首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The high affinity uptake system for l -glutamate and l -aspartate in rat cerebral cortex may not be specific for these likely excitatory synaptic transmitters, as threo-3-hydroxy- dl -aspartate, l -cysteinesulphinate, l -cysteate and d -aspartate strongly inhibit the observed high affinity uptake of l -[3H]glutamate by rat brain slices in a manner consistent with linear competitive inhibition. These substances should therefore be considered as possible substrates for the transport system. Each of these four acidic amino acids excites central neurones in a manner similar to excitation induced by l -glutamate, and as each might occur in brain tissue, their possible synaptic role should be investigated.
l -Glutamate high affinity uptake was shown to be sodium-dependent, but under certain conditions appeared to be less sensitive than GABA uptake to changes in the external sodium ion concentration, and to drugs which modify sodium ion movements. This may be relevant to the efficiency of the glutamate uptake process during synaptic depolarization induced by glutamate.
l -Glutamate high affinity uptake was inhibited in a relatively nonspecific manner by a variety of drugs including mercurials and some electron transport inhibitors.  相似文献   

2.
Abstract— The uptake of l -aspartate, l -glutamate and glycine each appeared to be mediated by two kinetically distinct systems with apparent Km's of the order of 10 ('high affinity') and 100 μM ('low affinity') in slices of cat spinal cord, whereas the uptake of GABA appeared to be mediated by a single system of high affinity. The high affinity uptake of these amino acids in slices of spinal grey matter was approximately 5 times faster than that in slices of spinal white matter. The high affinity uptake systems in the cord slices survived homogenisation of the tissue under conditions known to preserve nerve terminals. Subcellular fractionation studies indicated that osmotically-sensitive particles of equilibrium density equivalent to that of 1.0 m -sucrose were at least in part responsible for the uptake of these amino acids. Inhibition studies indicated that three structurally specific systems of high affinity transported these amino acids:
  • 1 specific for glycine—not inhibited by GABA or any of the other depressant amino acids found in cat spinal cord;
  • 2 specific for GABA—not inhibited by glycine, taurine, l -aspartate or l -glutamate and (3) specific for l -aspartate and l -glutamate—not inhibited by glycine or GABA but strongly inhibited by various acidic amino acids such as l -cysteate and l -cysteine sulphinate.
The high affinity uptake of these amino acids was not inhibited by any of the known antagonists of the postsynaptic actions of these amino acids—strychnine (glycine), bicuculline and benzyl penicillin (GABA), methioninesulphoximine and l -glutamate diethyl ester (l -aspartate and l -glutamate). p-Chloromercuriphenylsulphonate strongly inhibited the high affinity uptake of glycine and GABA but was much less effective as an inhibitor of l -aspartate/l -glutamate high affinity uptake. This is in good agreement with microelectrophoretic studies in which this mercurial was found to potentiate depression of neuronal firing induced by glycine and GABA much more readily than excitation induced by l -aspartate or l -glutamate. These findings suggest the importance of high affinity transport processes in the removal of amino acids from the synaptic environment.  相似文献   

3.
MUSCIMOL UPTAKE, RELEASE AND BINDING IN RAT BRAIN SLICES   总被引:13,自引:7,他引:6  
Abstract— The GABA analogue, muscimol, was taken up relatively inefficiently compared to GABA by slices of rat cerebral cortex at 37 C. Muscimol uptake followed saturation kinetics (Km ImM. Vm 0.1 μmol g mini and showed an absolute dependence on sodium ions. The relative susceptibilities of muscimol uptake and GABA high affinity uptake to a variety of inhibitors, including (-)-nipecotic acid. (+)-2.4-diaminobutyric acid and arecaidine, and the stimulation of muscimol efflux by 50μM-GABA, suggest that muscimol and GABA share some common transport carriers. Since L-histidine inhibited muscimol uptake hut not GABA high affinity uptake, at least part of the observed muscimol uptake may be mediated by the 'small basic'amino acid transport system. Muscimol appeared to he taken up into nerve terminals, since uptake was inhibited by the neuronal uptake inhibitor cis -3-aminocyclohexanecarboxylic acid but not by the glial uptake inhibitor β-alanine. Muscimol efflux was stimulated in a calcium-dependent manner by an increased potassium ion concentration.
Sodium-independent binding of muscimol was observed in slices of rat cerebral cortex at 4 C. Binding could be inhibited by a variety of substances. including GABA, isoguvacine and (+)-bicuculline methochloride, which are known to inhibit the binding of muscimol to putative GABA receptors associated with synaptic membranes purified from rat brain.  相似文献   

4.
We have used the adenosine-stimulated adenylate cyclase of guinea-pig brain to examine the potency of diazepam as an adenosine uptake inhibitor. Diazepam at concentrations in the range 10--500 microM stimulates the production of cAMP in incubated slices of guinea-pig cerebral cortex, with maximal fivefold stimulations over basal levels by 200 microM diazepam. The increases can be largely (but not completely) blocked by the adenosine antagonist theophylline or by addition of excess adenosine deaminase to the system. It appears that the stimulation of cAMP production is due to a blockade of adenosine uptake which results in an increase in extracellular adenosine and concomitant activation of the adenosine receptor coupled to adenylate cyclase. Since the cAMP response to standard adenosine uptake blockers (dipyridamole, dilazep) can be completely blocked by theophylline or adenosine deaminase, a small component of the diazepam response cannot be explained by an adenosine effect. The concentration of diazepam at which the first significant cAMP increase occurs is 10 microM or slightly lower. This is significantly higher than the concentration of diazepam needed to saturate the pharmacologically characterized central nervous system receptors for benzodiazepines.  相似文献   

5.
gamma-Hydroxybutyrate (GHB) fulfills the main criteria of a neurotransmitter: it is unevenly distributed in C.N.S.; it is synthesized from succinic semi-aldehyde by a specific semi-aldehyde succinic reductase localized in neurons, in some dendrites and synaptic terminals; GHB is released by tissue slice depolarization, this release being reduced by 50-60% in a Ca++ free medium. Tetrodotoxin and verapamil strongly inhibited the depolarization evoked-release; high affinity heterogenously distributed binding sites for gamma-hydroxybutyrate exist in the brain. This binding does not require Na+. The bound gamma-hydroxybutyric acid is not displaceable by GABA or GABA agonists. Binding sites are enriched in the synaptosomal fraction; after micro-iontophoretic application, GHB exerts a depressant action on nigral and neocortical cells which is resistant to the presence of bicuculline methiodide. In neuronal cultures, GHB causes a hyperpolarization similar to that produced by GABA; high affinity uptake system for GHB exists both in purified plasma membrane vesicles and in brain tissue slices. This uptake is dependent on an Na+ gradient and is inhibited by ouaba?n and dinitrophenol; GABA does not modify GHB uptake by rat brain slices; GABA derived GHB has a turnover time almost three times faster than that of whole brain serotonin, 6-8 times as rapid as that of whole brain dopamine and 13-19 times as rapid as that of whole brain norepinephrine.  相似文献   

6.
To assess the functions of Cl- -dependent glutamate "binding" (Cl- -dependent glutamate uptake) in synaptic membranes, possible effects of depolarization on the uptake were examined. When rat cerebral cortical slices were preincubated with depolarizing agents such as veratrine (7 micrograms/ml), 10 microM aconitine, 56 mM K+, and 50 microM monensin, [3H]glutamate uptake by the crude synaptic membranes, which were subsequently prepared from the pretreated slices, was increased by 60-85%. Stimulation of the glutamate uptake by predepolarization was dependent on Na+ but not on Ca2+. The bindings of gamma-[3H]aminobutyric acid and 5-[3H]hydroxytryptamine were not significantly affected by the predepolarization. Veratrine pretreatment increased the maximal density of the glutamate uptake sites without affecting the affinity for glutamate. Several characteristics of the uptake sites increased by the veratrine pretreatment coincided with those of Cl- -dependent glutamate uptake sites. Na+-dependent glutamate binding (Na+-dependent glutamate uptake) to the membranes was not affected by pretreatment with veratrine. The content of endogenous glutamate and the noninulin space in the membrane fractions were not changed by the predepolarization. The increase in the glutamate uptake induced by pretreatment with high K+ was reversible: it returned to the control level after a second incubation of the slices in control medium. These results suggest that the Cl- -dependent glutamate sequestration system in synaptic membranes is regulated by the membrane potential.  相似文献   

7.
Presynaptic nerve terminals when depolarized are sensitive to morphological and functional alteration by horseradish peroxidase. Mouse brain slices, 0.1 mm, depolarized by a K+-HEPES buffer and exposed to horseradish peroxidase exhibited alterations in both synaptic vesicle membrane structure and in high-affinity [14C]γ-aminobutyric acid uptake. The post stimulatory retrieval of synaptic vesicles from the nerve terminal plasma membrane in the presence of horseradish peroxidase resulted in a decrease in the synaptic vesicle population with a concurrent increase in non-synaptic vesicle membrane structures. High-affinity [14C]γ-aminobutyric acid uptake into 0.1-mm slices of mouse cerebral cortex and ponsmedulla-spinal cord was inhibited by 31% and 24%, respectively, after incubation for 60 min in K+-HEPES buffer containing horseradish peroxidase. Superoxide dismutase protected both the synaptic vesicle membrane and the high-affinity uptake system from the deleterious effects of horseradish peroxidase, pointing to the possible involvement of superoxide anion radicals in the horseradish peroxidase-related effects. These horseradish peroxidase induced alterations appear to be directed towards the exposed synaptic vesicle membrane, since non-stimulated brain slices exposed to horseradish peroxidase do not exhibit a reduction in either high- or low-affinity [14C]γ-aminobutyric acid uptake. Low-affinity uptake of [14C]γ-aminobutyric acid and [14C]α-aminoisobutyric acid into cortical slices was not affected after incubation in K+-HEPES with horseradish peroxidase. Low-affinity uptake, however, is reduced by the high-K+/Na+-free stimulatory incubation prior to uptake. It appears, thus, that high- and low-affinity uptake are distinct and different systems, with the high-affinity transport system structurally associated with synaptic vesicle membrane.  相似文献   

8.
Solubilization of an Adenosine Uptake Site in Brain   总被引:1,自引:1,他引:0  
Procedures are described for the solubilization of adenosine uptake sites in guinea pig and rat brain tissue. Using [3H]nitrobenzylthioinosine [( 3H]NBI) the solubilized site is characterized both kinetically and pharmacologically. The binding is dependent on protein concentration and is saturable, reversible, specific, and high affinity in nature. The KD and Bmax of guinea pig extracts are 0.13 +/- 0.02 nM and 133 +/- 18 fmol/mg protein, respectively, with linear Scatchard plots obtained routinely. Similar kinetic parameters are observed in rat brain. Adenosine uptake inhibitors are the most potent inhibitors of [3H]NBI binding with the following order of potency, dilazep greater than hexobendine greater than dipyridamole. Adenosine receptor ligands are much less potent inhibitors of binding, and caffeine is without effect. The solubilized adenosine uptake site is, therefore, shown to have virtually identical properties to the native membrane site. The binding of the adenosine A1 receptor agonist [3H]cyclohexyladenosine [( 3H]CHA) to the solubilized brain extract was also studied and compared with that of [3H]NBI. In contrast to the [3H]NBI binding site [3H]CHA binds to two apparent populations of adenosine receptor, a high-affinity site with a KD of 0.32 +/- 0.06 nM and a Bmax of 105 +/- 30 fmol/mg protein and a lower-affinity site with a KD of 5.50 +/- 0.52 nM and Bmax of 300 +/- 55 fmol/mg protein. The pharmacology of the [3H]CHA binding site is consistent with that of the adenosine receptor and quite distinct from that of the uptake [( 3H]NBI binding) site. Therefore, we show that the adenosine uptake site can be solubilized and that it retains both its binding and pharmacologic properties in the solubilized state.  相似文献   

9.
P M Burger  J Hell  E Mehl  C Krasel  F Lottspeich  R Jahn 《Neuron》1991,7(2):287-293
gamma-Aminobutyric acid (GABA) and glycine are major inhibitory neurotransmitters that are released from nerve terminals by exocytosis via synaptic vesicles. Here we report that synaptic vesicles immunoisolated from rat cerebral cortex contain high amounts of GABA in addition to glutamate. Synaptic vesicles from the rat medulla oblongata also contain glycine and exhibit a higher GABA and a lower glutamate concentration than cortical vesicles. No other amino acids were detected. In addition, the uptake activities of synaptic vesicles for GABA and glycine were compared. Both were very similar with respect to substrate affinity and specificity, bioenergetic properties, and regional distribution. We conclude that GABA, glycine, and glutamate are the only major amino acid neurotransmitters stored in synaptic vesicles and that GABA and glycine are transported by similar, if not identical, transporters.  相似文献   

10.
Previously it has been shown that radiolabelled histamine is taken up by brain slices and may subsequently be released by depolarizing stimuli in a calcium-dependent manner, indicating the involvement of neurons in uptake and release of histamine.The present study demonstrates that after incubation of brain slices with low (nM) concentrations of [3H]histamine the amine may be taken up by (and released from) dopaminergic and serotonergic neurons (nerve terminals). Thus 6-hydroxydopamine- and 5,7-dihydroxytryptamine-induced lesions not only reduced the uptake of [3H]dopamine (in striatal slices) and [3H]serotonin (in hippocampal slices), but also, though to a lesser extent, that of [3H]histamine. Immunocytochemical findings revealed that the neurotoxins did not visibly affect histaminergic neurons. Lesioning of noradrenergic neurons appeared not to alter significantly the uptake of [3H]histamine. Further, various drugs acting on either catecholamine-, serotonin- or opioid-receptors and known to cause presynaptic inhibition of the release of [3H]dopamine or [3H]wrotonin from striatal or hippocampal slices also inhibited [3H]histamine release.It is concluded that incubation of brain slices with low concentrations of [3H]histamine does not result in a selective labelling of histaminergic neurons. The possibility that, unlike other monoamines, histamine is not subject to high-affinity uptake by the nerve terminals from which it was released, is discussed.  相似文献   

11.
The multiple molecular forms of choline acetyltransferase (ChAT) were analysed during the postnatal development of rat brain. Changes in the sodium-dependent, high affinity uptake of [3H]choline (HAUC) and in the efficiency of conversion of labelled choline into ACh in vitro were also examined. Both mature and 7-day old brain contained three molecular forms of ChAT, with isoelectric points of pH 7.3, 7.9 and 8.3, but the immature brain appeared to contain smaller concentrations of the most basic form of the enzyme (pI = 8.3). Of the total choline uptake measured in slices of frontal cortex, adult samples exhibited a greater proportion of HAUC than 7-day samples and appeared to acetylate more efficiently the [3H]choline accumulated by high affinity uptake. This evidence suggests a basic molecular form of ChAT, appearing in rat brain during postnatal development, might be responsible for the efficient coupling of the high affinity uptake and subsequent acetylation of choline in cholinergic nerve terminals.  相似文献   

12.
Metabotropic glutamate receptors (mGluRs) from group III reduce glutamate release. Because these receptors reduce cAMP levels, we explored whether this signaling pathway contributes to release inhibition caused by mGluRs with low affinity for L-2-amino-4-phosphonobutyrate (L-AP4). In biochemical experiments with the population of cerebrocortical nerve terminals we find that L-AP4 (1 mm) inhibited the Ca(2+)-dependent-evoked release of glutamate by 25%. This inhibitory effect was largely prevented by the pertussis toxin but was insensitive to inhibitors of protein kinase C bisindolylmaleimide and protein kinase A H-89. Furthermore, this inhibition was associated with reduction in N-type Ca(2+) channel activity in the absence of any detectable change in cAMP levels. In the presence of forskolin, however, L-AP4 decreased the levels of cAMP. The activation of this additional signaling pathway was very efficient in counteracting the facilitation of glutamate release induced either by forskolin or the beta-adrenergic receptor agonist isoproterenol. Imaging experiments to measure Ca(2+) dynamics in single nerve terminals showed that L-AP4 strongly reduced the Ca(2+) response in 28% of the nerve terminals. Moreover, immunochemical experiments showed that 25-35% of the nerve terminals that were immunopositive to synaptophysin were also immunoreactive to the low affinity L-AP4-sensitive mGluR7. Then, mGluR7 mediates the inhibition of glutamate release caused by 1 mm L-AP4, primarily by a strong inhibition of Ca(2+) channels, although high cAMP uncovers the receptor ability to decrease cAMP.  相似文献   

13.
Abstract— 1. Whereas exogenous l -glutamate enters rat brain cortex slices incubated in a glucose-physiological saline medium by both low affinity (Km= 0.7 mm ) and high affinity (Km= 27?30 μM) processes, the uptake of d -glutamate occurs only by a low affinity (Km= 2mm ) system. 2. d -glutamate appears to release l -glutamate from incubated rat brain cortex slices only to a very small extent, whether the tissue l -glutamate is of endogenous or exogenous origin. 3. Competitive inhibition takes place between l - and d -glutamates at the low affinity carrier. This indicates that a common carrier exists for l - and d -glutamates for the low affinity uptake process. 4. Apparently non-competitive inhibition by d -glutamate of l -glutamate uptake occurs at the high affinity carrier, but the affinity of d -glutamate for this carrier is about 0.4% of that of l -glutamate. 5. Both d -, and l -glutamate exchange freely with labelled d -glutamate taken up by preliminary incubation of the brain slices with this amino acid. Whereas l -glutamate exchanges freely with labelled l -glutamate taken up by preliminary incubation, d -glutamate shows little or no exchange. 6. The uptake of labelled d -glutamate by exchange diffusion into brain slices previously loaded with unlabelled d -glutamate proceeds by a low affinity system. Therefore, the process of exchange diffusion does not necessarily involve a high affinity uptake component. 7. Whereas ouabain suppresses both high and low affinity concentrative uptakes of l - and d -glutamate it has little apparent effect on the exchange diffusion process. 8. Sensitivity to tetrodotoxin of evoked release of l - and d -glutamates, taken up by brain slices by preliminary incubation with these amino acids, indicates that the major proportion of the uptake of exogenous l - or d -glutamate proceeds into non-neuronal structures (presumably the glia). 9. At 0°C non-carrier mediated (passive) diffusion of labelled d - and l -glutamate takes place in brain slices.  相似文献   

14.
l-Glutamate has an excitatory and cytotoxic effect on the central nervous system. It was shown previously that norepinephrine and dopamine uptake and release were affected by in vivo administration of glutamate to adult rats. The kinetic parameters, Km and Vmax of [14C]DA uptake and release were measured on synaptosomal and slices from caudate nucleus under in vitro conditions at different glutamate concentrations. Results showed an important increase in [14C]DA uptake on synaptosomal (> 100%) and slices by lower glutamate concentrations, the affinity for transport system was increased (100%) and its release of high potassium evoked was also increased at 0.5 μM of glutamate. The results suggest the possibility that glutamate may modify DA uptake and release interacting with the DA transporter complex at the synaptic level.  相似文献   

15.
Abstract– (1) The uptake and release of glutamic acid by guinea-pig cerebral cortex slices and rat synaptosomal fractions were studied, comparing the naturally occurring l - and non-natural d -isomers. Negligible metabolism of d -glutamic acid was observed in the slices. (2) Whereas in the cerebral slices the accumulation of glutamic acid was almost the same for the two isomers, d -glutamic acid was accumulated into the synaptosomal fraction at a markedly lower rate than was the L-isomer. (3) The uptake systems for d -isomer into the slices and synaptosomal fraction were found to be of single component, in contrast with the two component systems, high and low affinity components, for the uptake of l -glutamic acid. The apparent Km values for the uptake of d -glutamic acid into the slices and synaptosomal fraction were comparable with those reported for the low affinity components for l -isomer. The uptake systems for d -glutamic acid were dependent on the presence of Na+ ions in the medium, like those for l -glutamic acid and GABA. (4) The evoked release of radioactive preloaded d -glutamic acid was observed both from the slices and synaptosomal fraction following stimulation by high K+ ions in the medium. From these observations, it is evident that the evoked release of an amino acid by depolarization in vitro is not necessarily accompanied by a high affinity uptake process. (5) The uptake of l -glutamic acid, expecially into the synaptosomal fraction, was highly resistant to ouabain. On the other hand, the uptake rate of d -glutamic acid and GABA into the synaptosomal fraction was inhibited by varying concentrations of ouabain in accordance with the inhibition for brain Na-K ATPase. (6) The uptake of l -glutamic acid into subfractions of the P2 fraction was studied in relation to the distribution of the ‘synaptosomal marker enzymes’. An attempt to correlate the activities of enzymes of glutamic acid metabolism with the uptake of l -glutamic acid into the synaptosomal fraction from various parts of brain was unsuccessful. The high affinity uptake of l -glutamic acid was found to be very active in the synaptosomal fraction from any part of brain examined.  相似文献   

16.
Topography of synaptosomal high affinity uptake systems.   总被引:2,自引:0,他引:2  
We have tested the hypothesis that the glycoproteins in the cell membrane of axonal terminals are involved in high affinity uptake of neurotransmitters by studying the effects of lectin binding and trypsin treatment on this process in synaptosomes. Binding of two lectins, Concanavalin A and a lectin isolated from the lentil Lens culinaris, to synaptosomes does not change the uptake of six putative transmitters: L-glutamate, norepinephrine (NE), 5-hydroxytryptamine (5-HT), dopamine, choline (Ch), and γ-aminobutyrate (GABA). While trypsin digestion of surface proteins of synaptosomes has no effect on the uptake of NE, 5-HT, dopamine, Ch and GABA, it reduces the rate of uptake of L-glutamate. This reduction is not due to synaptosomal lysis or a profound conformational change of the synaptic plasma membrane since the maximal velocity of high affinity uptake is reduced drastically with little attendant change in Km.  相似文献   

17.
1. The locations of the high affinity uptakes of glutamate, aspartate and GABA were studied autoradiographically and microchemically in slices of hippocampus and septum in vitro. 2. In hippocampus the distributions of the uptake sites for glutamate and aspartate were very similar, with much higher uptake in zones containing pyramidal cell terminals than in other zones. A reciprocal distribution was found for GABA uptake, which was in agreement with that of GAD. 3. Cutting pyramidal cell axons to CAl reduced the uptake of aspartate and glutamate in the target area in CAl by 80%. 4. Autoradiographically the uptake of aspartate was very high in the dorsal part of the lateral septum, moderately high in nucleus accumbens septi and neostriatum, and very low in the medial septum. GABA uptake was lower in the medial than in the lateral septum, but very high in a narrow transitional zone and in the insula Cajella magna. 5. Transecting the axons from hippocampus and subiculum to septum, gave a 70% reduction in the uptakes of aspartate and glutamate in the lateral septum, but no reduction in the medial septum. 6. Literature data on uptake, content and release of glutamate and aspartate in nerve endings in brain are briefly reviewed.  相似文献   

18.
M Huang  J W Daly 《Life sciences》1974,14(3):489-503
The uptake and incorporation of low concentrations of radioactive adenosine into guinea pig cerebral cortical slices is effectively inhibited by dipyridamole, hexobendine, papaverine, 6-(p-nitrobenzylthio) guanosine, 5′-deoxy-adenosine and N6-phenyladenosine and ineffectively inhibited by other adenosine analogs such as 2-chloroadenosine, 3′-deoxyadenosine and tubercidin or by phosphodiesterase inhibitors such as theophylline, isobutylmethylxanthine, and N, 0-dibutyrylcyclic AMP. When uptake of 10–20
adenosine is inhibited 50–70% by dipyridamole, hexobendine, papaverine or 6-(p-nitrobenzylthio)-guanosine, the adenosine-elicited accumulation of cyclic AMP is potentiated 2–3 fold. Potentiation of the effects of low concentrations of adenosine by various agents parallels more closely their efficacy as inhibitors of adenosine uptake rather than their potency as phosphodiesterase inhibitors. Amine-elicited accumulations of cyclic AMP are enhanced by hexobendine, dipyridamole, papaverine and 6-(p-nitrobenzylthio) guanosine and this enhancement is blocked by an adenosine antagonist, theophylline. The stimulatory effects of the adenosine analogs, 5′-deoxyadenosine, 2-chloroadenosine and N6-phenyladenosine are blocked by theophylline and potentiated by hexobendine. The results are compatible with the hypothesis that the specific inhibition of uptake of adenosine potentiates adenosine or amine-elicited accumulations of cyclic AMP by increasing the effective extracellular concentration of adenosine within the slice. The inhibition or stimulation of cyclic AMP accumulation by adenosine analogs is consonant with differential activities as agonist or antagonist at an extracellular adenosine receptor.  相似文献   

19.
Abstract: Estimates have been made of the amounts and rates of uptake of radioactive branched-chain i-amino acids, L-phenylalanine, and L-glutamine into incubated rat brain cortex slices. Estimates have also been made of the binding of these amino acids to brain cell fragments. It is shown that such binding, as well as the process of passive diffusion, is not affected by the presence of ouabain (0.2 mM), which suppresses the energy-dependent concentrative uptakes of the amino acids investigated. The maximum specific binding of L-glutamine is about three times that of the other amino acids and amounts to about 11% of the total uptake of the amino acid by rat brain cortex slices in 12 min from a medium containing 0.25 mM-glutamine. The sodium-ion concentration of the medium appears not to play a significant role in determining the rate of L-glutamine uptake in brain slices except at relatively low concentrations (<20 mequiv./l). The presence of Na+, however, is essential for the attainment of a tissue-to-medium concentration ratio greater than 2.0 for L-glutamine. At relatively low concentrations (0.25 mM) the rapidity of uptake of L-glutamine into a suspension of nerve terminals exceeds that into brain cortex slices. The uptakes of L-glutamine (Km's = 0.66 mM and 2.25 mM) and of the branched chain L-amino acids (Km's approx. 0.3 mM and 2 mM) by rat brain cortex slices are characterized by a double affinity system, but that of L-phenylalanine has only one affinity system (Km= 0.23 mM). The Km's have been calculated after subtracting the ouabain-insensitive passive uptakes of the amino acids from the total observed uptakes.  相似文献   

20.
Active uptake of 3,4-dihydroxyphenylethylamine (dopamine) is sodium- and temperature-dependent, strongly inhibited by benztropine and nomifensine, and present in corpus striatum and nucleus accumbens. In rat striatum dopamine uptake is related to a receptor that is specifically labelled by [3H]cocaine in the presence of Na+ and is located on dopaminergic terminals. The dopamine uptake is differentially affected in the two areas by single or repeated injections of cocaine. Cocaine inhibits dopamine uptake in slices of corpus striatum. Moreover Na+-dependent [3H]cocaine binding is not detectable in nucleus accumbens. Nomifensine inhibits [3H]dopamine uptake by interacting with low- and high-affinity sites in corpus striatum, but shows only low affinity for dopamine uptake in nucleus accumbens. The present data indicate that different mechanisms are involved in the regulation of dopamine uptake in corpus striatum and nucleus accumbens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号