菌耐药性的主要研究方法,指出堆肥化处理仍是目前去除抗生素耐药基因的主要手段,并对今后的研究方向进行展望。  相似文献   

18.
陈琳琳  李宝泉 《生态学杂志》2015,26(10):3215-3225
抗生素抗性基因(antibiotic resistance genes, ARGs)作为一种新型的环境污染物,成为多个学科关注的焦点.其在不同环境介质中的扩散和传播具有极大的环境危害性,对人类健康造成严重威胁.插入序列共同区(insertion sequence common region, ISCR),是一种新发现的抗性基因传播元件,因其特殊的遗传结构,能够通过滚环复制及同源重组等机制移动邻近的任何DNA序列,是ARGs在不同DNA分子或不同种属细菌间水平传播的高效媒介.目前世界上发现了27种ISCR元件.大量间接证据表明,ISCR可能与许多耐药基因的移动和扩散有关,特别是多重耐药性(multiple drug resistance, MDR)形成与传播.因此,ISCR很可能是抗生素抗性基因在环境中扩散传播的关键因子.本文就ARGs水平传播、ISCR结构特征、ISCR种类及其相关ARGs及其研究方法等进行综述,并揭示ISCR元件可能的生态风险,提出了今后的研究重点,以期为今后深入开展相关研究打下基础.  相似文献   

19.
Antibiotic resistance is a major challenge to modern medicine. Intraspecies and interspecies dissemination of antibiotic resistance genes among bacteria can occur through horizontal gene transfer. Competence-mediated gene transfer has been reported to contribute to the spread of antibiotic resistance genes in Streptococcus pneumoniae. Induction of the competence regulon is mediated by a 17-amino acid peptide pheromone called the competence stimulating peptide (CSP). Thus, synthetic analogs that competitively inhibit CSPs may reduce horizontal gene transfer. We performed saturated alanine scanning mutagenesis and other amino acid substitutions on CSP1 to screen for analogs that disable genetic transformation in S. pneumoniae. Substitution of the glutamate residue at the first position created analogs that could competitively inhibit CSP1-mediated competence development in a concentration-dependent manner. Additional substitutions of the negatively-charged glutamate residue with amino acids of different charge, acidity and hydrophobicity, as well as enantiomeric D-glutamate, generated analogs that efficiently outcompeted CSP1, suggesting the importance of negative charge and enantiomericity of the first glutamate residue for the function of CSP1. Collectively, these results indicate that glutamate residue at the first position is important for the ability of CSP1 to induce ComD, but is dispensable for the peptide to bind the receptor. Furthermore, these results demonstrate the potential applicability of competitive CSP analogs to control horizontal transfer of antibiotic resistance genes in S. pneumoniae.  相似文献   

20.
Antibiotics resistant genes (ARGs) are frequently detected in different media, such as wastewater, sewage sludge, and livestock manure. ARGs have been evidenced to have more and more threats to our environment because of their increase in species and total abundances causing more attention especially in horizontal gene transfer (HGT). The integron, an important form of mobile gene elements transfer ARGs through HGT, is demonstrated to have a high risk to human beings, and the class 1 integron (intl1), a predominant integron, is a marker of the process of horizontal gene transfer. Tetracycline, sulfonamides, macrolide, beta-lactam, trimethoprim, and quinolone plasmid-mediated resistance genes, which are frequently detected in various media and different treatment processes, have been reported to have significant correlations with intl1. Considering the risk of ARGs, especially those associated with intl1, the removal of intl1 and associated ARGs from water, sludge and livestock manure has attracted much more attention recently. Therefore, the mechanism and removal of intl1 and associated ARGs in water depth treatment, sludge and livestock manure digestion and composting process are reviewed in this paper. Besides, the limitation of the current study in this field is discussed, and the key points in the future investigation are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号