首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ulla B. Rasmussen  Hartmut Wohlrab 《BBA》1986,852(2-3):306-314
Peptide maps were generated of the CNBr-digested mitochondrial phosphate-transport protein and ADP/ATP carrier from bovine and rat heart, rat liver and blowfly flight muscle. Total mitochondrial proteins from the same sources plus pig heart were separated by SDS-polyacrylamide gel electrophoresis. The peptide maps and the total mitochondrial proteins were electroblotted onto nitrocellulose membranes and reacted with rabbit antisera raised against the purified bovine heart phosphate-transport protein and the ADP/ATP carrier. On the basis of antibody specificity, mobility in SDS-polyacrylamide gel electrophoresis, and peptide maps the following was concluded. (1) Phosphate-transport protein and phosphate-transport protein β (pig and bovine heart) react equally with the first and also with the second of two independent phosphate-transport protein-antisera. (2) Tissue-specific structural domains exist for both the phosphate-transport protein and the ADP/ATP carrier, i.e., one phosphate-transport protein-antiserum reacts with the phosphate-transport protein from all assayed sources, the other only with the cardiac phosphate-transport protein. These differences may reflect tissue-specific regulation of phosphate and adenine nucleotide transport. (3) Homologies among the different species are found for the phosphate transport protein and the ADP/ATP carrier, except for the flight muscle ADP/ATP carrier. These conserved structural domains of the phosphate-transport protein may relate directly to catalytic activity. (4) Alkylation of the purified phosphate-transport proteins and the ADP/ATP carriers by the transport inhibitor N-ethylmaleimide affects electrophoretic mobilities but not the antibody binding. (5) Neither of the two phosphate-transport protein-antisera nor the ADP/ATP-carrier antiserum react with both phosphate transport protein and ADP/ATP carrier, even though these two proteins possess similarities in primary structure and function. Possible mechanisms for generating tissue-specific structural differences in the proteins are discussed.  相似文献   

2.
Treatment of normal human fibroblasts with epidermal growth factor (EGF) results in the rapid (0.5 min) and simultaneous tyrosine phosphorylation of the EGF receptor (EGFr) and several other proteins. An exception to this tyrosine phosphorylation wave was a protein (42 kDa) that became phosphorylated on tyrosine only after a short lag time (5 min). We identified this p42 kDa substrate as the microtubule-associated protein (MAP) kinase using a monoclonal antibody to a peptide corresponding to the C-terminus of the predicted protein (Science 249, 64-67, 1990). EGF treatment of human fibroblasts at 37 degrees C for 5 min resulted in the tyrosine phosphorylation of 60-70% of MAP kinase as determined by the percent that was immunoprecipitated with antiphosphotyrosine antibodies. Like other tyrosine kinase growth factor receptors, the EGFr is activated and phosphorylated at 4 degrees C but is not internalized. Whereas most other substrates were readily tyrosine phosphorylated at 4 degrees C, MAP kinase was not. When cells were first stimulated with EGF at 4 degrees C and then warmed to 37 degrees C without EGF, tyrosine phosphorylation of MAP kinase was again observed. Treatment of cells with the protein kinase C activator phorbol myristate acetate (PMA) also resulted in the tyrosine phosphorylation of MAP kinase, and again only at 37 degrees C. Tryptic phosphopeptide maps demonstrated that EGF and PMA both induced the phosphorylation of the same peptide on tyrosine and threonine. This temperature and PMA sensitivity distinguishes MAP kinase from most other tyrosine kinase substrates in activated human fibroblasts.  相似文献   

3.
We have developed polyclonal antibodies (SA226P) to a peptide of the human connexin43 (Cx43) protein between amino acids 271 and 288 containing phosphorylated S279 and S282. Antibodies specific for the phosphorylated form of the peptide were isolated by double immunoaffinity chromatography and were characterised using proteins of the cell line WB-F344, known to contain large amounts of Cx43. SA226P recognises specifically the slowest migrating Cx43 band in immunoblots of proteins isolated from untreated cells. In immunofluorescence experiments SA226P scarcely stains the plasma membrane in untreated cells in contrast to a commercial antibody recognising all isoforms of the Cx43 protein. EGF or stress treatment of the cells results in a rapid increase in the phosphorylated forms of Cx43 as revealed by immunoblotting. Immunofluorescence experiments reveal that both phosphorylated and non-phosphorylated Cx43 could be found at the plasma membrane. Whether phosphorylation of S279/S282 takes place before or after incorporation of Cx43 into the membranes is so far unknown. More interestingly, confocal microscopy using our antibodies and a commercial antibody recognising all isoforms of Cx43 shows the coexistence of differentially phosphorylated forms of the protein at the plasma membrane. Our results indicate that MAP kinases erk1/2 are mainly responsible for this phosphorylation, as already published. Nevertheless, treatment of the cells with anisomycin, known to activate stress kinase p38 but not erk1/2, also results in a weak but reproducible Cx43 phosphorylation.  相似文献   

4.
Independent protein kinases in the synaptic junction (SJ) isolated from rat cerebrum were characterized. SJ showed a protein kinase activity, phosphorylating intrinsic proteins, even in the absence of cyclic AMP or Ca2+ plus calmodulin (CaM) exogenously added. The activity was affected neither by Ca2+ concentrations in the physiological fluctuation range nor by the addition of specific ligands such as glutamate, aspartate, acetylcholine, and concanavalin A. The activity was not due to cyclic AMP-dependent protein kinase in SJ, since the activity was not inhibited by an inhibitor protein for cyclic AMP-dependent protein kinase, and since synapsin I was not specifically phosphorylated whereas cyclic AMP-dependent kinase appeared to phosphorylate selectively the protein in SJ. Phosphorylation of SJ proteins by the independent kinases was about one-third of that of the Ca2+/CaM-dependent protein kinase intrinsic to SJ. The apparent Km for ATP was estimated to be 700 microM. Proteins of 16K Mr and 117K Mr were specifically phosphorylated under the basic condition (in the absence of the substances known to activate specifically protein kinases), as well as six other proteins both under the basic conditions and in the presence of Ca2+ and CaM. The phosphorylation of 150K Mr, 60K Mr, 51K Mr, and 16K Mr SJ proteins was enhanced after prephosphorylation of SJ proteins by intrinsic kinase in the presence of Ca2+ and CaM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
It has been shown that the level of expression of microtubule-associated protein 4 (MAP4) mRNAs changes throughout neonatal heart development [Chapin SJ, et al. 1995. Biochemistry 34:2289]. In the present study, both immunofluorescence and western blotting methods were used to monitor MAP4 protein expression levels in the developing heart. By both methods, it was shown that the levels of total MAP4 protein were maximal during the first postnatal week, and then declined progressively to adulthood. In addition, four major electrophoretic species that reacted with MAP4-specific antibodies (called bands 1-4) were observed in all heart tissue samples. Three of the four bands decreased in abundance throughout postnatal development, but at different rates. The fourth band remained relatively constant in abundance with increasing postnatal age. To determine if phosphorylation events might contribute to this heterogeneity, western blotting experiments using phospho-specific antibodies and phosphatase digestion of extract samples were performed. No phosphorylation-specific antibody staining was observed and no significant changes were demonstrated in the bands after phosphatase treatment, implying that the observed complexity was due mainly to alternative start site or differential isoform expression. Finally, it was discovered that cardiomyocyte MAP4 associated with drug- and cold-stable microtubules in early neonatal myocytes. Thus, the complex regulation of MAP4 protein expression may play a key role in the functional differentiation of myocyte microtubules during heart development.  相似文献   

6.
Quantitative immunoassays to discriminate and quantitate phospholamban and its phosphorylation states in heart homogenates were developed using known amounts of protein determined by amino acid analysis. Synthetic 1-52 phospholamban, the hydrophilic 1-25 peptide, and 1-25 phosphopeptides containing P-Ser(16), P-Thr(17), and dually phosphorylated (P-Ser(16), P-Thr(17)) were used to calibrate immunoblot systems. In addition, synthetic 1-52 peptide was phosphorylated using cAMP-dependent protein kinase (P-Ser(16)) or Ca(2+)-calmodulin protein kinase (P-Thr(17)) and then separated from unphosphorylated 1-52 by HPLC prior to quantitation. Further, canine cardiac sarcoplasmic reticulum was phosphorylated in vitro using [gamma-(32)P]-ATP with cAMP-dependent protein kinase and/or Ca(2+)-calmodulin-dependent protein kinase as well as sequential phosphorylation in both orders to assess the veracity of antibody recognition of phosphorylated forms. Western blots proved useful in characterizing the reactivity of the different antibodies to phospholamban and phosphorylated phospholamban, but were inefficient for accurate quantitation and problems with antibody recognition of dually phosphorylated phospholamban were found. mAb 1D11 recognized all forms of phospholamban, polyclonal antibodies 285 and PS-16 were highly selective for P-Ser(16) phospholamban but had diminished reactivity to diphosphorylated (P-Ser(16), P-Thr(17)) phospholamban, and polyclonal antibody PT-17, although selective for P-Thr(17) phospholamban, generated very weak signals on Western blots and reacted poorly with diphosphorylated phospholamban. Results in quantitative immunodot blot experiments were even more compelling. None of the phosphorylation specific antibodies reacted with the diphospho 1-25 phospholamban peptide. Transgenic mouse hearts expressing varying levels of PLB and ferret heart biopsy samples taken before and after isoproterenol perfusion were analyzed. In all samples containing phospholamban, a basal level of Ser(16) phosphorylation (about 4% of the total PLB population) and a lesser amount of Thr(17) phosphorylation was observed. Upon isoproterenol perfusion, Ser(16) phosphorylation increased only to 17% of the total phospholamban population with a similar change in Thr(17) phosphorylation. This suggests that phospholamban phosphorylation may serve as an electrostatic switch that dissociates inactive calcium pump complexes into catalytically active units. Thus, direct correlations between phospholamban phosphorylation state and contractile parameters may not be valid.  相似文献   

7.
Brain tau protein is phosphorylated in vitro by cdc2 and MAP2 kinases, obtained through immunoaffinity purification from rat brain extracts. The phosphorylation sites are located on the tau molecule both upstream and downstream of the tubulin-binding motifs. A synthetic peptide comprising residues 194-213 of the tau sequence, which contains the epitope recognized by the monoclonal antibody tau-1, is also efficiently phosphorylated in vitro by cdc2 and MAP2 kinases. Phosphorylation of this peptide markedly reduces its interaction with the antibody tau-1, as it has been described for tau protein in Alzheimer's disease. Both cdc2 and MAP2 kinases are present in brain extracts obtained from Alzheimer's disease patients. Interestingly, the level of cdc2 kinase may be increased in patient brains as compared with non-demented controls. These results suggest a role for cdc2 and MAP2 kinases in phosphorylating tau protein at the tau-1 epitope in Alzheimer's disease.  相似文献   

8.
Stathmin is a ubiquitous soluble protein (Mr approximately 19,000, pI approximately 6.2-5.5) whose phosphorylation is associated with the intracellular mechanisms involved in the regulations of cell differentiation and functions by extracellular effectors. Its purification from rat brain and the preparation of specific antibodies allowed us to identify a set of immunologically related unphosphorylated (N1, N2) and phosphorylated (P1, P2a, P2b, P3) proteins of decreasing isoelectric points. All these proteins yielded identical silver-stained or 32P-radioactive peptide maps with the protease V8 from Staphylococcus aureus, indicating that they are also structurally related. In vitro phosphorylation with the exogenous catalytic subunit of the cAMP-dependent protein kinase, as well as dephosphorylation with alkaline phosphatase, indicated that P1, P2, and P3 derived from N1 and N2 by progressive phosphorylation. Phosphorylation of individual proteins extracted from semi-preparative two-dimensional polyacrylamide gels demonstrated the existence of two distinct isoforms of stathmin, alpha and beta: N1 and N2 are their respective unphosphorylated forms (alpha O and beta O), whereas proteins P1-P3 could be resolved as at least three increasingly phosphorylated forms of both alpha and beta stathmin (alpha 1, alpha 2, alpha(3) and beta 1, beta 2, beta(3]. In intact pituitary GH4C1 cells, hormones like thyrotropin-releasing hormone and vasoactive intestinal peptide induced a similar conversion from N1 and N2 to P1, P2, and P3. The phosphorylation of both alpha and beta isoforms of stathmin is therefore a physiologically significant response to specific extracellular regulatory agents. In conclusion, stathmin represents a family of at least two distinct protein isoforms, whose respective phosphorylation and expression might play a role in its likely function as an intracellular relay of various converging extracellular signals.  相似文献   

9.
A protein tyrosine kinase has been purified from the particulate fraction of bovine spleen to a specific activity of 0.217 mumol/min/mg at 100 microM ATP and 3 mM [Val5] angiotensin II. Both the angiotensin phosphorylation activity and immunoreactivity towards an antibody preparation raised against a synthetic peptide containing the autophosphorylation site of pp60c-src, Cys-src(403-421), were monitored during the purification. The purified sample displayed three closely spaced protein bands with molecular weights of 50-55 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All bands could be phosphorylated exclusively on tyrosine residues under autophosphorylation conditions. All reacted on immunoblots with an antibody raised against a synthetic peptide corresponding to the consensus autophosphorylation site of members of the pp60c-src family of tyrosine kinases. Tryptic phosphopeptide maps of the three proteins were essentially indistinguishable. The results suggest that the purified enzyme preparation contained mainly three closely related pp60c-src-family protein tyrosine kinases or a pp60src-family protein tyrosine kinase modified posttranslationally to give three closely spaced protein bands on sodium dodecyl sulfate gel. Neither of these proteins appears to be pp60c-src or p56lck. The spleen protein tyrosine kinase was found to phosphorylate a p34cdc2 kinase peptide, Cys-cdc2(8-20), which contained the regulatory tyrosine residue Tyr-15 about 20 times better than [Val5]angiotensin II or Cys-src(403-421) peptide at a peptide substrate concentration of 1 mM. In contrast, epidermal growth factor receptor kinase partially purified from A431 cells did not show preference for Cys-cdc2(8-20) as its substrate. Although Cys-cdc2(8-20) contained two tyrosine residues, only the tyrosine corresponding to Tyr-15 in p34cdc2 was phosphorylated by the spleen tyrosine kinase. The observation suggests that the primary structure surrounding Tyr-15 of p34cdc2 contains substrate structural determinants specific for the spleen tyrosine kinase.  相似文献   

10.
Purified protein kinase C phosphorylates microtubule-associated protein 2   总被引:9,自引:0,他引:9  
We have investigated actions of purified protein kinase C on microtubule- and microfilament-related proteins. Among the cytoskeletal proteins examined, microtubule-associated protein 2 (MAP2) was found to serve as a good substrate. Other cytoskeletal proteins, tubulin, fodrin, cofilin, tropomyosin, and 53,000-Da protein, were very poorly phosphorylated. The amino acid residues of MAP2 that were phosphorylated by the protein kinase C were almost exclusively serine. The peptide mapping analysis indicated that protein kinase C and cAMP-dependent protein kinase phosphorylate MAP2 differently. The ability of MAP2 to interact with actin was markedly reduced by this protein kinase C-mediated phosphorylation. These data raise the possibility that phosphorylation of MAP2 by activated protein kinase C may be involved in cell-surface signal transduction.  相似文献   

11.
An antibody directed against rat brain microtubule-associated protein 2 (MAP2) immunoprecipitated a protein of 240 kDa from a Xenopus oocyte extract. In contrast, in Xenopus brain extract, this antibody recognizes a protein of 280 kDa. The oocyte MAP2-related protein (called O-MAP) is present in both prophase I and metaphase II-blocked oocytes as demonstrated by immunoblotting experiments; it is in vivo phosphorylated. Immunocytochemical studies using the anti-rat brain MAP2 antibody demonstrated that the O-MAP colocalizes within the cortical microtubular array present in both prophase I and metaphase II oocytes. However, O-MAP is not associated with the microtubular structures which are organized during the oocyte prophase-metaphase transition, i.e., a giant cytoplasmic network and both the meiotic spindles. O-MAP therefore appears as a microtubule-associated protein oocyte specific and may play a role in the regulation of microtubule stability and the organization of the oocyte cytoskeleton.  相似文献   

12.
Spinach (Spinacia oleracea L.) leaf sucrose-phosphate synthase (SPS) can be inactivated by phosphorylation of Ser-158 by calmodulin-like domain protein kinases (CDPKs) or SNF1-related protein kinases (SnRK1) in vitro. While the phosphorylation site sequence is relatively conserved, most of the deduced sequences of SPS from dicot species surrounding the Ser-158 regulatory phosphorylation site contain a Pro residue at P-4 (where P is the phosphorylated Ser); spinach is the exception and contains an Arg at P-4. We show that a Pro at P-4 selectively inhibits phosphorylation of the peptide by a CDPK relative to a SnRK1. The presence of a Pro at P-4, by allowing a tight turn in the peptide substrate, may interfere with proper binding of residues at P-5 and beyond. Both kinases had greater activity with peptides having basic residues at P-6 and P+5 (in addition to the known requirement for an Arg at P-3/P-4), and when the residue at P-6 was a His, the pH optimum for phosphorylation of the peptide was acid shifted. The results are used to predict proteins that may be selectively phosphorylated by SnRK1s (as opposed to CDPKs), such as SPS in dicot species, or may be phosphorylated in a pH-dependent manner.  相似文献   

13.
The photoaffinity label 8-azido[32P]adenosine 3':5'-monophosphate (8-azido-cyclic [32P]AMP) was used to analyze both the cAMP-binding component of the purified cAMP-dependent protein kinase, and the cAMP-binding proteins present in crude tissue extracts of bovine cardiac muscle. 8-Azido-cyclic [32P]AMP reacted specifically and in stoichiometric amounts with the cAMP-binding proteins of bovine cardiac muscle. Upon phosphorylation, the purified cAMP-binding protein from bovine cardiac muscle changed its electrophoretic mobility on sodium dodecyl sulfate-polyacrylamide gels from an apparent molecular weight of 54,000 to an apparent molecular weight of 56,000. In tissue extracts of bovine cardiac muscle, most of the 8-azido-cyclic [32P]AMP was incorporated into a protein band with an apparent molecular weight of 56,000 which shifted to 54,000 upon treatment with a phosphoprotein phosphatase. Thus a substantial amount of the cAMP-binding protein appeared to be in the phosphorylated form. Autoradiograms following sodium dodecyl sulfate-polyacrylamide gel electrophoresis of both the pure and impure cAMP-binding proteins labeled with 8-azido-cyclic [32P]AMP revealed another binding component with a molecular weight of 52,000 which incorporated 32P from [gamma-32P]ATP without changing its electrophoretic mobility. Limited proteolysis of the 56,000- and 52,000-dalton proteins labeled with 32P from either [gamma-32P]ATP.Mg2+ or 8-azido-cyclic [32P]AMP showed patterns indicating homology. On the other hand, peptide maps of the major 8-azido-cyclic [32P]AMP-labeled proteins from tissue extracts of bovine cardiac muscle (Mr = 56,000) and rabbit skeletal muscle (Mr = 48,000) displayed completely different patterns as expected for the cAMP-binding components of types II and I protein kinases. Both phospho- and dephospho-cAMP-binding components from the purified bovine cardiac muscle protein kinase were also resolved by isoelectric focusing on polyacrylamide slab gels containing 8 M urea. The phosphorylated forms labeled with 32P from either [gamma-32P]ATP or 8-azido-cyclic [32P]AMP migrated as a doublet with a pI of 5.35. The 8-azido-cyclic [32P]AMP-labeled dephosphorylated form also migrated as a doublet with a pI of 5.40. The phosphorylated and dephosphorylated cAMP-binding proteins migrated with molecular weights of 56,000 and 54,000, respectively, following a second dimension electrophoresis in sodium dodecyl sulfate. The lower molecular weight cAMP-binding component (Mr = 52,000) was also apparent in these gels. Similar experiments with the cAMP-binding proteins present in tissue extracts of bovine cardiac muscle indicate that they are predominantly in the phosphorylated form.  相似文献   

14.
Peptide maps were generated of the CNBr-digested mitochondrial phosphate-transport protein and ADP/ATP carrier from bovine and rat heart, rat liver and blowfly flight muscle. Total mitochondrial proteins from the same sources plus pig heart were separated by SDS-polyacrylamide gel electrophoresis. The peptide maps and the total mitochondrial proteins were electroblotted onto nitrocellulose membranes and reacted with rabbit antisera raised against the purified bovine heart phosphate-transport protein and the ADP/ATP carrier. On the basis of antibody specificity, mobility in SDS-polyacrylamide gel electrophoresis, and peptide maps the following was concluded. Phosphate-transport protein alpha and phosphate-transport protein beta (pig and bovine heart) react equally with the first and also with the second of two independent phosphate-transport protein-antisera. Tissue-specific structural domains exist for both the phosphate-transport protein and the ADP/ATP carrier, i.e., one phosphate-transport protein-antiserum reacts with the phosphate-transport protein from all assayed sources, the other only with the cardiac phosphate-transport protein. These differences may reflect tissue-specific regulation of phosphate and adenine nucleotide transport. Homologies among the different species are found for the phosphate transport protein and the ADP/ATP carrier, except for the flight muscle ADP/ATP carrier. These conserved structural domains of the phosphate-transport protein may relate directly to catalytic activity. Alkylation of the purified phosphate-transport proteins and the ADP/ATP carriers by the transport inhibitor N-ethylmaleimide affects electrophoretic mobilities but not the antibody binding. Neither of the two phosphate-transport protein-antisera nor the ADP/ATP-carrier antiserum react with both phosphate transport protein and ADP/ATP carrier, even though these two proteins possess similarities in primary structure and function. Possible mechanisms for generating tissue-specific structural differences in the proteins are discussed.  相似文献   

15.
All dividing cells entering the M phase of the cell cycle undergo the transient activation of an M-phase-specific histone H1 kinase which was recently shown to be constituted of at least two subunits, p34cdc2 and cyclincdc13. The DNA-binding high-mobility-group (HMG) proteins 1, 2, 14, 17, I, Y and an HMG-like protein, P1, were investigated as potential substrates of H1 kinase. Among these HMG proteins, P1 and HMG I and Y are excellent substrates of the M-phase-specific kinase obtained from both meiotic starfish oocytes and mitotic sea urchin eggs. Anticyclin immunoprecipitates, extracts purified on specific p34cdc2-binding p13suc1-Sepharose and affinity-purified H1 kinase display strong HMG I, Y and P1 phosphorylating activities, demonstrating that the p34cdc2/cyclincdc13 complex is the active kinase phosphorylating these HMG proteins. HMG I and P1 phosphorylation is competitively inhibited by a peptide mimicking the consensus phosphorylation sequence of H1 kinase. HMG I, Y and P1 all possess the consensus sequence for phosphorylation by the p34cdc2/cyclincdc13 kinase (Ser/Thr-Pro-Xaa-Lys/Arg). HMG I is phosphorylated in vivo at M phase on the same sites phosphorylated in vitro by H1 kinase. P1 is phosphorylated by H1 kinase on sites different from the sites of phosphorylation by casein kinase II. The three thermolytic phosphopeptides of P1 phosphorylated in vitro by purified H1 kinase are all present in thermolytic peptide maps of P1 phosphorylated in vivo in proliferating HeLa cells. These phosphopeptides are absent in nonproliferating cells. These results demonstrate that the DNA-binding proteins HMG I, Y and P1 are natural substrates for the M-phase-specific protein kinase. The phosphorylation of these proteins by p34cdc2/cyclincdc13 may represent a crucial event in the intense chromatin condensation occurring as cells transit from the G2 to the M phase of the cell cycle.  相似文献   

16.
DX particles of poliovirus are deletion mutants that do not induce synthesis of capsid proteins or the precursor of capsid proteins (NCVPla) during infection. However, cells infected with DX particles synthesize two proteins, p68 and p25, that are not detected during growth of standard virus, and a protein of 27 000 (p27) which is comparable in molecular weight to VP3. Peptide maps of these proteins were obtained by partial digestion with Staphylococcus aureus V8 protease and elastase. The peptide map of p68 corresponded approximately 70% with the peptide map of NCVPla, and antiserum against virions reacted with p68. These data suggest that p68 is a large fragment of NCVPla. Digestion of purified structural proteins VP1, VP2, and VP3 yielded distinct peptide maps, but p25 was resistant to both V8 protease and elastase and did not react noticeably with anticapsid antibody. Peptide maps obtained for in vivo viral proteins migrating with a molecular weight of 27 000 were complex, indicating the presence of at least two and possibly three proteins. Cells infected with standard gs and gr viruses produced authentic VP3, but cells infected with defective interfering particles did not. However, one gr variant of standard virus contained a mutation in structural protein VP2.  相似文献   

17.
A major determinant of neuronal morphology is the cytoskeleton. And one of the main regulatory mechanisms of cytoskeletal proteins is the modification of their phosphorylation state via changes in the relative activities of protein kinases and phosphatases in neurons. In particular, the microtubule-associated protein 2 (MAP2) family of proteins are abundant cytoskeletal components predominantly expressed in neurons and have been found to be substrates for most of protein kinases and phosphatases present in neurons, including glycogen-synthase kinase 3 (GSK3). It has been suggested that changes in GSK3-mediated MAP phosphorylation may modify MT stability and could control neuronal development. We have previously shown that MAP2 is phosphorylated in vitro and in situ by GSK3 at Thr1620 and Thr1623, located in the proline-rich region of MAP2 and recognized by antibody 305. However, the function of the phosphorylation of this site of MAP2 is still unknown. In this study, non-neuronal COS-1 cells have been co-transfected with cDNAs encoding MAP2C and either wild type or mutated GSK3beta to analyze possible effects on microtubule stability and on the association of MAP2 with microtubules. We have found that GSK3beta phosphorylates MAP2C in co-transfected cells. Moreover, this phosphorylation is inhibited by the specific GSK3 inhibitor lithium chloride. Additionally, the formation of microtubule bundles, which is observed after transfection with MAP2C, was decreased when MAP2C was co-transfected with GSK3beta wild type. Microtubule bundles were not observed in cells expressing MAP2C phosphorylated at the site recognized by antibody 305. The absence of microtubule bundles was reverted after treatment of MAP2C/GSK3beta wild type transfected cells with lithium chloride. Highly phosphorylated MAP2C species, which were phosphorylated at the site recognized by antibody 305, appeared in cells co-transfected with MAP2C and GSK3beta wild type. Interestingly, these MAP2C species were enriched in cytoskeleton-unbound protein preparations. These data suggests that GSK3-mediated phosphorylation of MAP2 may modify its binding to microtubules and regulate microtubule stability.  相似文献   

18.
Calmodulin-Dependent Protein Phosphorylation in Synaptic Junctions   总被引:8,自引:4,他引:4  
Synaptic junctions (SJs) from rat forebrain were examined for Ca2+/calmodulin (CaM)-dependent kinase activity and compared to synaptic plasma membrane (SPM) and postsynaptic density (PSD) fractions. The kinase activity in synaptic fractions was examined for its capacity to phosphorylate endogenous proteins or exogenous synapsin I, in the presence or absence of Ca2+ plus CaM. When assayed for endogenous protein phosphorylation, SJs contained approximately 25-fold greater amounts of Ca2+/CAM-dependent kinase activity than SPMs, and fivefold more activity than PSDs. When kinase activities were measured by phosphorylation of exogenous synapsin I, SJs contained fourfold more activity than SPMs, and 10-fold more than PSDs. The phosphorylation of SJ proteins of 60- and 50-kilodalton (major PSD protein) polypeptides were greatly stimulated by Ca2+/CaM; levels of phosphorylation for these proteins were 23- and 17-fold greater than basal levels, respectively. Six additional proteins whose phosphorylation was stimulated 6-15-fold by Ca2+/CAM were identified in SJs. These proteins include synapsin I, and proteins of 240, 207, 170, 140, and 54 kilodaltons. The 54-kilodalton protein is a highly phosphorylated form of the major PSD protein and the 170-kilodalton component is a cell-surface glycoprotein of the postsynaptic membrane that binds concanavalin A. The CaM-dependent kinase in SJ fractions phosphorylated endogenous phosphoproteins at serine and/or threonine residues. Ca2+-dependent phosphorylation in SJ fractions was strictly dependent on exogenous CaM, even though SJs contained substantial amounts of endogenous CaM (15 micrograms CaM/mg SJ protein). Exogenous CaM, after being functionally incorporated into SJs, was rapidly removed by sequential washings. These observations suggest that the SJ-associated CaM involved in regulating Ca2+-dependent protein phosphorylation may be in dynamic equilibrium with the cytoplasm. These findings indicate that a brain CaM-dependent kinase(s) and substrate proteins are concentrated at SJs and that CaM-dependent protein phosphorylation may play an important role in mechanisms that underlie synaptic communication.  相似文献   

19.
Smooth muscle caldesmon was phosphorylated in vitro by sea star p44mpk up to 2.0 mol of phosphate/mol of protein at both Ser and Thr residues. The phosphorylation sites were contained mainly in the COOH-terminal 10-kDa cyanogen bromide fragment which houses the binding sites for calmodulin, tropomyosin, and F-actin. Tryptic peptide maps of 32P-labeled caldesmon by p44mpk and p34cdc2 showed that while both enzymes recognized similar sites of phosphorylation, they have different preferred sites. Phosphorylation of caldesmon attenuated slightly its interaction with actin and had no effect on its binding to calmodulin and tropomyosin. Smooth muscle cell extracts from chicken gizzard and rat aorta contained 42- and 44-kDa proteins, respectively, which were cross-reactive with an antibody to sea star p44mpk. Immunoprecipitates from gizzard and aorta cell extracts, generated with the p44mpk antibody, possessed kinase activities toward myelin basic protein as well as caldesmon. These results suggest that MAP kinase may have functions in the differentiated smooth muscle cells distinct from those involved in the cell cycle.  相似文献   

20.
p27SJ, a novel protein isolated from St John's wort (Hypericum perforatum), belongs to an emerging family of DING proteins that are related to a prokaryotic phosphate‐binding protein superfamily. Here we demonstrate that p27SJ exhibits phosphatase activity and that its expression in cells decreases the level of phosphorylated Erk1/2, a key protein of several signaling pathways. Treatment of p27SJ‐expressing cells with phosphatase inhibitors including okadaic acid, maintained Erk1/2 in its phosphorylated form, suggesting that dephosphorylation of Erk1/2 is mediated by p27SJ. Further, expression of p27SJ affects Erk1/2 downstream regulatory targets such as STAT3 and CREB. Moreover, the level of expression of cyclin A that associates with active ERK1/2 and is regulated by CREB, was modestly reduced in p27SJ‐expressing cells. Accordingly, results from in vitro kinase assays revealed a noticeable decrease in the activity of cyclin A in cells expressing p27SJ. Cell cycle analysis demonstrated dysregulation at S and G2/M phases in cells expressing p27SJ, supporting the notion that a decline in cyclin A activity by p27SJ has a biological impact on cell growth. These observations provide evidence that p27SJ alters the state of Erk1/2 phosphorylation, and impacts several biological events associated with cell growth and function. J. Cell. Biochem. 107: 400–407, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号