首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A carboxypeptidase activity has been found in synaptic vesicles (secretory granules) isolated from the cortex and striatum of calf brain which removes amino acids from the carboxy terminus of enkephalin-containing (EC) peptides. The formed enkephalin molecules are not further degraded by this enzyme activity. The preparations were found to be free of cytoplasmic and lysosomal constituents as determined by marker enzyme activities. The vesicle preparations of both cortex and striatum showed differences in the degradation velocities of the various EC peptides depending on size and charge of the amino acid present at the carboxy terminus. The pH optimum of the release of Met-enkephalin from Met-enkephalin-Arg6 has been shown to be between pH 5 and 6. The enzyme activity is inhibited by thiol-blocking agents such as p-hydroxymercuribenzoate and copper ions, but only slightly by metal-chelating agents.  相似文献   

2.
3.
The effects of Mg-ATP, EGTA, EDTA and dicyclohexylcarbodiimide on the changes in the intensity of light scattering were studied in rat brain synaptic vesicles (SV) suspended in saccharose-buffer medium. Specific interactions between SV and isolated synaptic junctional complex were observed in the presence of Mg-ATP and calmodulin. An in vitro model of exocytosis is discussed.  相似文献   

4.
Synaptophysin is one of the major integral membrane proteins of the small (30–50 nm diameter) electron-translucent transmitter-containing vesicles in neurons and of similar vesicles in neuroendocrine cells. Since its expression is tightly linked to the occurrence of these vesicle types, we mutated the X-chromosomally located synaptophysin gene in embryonic stem cells for the generation of synaptophysin-deficient mice in order to study the consequence of synaptophysin ablation for the formation and function of such vesicles in vivo. the behavior and appearance of mice lacking synaptophysin was indistinguishable from that of their litter mates and reproductive capacity was comparable to normal mice. Furthermore, no drastic compensatory changes were noted in the expression of several other neuronal polypeptides or in the mRNA levels of synaptophysin isoforms, the closely related neuronal synaptoporin/synaptophysinII, and the ubiquitous pantophysin. Immunofluorescence microscopy of several neuronal and neuroendocrine tissues showed that overall tissue architecture was maintained in the absence of synaptophysin, and that the distribution of other synaptic vesicle components was not visibly affected. In electron-microscopic preparations, large numbers of vesicles with a diameter of 39.9 nm and an electron-translucent interior were seen in synaptic regions of synaptophysin-deficient mice; these vesicles could be labeled by antibodies against synaptic vesicle proteins, such as synaptobrevin 2.This research was supported by the DFG-SFB 317  相似文献   

5.
Synaptophysin and synaptobrevin are abundant membrane proteins of neuronal small synaptic vesicles. In mature, differentiated neurons they form the synaptophysin/synaptobrevin (Syp/Syb) complex. Synaptobrevin also interacts with the plasma membrane-associated proteins syntaxin and SNAP25, thereby forming the SNARE complex necessary for exocytotic membrane fusion. The two complexes are mutually exclusive. Synaptobrevin is a C-terminally membrane-anchored protein with one transmembrane domain. While its interaction with its SNARE partners is mediated exclusively by its N-terminal cytosolic region it has been unclear so far how binding to synaptophysin is accomplished. Here, we show that synaptobrevin can be cleaved in its synaptophysin-bound form by tetanus toxin and botulinum neurotoxin B, or by botulinum neurotoxin D, leaving shorter or longer C-terminal peptide chains bound to synaptophysin, respectively. A recombinant, C-terminally His-tagged synaptobrevin fragment bound to nickel beads specifically bound synaptophysin, syntaxin and SNAP25 from vesicular detergent extracts. After cleavage by tetanus toxin or botulinum toxin D light chain, the remaining C-terminal fragment no longer interacted with syntaxin or SNAP 25. In contrast, synaptophysin was still able to bind to the residual C-terminal synaptobrevin cleavage product. In addition, the His-tagged C-terminal synaptobrevin peptide 68-116 was also able to bind synaptophysin in detergent extracts from adult brain membranes. These data suggest that synaptophysin interacts with the C-terminal transmembrane part of synaptobrevin, thereby allowing the N-terminal cytosolic chain to interact freely with the plasma membrane-associated SNARE proteins. Thus, by binding synaptobrevin, synaptophysin may positively modulate neurotransmission.  相似文献   

6.
7.
The content of γ-amino butyric acid (GABA) and of other water soluble amino acids in bovine brain synaptic vesicles was determined by a modified automated amino acid analysis method. Following subcellular fractionation, GABA, glutamate and aspartate were distributed largely in the supernatant fractions and in the upper layer of the sucrose gradient. Only 10–20% of the total content was associated with the vesicular fraction. On the other hand, the other water soluble amino acids, such as serine, glycine and alanine, were evenly distributed between cytoplasmic and particulate fractions in a similar pattern to that observed with cytoplasmic enzyme markers. The results may indicate specific association of GABA, glutamate and aspartate with low density particles or cytoplasmic components.  相似文献   

8.
Polarized epithelial cells are responsible for the vectorial transport of solutes and have a key role in maintaining body fluid and electrolyte homeostasis. Such cells contain structurally and functionally distinct plasma membrane domains. Brush border and basolateral membranes of renal and intestinal epithelial cells can be separated using a number of different separation techniques, which allow their different transport functions and receptor expressions to be studied. In this communication, we report a proteomic analysis of these two membrane segments, apical and basolateral, obtained from the rat renal cortex isolated by two different methods: differential centrifugation and free-flow electrophoresis. The study was aimed at assessing the nature of the major proteins isolated by these two separation techniques. Two analytical strategies were used: separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) at the protein level or by cation-exchange high-performance liquid chromatography (HPLC) after proteolysis (i.e., at the peptide level). Proteolytic peptides derived from the proteins present in gel pieces or from HPLC fractions after proteolysis were sequenced by on-line liquid chromatography-tandem mass spectrometry (LC-MS/MS). Several hundred proteins were identified in each membrane section. In addition to proteins known to be located at the apical and basolateral membranes, several novel proteins were also identified. In particular, a number of proteins with putative roles in signal transduction were identified in both membranes. To our knowledge, this is the first reported study to try and characterize the membrane proteome of polarized epithelial cells and to provide a data set of the most abundant proteins present in renal proximal tubule cell membranes.  相似文献   

9.
L-Glutamate is regarded as the major excitatory neurotransmitter in the mammalian CNS. However, whether the released transmitter originates from a cytosolic pool or is discharged from synaptic vesicles by exocytosis (vesicle hypothesis) remains controversial. A problem with the general acceptance of the vesicle hypothesis is that the enrichment of glutamate in synaptic vesicles has not been convincingly demonstrated. In the present study, we have analyzed the glutamate content of synaptic vesicles isolated from rat cerebral cortex by a novel immunobead procedure. A large amount of glutamate was present in these vesicles when a proton electrochemical gradient was maintained across the vesicle membrane during isolation. Compared with the starting fraction, glutamate was enriched more than 10-fold relative to other amino acids. Addition of N-ethylmaleimide prevented glutamate loss during isolation. Isotope exchange experiments revealed that exchange or re-uptake of glutamate after homogenization is negligible. We conclude that rat brain synaptic vesicles contain high levels of glutamate in situ.  相似文献   

10.
The mechanism of HCO3- translocation across the proximal tubule basolateral membrane was investigated by testing for Na+-HCO3- cotransport using isolated membrane vesicles purified from rat renal cortex. As indicated by 22Na+ uptake, imposing an inwardly directed HCO3- concentration gradient induced the transient concentrative accumulation of intravesicular Na+. The stimulation of basolateral membrane vesicle Na+ uptake was specifically HCO3(-)-dependent as only basolateral membrane-independent Na+ uptake was stimulated by an imposed hydroxyl gradient in the absence of HCO3-. No evidence for Na+-HCO3- cotransport was detected in brush border membrane vesicles. Charging the vesicle interior positive stimulated net intravesicular Na+ accumulation in the absence of other driving forces via a HCO3(-)-dependent pathway indicating the flow of negative charge accompanies the Na+-HCO3- cotransport event. Among the anion transport inhibitors tested, 4-4'-diisothiocyanostilbene-2,2'-disulfonic acid demonstrated the strongest inhibitor potency at 1 mM. The Na+-coupled transport inhibitor harmaline also markedly inhibited HCO3- gradient-driven Na+ influx. A role for carbonic anhydrase in the mechanism of Na+-HCO3- cotransport is suggested by the modest inhibition of HCO3- gradient driven Na+ influx caused by acetazolamide. The imposition of Cl- concentration gradients had a marked effect on HCO3- gradient-driven Na+ influx which was furosemide-sensitive and consistent with the operation of a Na+-HCO3- for Cl- exchange mechanism. The results of this study provide evidence for an electrogenic Na+-HCO3- cotransporter in basolateral but not microvillar membrane vesicles isolated from rat kidney cortex. The possible existence of an additional basolateral membrane HCO3(-)-translocating pathway mediating Na+-HCO3- for Cl- exchange is suggested.  相似文献   

11.
Here, to study lipid-protein interactions that contribute to the biogenesis of regulated secretory vesicles, we have developed new approaches by which to label proteins in vivo, using photoactivatable cholesterol and glycerophospholipids. We identify synaptophysin as a major specifically cholesterol-binding protein in PC12 cells and brain synaptic vesicles. Limited cholesterol depletion, which has little effect on total endocytic activity, blocks the biogenesis of synaptic-like microvesicles (SLMVs) from the plasma membrane. We propose that specific interactions between cholesterol and SLMV membrane proteins, such as synaptophysin, contribute to both the segregation of SLMV membrane constituents from plasma-membrane constituents, and the induction of synaptic-vesicle curvature.  相似文献   

12.
Tyrosine protein kinases in membrane fractions from rat cerebral cortex   总被引:1,自引:0,他引:1  
Specific activities of tyrosine tubulin kinase in the particulate fractions from rat cerebellum, medulla oblongata, hypothalamus, striatum, midbrain, and cerebral cortex ranged within 30% of each other and more than 3 times higher than those in the soluble fractions. In the cerebral cortex, tyrosine protein kinase activity toward tubulin and tyrosine-glutamate (1:4) copolymers was mainly distributed in the plasma membrane and the microsome fractions. The kinase activity in cerebral cortex particulate fractions was quantitatively solubilized and separated into two peaks, kinase I and kinase II, by Sephacryl S-300 gel filtration in the presence of 0.2% Nonidet P-40 and 0.2 M NaCl. Kinases I and II were each resolved into 5 active peaks (I-1----5 and II-1----5) by casein-Sepharose column chromatography. The molecular weights of these kinases were estimated from the s20,w values to be 59,000-65,000. The Km values of II-1----5 for tubulin were nearly 10 times higher than those of I-1----5. However, the Km values of the two groups of kinases for tyrosine-glutamate copolymers were not so significantly different. About 60% of the copolymers kinase activity in I-3, I-4, II-3, and II-4 was immunoprecipitable with a saturating amount of monoclonal antibody against pp60c-src. Incubation of the immunoprecipitates with ATP resulted in the autophosphorylation of a 60 kDa protein in I-3 and I-4, and a 52 kDa protein in II-3 and II-4. Immunoblotting also indicated I-3 and I-4 as 60 kDa bands and II-3 and II-4 as 52 kDa bands on SDS-polyacrylamide gels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Summary Glycogen synthetase and phosphorylase activities in the paraboloid glycogen of the accessory cone of the chick retina were studied electron histochemically, while the paraboloid glycogen was observed by electron microscopy.Some of the paraboloid of the accessory cone of the chick retina contained abundant glycogen granules, but some showed no glycogen granules. Some inner segments of the accessory cones were occupied by deposition of glycogen granules.Polyglucose particles synthesized by glycogen synthetase activity in the chick paraboloid were demonstrated in fine granular form with diameter from 70 to 130 Å. These particles were less stainable with lead citrate than native glycogen granules. Synthesized polyglucose particles were located in the cytoplasmic matrices and expanded them. Lamellar and membrane structures were not related to synthesized polyglucose.Polyglucose particles synthesized by phosphorylase activity in the chick paraboloid were located in the cytoplasmic matrices and expanded them widely. Tubular structure appeared to be flattened by deposition of synthesized polyglucose particles. These features showed the resemblance to the inner segment of the accessory cone filled with a great amount of glycogen granules. Synthesized polyglucose was demonstrated in macromolecular form with diameter from 200 to 500 Å. There were no relationships between lamellar or membrane structures and polyglucose.The present study suggests that the chick paraboloid not only is a field for active glycogen metabolism, but also becomes a storage of glycogen.  相似文献   

14.
15.
Uptake of SO(4) (2-) into brush-border membrane vesicles isolated from rat kindey cortex by a Ca(2+)-precipitation method was investigated by using a rapid-filtration technique. Uptake of SO(4) (2-) by the vesicles was osmotically sensitive and represented transport into an intra-vesicular space. Transport of SO(4) (2-) by brush-border membranes was stimulated in the presence of Na(+), compared with the presence of K(+) or other univalent cations. A typical ;overshoot' phenomenon was observed in the presence of an NaCl gradient (100mm-Na(+) outside/zero mm-Na(+) inside). Radioactive-SO(4) (2-) exchange was faster in the presence of Na(+) than in the presence of K(+). Addition of gramicidin-D, an ionophore for univalent cations, decreased the Na(+)-gradient-driven SO(4) (2-) uptake. SO(4) (2-) uptake was only saturable in the presence of Na(+). Counter-transport of Na(+)-dependent SO(4) (2-) transport was shown with MoO(4) (2-) and S(2)O(3) (2-), but not with PO(4) (2-). Changing the electrical potential difference across the vesicle membrane by establishing different diffusion potentials (anion replacement; K(+) gradient+/-valinomycin) was not able to alter Na(+)-dependent SO(4) (2-) uptake. The experiments indicate the presence of an electroneutral Na(+)/SO(4) (2-)-co-transport system in brush-border membrane vesicles isolated from rat kidney cortex.  相似文献   

16.
P Knaus  H Betz 《FEBS letters》1990,261(2):358-360
Synaptophysin is a major integral membrane protein of synaptic vesicles. Its transmembrane topology deduced from the cDNA sequence predicts 4 transmembrane regions and a carboxy-terminal cytoplasmic tail containing a characteristic pentapeptide repeat structure. The monoclonal antibody (mAb), SY38, binds to a cytoplasmic domain of synaptophysin. By using fusion proteins corresponding to truncated forms of the cytoplasmic tail, its epitope was located to a flexible segment in the center of the repeat structure. Four other mAbs (c7.1, c7.2, c7.3, c7.4) share the same epitope, which thus emerges as the major immunogenic region of this membrane protein.  相似文献   

17.
X-irradiation of the rat brain (1000R, at two days of age), suppresses the normal age-related increase in the weight of the cerebellum and cerebral hemispheres and influences amino acid levels. The decrease in glutamic acid concentration, particularly in the cerebellum, supports the previously advanced proposition that this amino acid may be associated with, or may be the transmitter of, the rat cerebellar granule cells. Subfractionation of the cerebellar tissue reveals that the decrease in the glutamic acid level consequent to the loss of granule cells, is reflected in the cytoplasmic fraction but not in the synaptic vesicle subfraction, where glutamic acid was increased. The reduced weight gain in the cerebral hemispheres after irradiation, is accompanied by a significant decrease of aspartate in the cytoplasmic fraction, changes which suggest that a specific cell type, with aspartic acid as its neurotransmitter (possibly in the hippocampus), may also be radiosensitive in the early postnatal period. In contrast, in the synaptic vesicle fraction from cerebral hemispheres, all free amino acids, with the exception of glutamine, increased significantly. Overall, the changes in free amino acid concentration induced by X-irradiation in the cytoplasmic fraction in both brain regions studied are opposite to those found in the synaptic vesicle fraction and although they may indicate changes in specific cell populations, as proposed above, they could also reflect changes in cellular compartmentalization and metabolism or changes in the relative axonal arborization of the affected regions.Special Issue dedicated to Dr. Elizabeth Roboz-Einstein.  相似文献   

18.
The conductivity of planar bilayer membrane comprising asolectin and phosphatidylserine (concentration ratio 9:1) in a buffer solution increased sharply in the presence of synaptic vesicles (SV) isolated from the rat brain and added to one side of the membrane only. The bilayer remained stable upon modification, and the conductivity increment was dependent on SV concentration in the range from 4 to 16 mu of the total protein per ml. If I mM CaCl2 was present in the buffer solution, the conductivity increased by 2 to 3 orders of magnitude upon the addition of SV at a final concentration of 3-4 mu protein per ml. The membrane was unstable and its rupture occurred often at an early stage of conductivity changes. In the absence of SV addition the membrane was stable, with its conductivity remaining unchanged for 2 h and more. With I mM CaCl2 addition to the solution already containing SV, no conductivity changes were observed, the cause perhaps, being Ca2+-induced SV aggregation.  相似文献   

19.
Rabbits were immunized with cholinergic synaptic vesicles isolated from the electric organ of Torpedo marmorata. The resultant antiserum had one major antibody activity against an antigen called the Torpedo vesicle antigen. This antigen could not be demonstrated in muscle, liver or blood and is therefore, suggested to be nervous-tissue specific. The vesicle antigen was quantified in various parts of the nervous system and in subcellular fractions of the electric organ of Torpedo marmorata and was found to be highly enriched in synaptic vesicle membranes. The antigen bound to concanavalin A, thereby demonstrating the presence of a carbohydrate moiety. By means of charge-shift electrophoresis, amphiphilicity was demonstrated, indicating that the Torpedo vesicle antigen is an intrinsic membrane protein. The antigen was immunochemically unrelated to other brain specific proteins such as 14-3-2, S-100, the glial fibrillary acidic protein and synaptin. Furthermore, it was unrelated to two other membrane proteins, the nicotinic acetylcholine receptor and acetylcholinesterase, present in Torpedo electric organ. The antiserum against Torpedo synaptic vesicles did not react with preparations of rat brain synaptic vesicles or ox adrenal medullary chromaffin granules.  相似文献   

20.
Abstract— Homogenates of neuronal perikarya isolated from the cerebral cortex of the 8-day-old rat were incubated with [3H]leucine, and the characteristics of the protein synthetic process were studied. Incorporation of leucine into protein was linear up to 90 min, proceeded optimally at pH 7.6 and was stimulated by K+ and NH4+, unaffected by Li+ and inhibited by Na+. Puromycin, cycloheximide, RNAse, sulphhydryl blocking agents and phospholipase A exerted a pronounced inhibition, whereas chloramphenicol and phospholipase C had no effect. About 42 per cent of the total radioactive protein formed in the optimally fortified in uitro system was recovered in non-sedimentable form. Incorporation into the subcellular fractions of the neuronal perikarya increased steadily with increasing time of incubation. The microsomal fraction acquired the highest specific radioactivity (d.p.m./mg of protein), followed by the mitochondrial and the nuclear + cell debris fractions. The high-speed soluble fraction exhibited the lowest specific radioactivity. Although the addition of L-methionine to a suitably fortified incubation medium inhibited neuronal protein synthesis by about 80 per cent, the addition of D-methionhe, α-methyl-DL-methionine or L-tryptophan was relatively ineffective by comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号