首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present study was to compare the effects of elevation of GABA concentration and those of inactivation ofl-ornithine: 2-oxoacid aminotransferase (OAT) on the in vivo metabolism ofl-ornithine (Orn) in brain. Vigabatrin (4-aminohex-5-enoic acid) and gabaculine (5-amino-1,3-cyclohexadienyl carboxylic acid), two well known inactivators of GABA-T, were used to elevate brain GABA concentrations. The latter inactivates OAT also. Transamination of Orn is, from a quantitative point of view, a significant reaction in mouse brain. GABA is a feed-back regulator of OAT. Within GABAergic neurons Orn concentration may be regulated by endogenous GABA. Extensive inactivation of OAT causes a considerable increase of Orn concentration, both in synaptosomes and in non-synaptosomal compartments. The results are compatible with a role of Orn as precursor of glutamate and/or GABA in certain neurons.  相似文献   

2.
1. Inactivation of L-ornithine:2-oxoacid aminotransferase (OAT) by 5-fluoromethylornithine (5FMOrn), a specific inactivator of OAT, causes a great elevation of tissue ornithine (Orn) concentrations. 2. Inhibition of L-ornithine decarboxylase (ODC) by 2-difluoromethylornithine (DFMO) had no effect on Orn concentrations. 3. The combined administration of 5FMOrn and DFMO produced a 2- to 3-fold greater enhancement of tissue Orn concentrations than treatment with 5FMOrn alone. 4. The increase of tissue Orn concentrations had a long-lasting enhancing effect on polyamine metabolism. 5. In the brain this could be demonstrated by the elevation of putrescine and spermidine concentrations and the increase of spermidine turnover rate. 6. In visceral organs polyamine concentrations were not elevated because polyamines can be eliminated by transport. 7. In line with this notion is the fact that urinary polyamine excretion was increased for several days, even after a single dose of 5FMOrn. 8. Inhibitors of 4-aminobutyric acid:2-oxoglutarate aminotransferase which are also inactivators of OAT had the same effect on polyamine excretion as 5FMOrn.  相似文献   

3.
In this work new methods for the determination of ornithine (Orn) and l-ornithine:2-oxoacid aminotransferase (OAT) activity are described. These methods were used to demonstrate linear interrelationships between brain GABA and Orn concentrations. Brain GABA levels were modulated by administration of vigabatrin (4-aminohex-5-enoic acid), a specific inactivator of GABA-T, which is not an inhibitor of OAT. The results suggest feed-back inhibition of OAT by GABA, a mechanism which is compatible with the assumption that Orn may serve in certain neurons as a precursor of glutamate and GABA.  相似文献   

4.
In sonicates of mouse brain synaptosomes, we demonstrated that gamma-aminobutyric acid (GABA) can be formed when L-ornithine (Orn) through L-glutamic acid (Glu), but not through putrescine (Put). Incubation of these sonicates with [3H]ORN yielded not only [3H]Glu and [3H]L-proline (Pro) but also produced [3H]GABA from the [3H]Glu. Formation of each of these three major amino acids from [3H]Orn was strongly inhibited by the addition of GABA (1-5 mM). The likely enzymatic site of this negative feedback inhibition by GABA appeared to be ornithine delta-aminotransferase (OAT). A radiometric procedure was employed to study the effects of the three amino acids cited above and of others found in the free form in brain on the activity of a 30-fold-purified OAT from rat brain. Enzyme activity was measured in the presence of low concentrations of Orn, such as might occur in vivo. OAT was inhibited by GABA to a considerably greater extent than by Glu, L-glutamine, or Put; no inhibition was found with Pro, glycine, aspartarte, taurine, or beta-alanine. The inhibition of GABA was competitive with Orn. These results clearly show that one of the molecular mechanisms underlying the negative feedback inhibition of synaptosomal GABA biosynthesis from Orn is a competitive inhibition by GABA of the brain OAT activity that is responsible for the formation of L-glutamic-gamma-semialdehyde in equilibrium with L-delta 1-pyrroline-5-carboxylic acid from Orn. Thus, the results suggest that GABA may play an important role in restricting the metabolic flow from Orn to Glu and thence to GABA. It is confirmed that L-canaline (delta-aminooxy-L-alpha-aminobutyric acid) is a potent and specific inhibitor of brain OAT whereas much weaker inhibition was observed with two other carbonyl-trapping agents, aminooxyacetic acid and hydrazine.  相似文献   

5.
5-Fluoromethylornithine (5-FMOrn) is the first specific irreversible inhibitor of L-ornithine:2-oxoacid aminotransferase (OAT) found. Single doses (greater than 10 mg/kg) of this compound inactivate OAT to a residual OAT-like activity. This activity (10-20% of total activity) is resistant to further inactivation by higher or repeated doses of 5-FMOrn, or incubation with the inactivator in vitro. Ornithine concentrations are greatly enhanced in various tissues, and urinary ornithine is dramatically increased, but no other amino acid is affected after acute treatment with 5-FMOrn. Repeated administration decreases carnosine and homocarnosine concentrations in brain. Toxic effects were not observed. The new inactivator is considered as a tool in the establishment of functions of OAT under physiological and pathological conditions.  相似文献   

6.
7.
Regulation of ornithine aminotransferase in retinoblastomas   总被引:1,自引:0,他引:1  
  相似文献   

8.
N Seiler  C Grauffel  G Daune  F Gerhart 《Life sciences》1989,45(11):1009-1019
5-Fluoromethylornithine (5FMOrn) is a specific inactivator of L-ornithine:2-oxoacid aminotransferase (OAT). Inactivation of OAT causes the enhancement of L-ornithine (Orn) concentrations in all tissues. Intraperitoneal or oral administration of 10-50 mg/kg of 5FMOrn per day to albino mice rendered partial protection against lethal intoxication with 26 mmol/kg of ammonium acetate. The protective effect was maximal around 16 h after 5FMOrn administration, at the time when endogenous Orn concentrations were maximal. At this time protection by 5FMOrn against acute ammonia intoxication was comparable to that observed 1 h after the intraperitoneal administration of 10 mmol/kg of L-arginine. Pretreatment with 5FMOrn prevented the enhancement of excessive urinary excretion of orotic acid by ammonia intoxicated mice, and it enhanced urea formation in the liver. These biochemical effects demonstrate that 5FMOrn shifts Orn into the urea cycle, Orn which normally would be transaminated. Since even long-term treatment of mice with 5FMOrn did not reveal toxic effects, this compound may be considered for the treatment of certain conditional deficiencies of Orn or arginine.  相似文献   

9.
5-Fluoromethylornithine (5FMOrn) is an enzyme-activated irreversible inhibitor or ornithine aminotransferase (L-ornithine:2-oxo-acid 5-aminotransferase, OAT). For purified rat liver OAT, Ki(app.) was found to be 30 microM. and tau 1/2 = 4 min. Of the four stereomers of 5FMOrn only one reacts with OAT. The formation of a chromophore with an absorption maximum at 458 nm after inactivation of OAT by 5FMOrn suggests the formation of an enamine intermediate, which is slowly hydrolysed to release an unsaturated ketone. L-Canaline [(S)-2-amino-4-amino-oxybutyric acid] is a well-known irreversible inhibitor of OAT. Not only the natural L-enantiomer but also the D-enantiomer reacts by oxime formation with pyridoxal 5'-phosphate in the active site of the enzyme, although considerably more slowly. This demonstrates that the stereochemistry at C-2 of ornithine is not absolutely stringent. In vitro, canaline reacted faster than 5FMOrn with OAT. In vivo, however, only incomplete OAT inhibition was observed with canaline. Whereas intraperitoneal administration of 10 mg of 5FMOrn/kg body wt. to mice was sufficient to inactivate OAT in brain and liver by 90% for 24 h, 500 mg of DL-canaline/kg body wt. only produced a transient inhibition of 65-70%. The accumulation of ornithine in these tissues was considerably slower and the maximum concentrations lower than were achieved with 5FMOrn. It appears that DL-canaline, in contrast with 5FMOrn, is not useful as a tool in studies of biological consequences of OAT inhibition.  相似文献   

10.
Repeated administration of thioacetamide (TAA) to CD1 mice produced hepatic failure and biochemical and behavioral effects characteristic of hepatogenic encephalopathy (HE). The symptoms in mice resembled those previously observed in rats after similar treatments. It is, howeve, obvious that both in rats and mice the severity of symptoms depends not only on dose and dosing schedule of TAA, but also on strain and body weight (age). Administration of 5-fluoromethylornithine (5FMOrn), a selective inactivator of ornithine aminotransferase (OAT), significantly reduced mortality, and it ameliorated most of the TAA-induced pathologic symptoms, such as hypothermia, decreased locomotor and exploratory behavior, pathologic liver function and amino acid patterns. The most prominent biochemical consequence of 5FMOrn administration is the elevation of ornithine concentrations in tissues, including the brain, and in body fluids. Elevated ornithine concentrations are, therefore, the most likely basis for the therapeutic effects of 5FMOrn. In agreement with this notion is the enhancement of citrulline and urea formation. These findings and the observation that administration of ornithine in combination with a branched-chain 2-oxoacid ameliorated the pathologic symptoms of portal-systemic encephalopathy suggest inhibition of OAT in the treatment of this disease. The liver protective effect of 5FMOrn is not yet understood; the enhancement of regenerative processes is a likely explanation.Abbreviations GABA 4-aminobutyrate - GABA-T 4-aminobutyrate aminotransferase - GOT plasma glutamate oxaloacetate transaminase - HE hepatogenic encephalopathy - LDH plasma lactate dehydrogenase - MAO monoamine oxidase - OAT ornithine aminotransferase - TAA thioacetamide - 5FMOrn 5-fluoromethylornithine Special issue dedicated to Dr. Claude Baxter.  相似文献   

11.
Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver and occurs predominantly in patients with underlying chronic liver diseases. Over the past decade, human ornithine aminotransferase (hOAT), which is an enzyme that catalyzes the metabolic conversion of ornithine into an intermediate for proline or glutamate synthesis, has been found to be overexpressed in HCC cells. hOAT has since emerged as a promising target for novel anticancer therapies, especially for the ongoing rational design effort to discover mechanism-based inactivators (MBIs). Despite the significance of hOAT in human metabolism and its clinical potential as a drug target against HCC, there are significant knowledge deficits with regard to its catalytic mechanism and structural characteristics. Ongoing MBI design efforts require in-depth knowledge of the enzyme active site, in particular, pKa values of potential nucleophiles and residues necessary for the molecular recognition of ligands. Here, we conducted a study detailing the fundamental active-site properties of hOAT using stopped-flow spectrophotometry and X-ray crystallography. Our results quantitatively revealed the pH dependence of the multistep reaction mechanism and illuminated the roles of ornithine α-amino and δ-amino groups in substrate recognition and in facilitating catalytic turnover. These findings provided insights of the catalytic mechanism that could benefit the rational design of MBIs against hOAT. In addition, substrate recognition and turnover of several fragment-sized alternative substrates of hOATs, which could serve as structural templates for MBI design, were also elucidated.  相似文献   

12.
Two principal neurotransmitters are involved in the regulation of mammalian neuronal activity, namely, γ-aminobutyric acid (GABA), an inhibitory neurotransmitter, and l-glutamic acid, an excitatory neurotransmitter. Low GABA levels in the brain have been implicated in epilepsy and several other neurological diseases. Because of GABA’s poor ability to cross the blood–brain barrier (BBB), a successful strategy to raise brain GABA concentrations is the use of a compound that does cross the BBB and inhibits or inactivates GABA aminotransferase (GABA-AT), the enzyme responsible for GABA catabolism. Vigabatrin, a mechanism-based inactivator of GABA-AT, is currently a successful therapeutic for epilepsy, but has harmful side effects, leaving a need for improved GABA-AT inactivators. Here, we report the synthesis and evaluation of a series of heteroaromatic GABA analogues as substrates of GABA-AT, which will be used as the basis for the design of novel enzyme inactivators.  相似文献   

13.
Gabaculine, a potent suicide inhibitor of ornithine aminotransferase (OAT), at a dose of 50 mg/kg inhibited this enzyme in mouse tissues and dramatically increased tissue ornithine concentrations, whether or not arginine was present in the diet. Thus even under arginine deprivation there is catabolism of ornithine which involves OAT. This was confirmed by administration of [14C]ornithine to arginine-deprived mice. Gabaculine (3-amino-2,3-dihydrobenzoic acid) drastically decreased the release of 14CO2 and increased the radioactivity in the basic amino acids in the tissues. When [1-14C]glutamate was injected into mice deprived of arginine, a significant amount of radioactivity was recovered in tissue ornithine and arginine, and gabaculine decreased this labelling by about two-thirds, indicating that ornithine was synthesized in vivo from glutamate via OAT. In addition, we failed to detect in liver and small intestine alpha-N-acetylornithine, N-acetylglutamate kinase or N-acetylornithine aminotransferase, which are obligatory components of a potential route of ornithine synthesis from N-acetylglutamate. Our results indicate that at least 45 mumol of ornithine was synthesized and catabolized daily via OAT in the mouse deprived of arginine.  相似文献   

14.
The cDNA encoding ornithine aminotransferase (EC 2.6.1.13; OAT) was isolated from a human kidney cDNA library. The isolated cDNA contained the entire protein coding region and partial 3'- and 5'-untranslated regions. The nucleotide sequences of human kidney OAT cDNA were absolutely homologous with those of human liver OAT cDNA, and human kidney and liver OAT fused completely against the antibody to human kidney OAT in an Ouchterlony double diffusion test. These findings settled the controversy as to which characteristics of liver and kidney OAT isozymes are different. An N-terminal sequence analysis of purified mature human kidney OAT clarified that the leader peptide was cleaved between Gln-35 and Gly-36.  相似文献   

15.
Ornithine aminotransferase (OAT) from rat liver mitochondria was purified to homogeneity. A monospecific antiserum against the enzyme protein was prepared in rabbits. Immunotitrations were performed on OAT present in crude mitochondrial extracts obtained from the livers and kidneys of rats in several hormonal and dietary states. No evidence was found for the existence of an immunologically reactive but enzymatically inactive form of OAT. The relative rate of enzyme synthesis in vivo was studied by pulselabeling rats with [4, 5-3H]leucine, isolating the enzyme protein by immunoprecipitation, and dissociating the immunoprecipitates on sodium dodecyl sulfate-acrylamide gels. Nine hours after a single subcutaneous injection of a glucagon oil emulsion, a 3-fold increase in OAT activity and a 12-fold increase in the synthetic rate of the enzyme were observed. Serine dehydratase activity increased on a time-course very similar to that of OAT following glucagon injection. These increases occurred only on low (0–12.5%) protein diets. At higher levels of dietary protein (30% and up), no further stimulation of OAT synthesis by glucagon was observed. Administration of actinomycin D within the first 2 h after glucagon injection resulted in an inhibition of OAT induction. When the administration of the antibiotic was delayed until 4 h after glucagon, no inhibition of OAT induction was observed. Glucose repression of the glucagon induction of the enzyme in hepatic mitochondria was demonstrated to be the result of a rapid inhibition of OAT synthesis.  相似文献   

16.
The activities of two enzymes mediating different pathways of ornithine catabolism were measured in liver and kidney of chronically uremic rats and their pair-fed controls. Two months following partial nephrectomy hepatic ornithine aminotransferase (OAT) activity tended to be lower in uremic rats and was correlated with urea clearance and with carbamoyl phosphate synthetase activity. Renal OAT activity in uremic rats was also correlated with urea clearance. When uremic rats were maintained for five months, OAT activity was significantly decreased in liver but not in kidney and the activity of ornithine decarboxylase (ODC), the enzyme regulating polyamine biosynthesis, was reduced in both liver and kidney. In cross-over experiments, evidence was obtained for a factor in uremic kidney cytosol which inhibited renal ODC activity.  相似文献   

17.
The relative rates of ornithine aminotransferase (OAT) synthesis in vivo were studied by pulse-labeling rats with [4,5-3H]leucine, isolating the mitochondrial enzyme protein by immunoprecipitation with a monospecific antibody, dissociating the immunoprecipitates on sodium dodecyl sulfate-acrylamide gels, and determining the radioactivity in OAT. After 4 days of treatment with triiodothyronine (T3), both the enzyme activity level and the relative synthetic rate of OAT in rat kidney were elevated over twofold. The level of hepatic OAT activity was unaffected by this treatment. Thyroidectomy caused a 50% drop in the basal level of OAT activity and synthesis in kidney but not in liver. Although the basal levels of activity and synthesis of both renal and hepatic OAT were unaffected by adrenalectomy, the glucagon induction of the enzyme in liver was enhanced by about one-third and the T3 induction in kidney was suppressed 50% by this operation. After 4 days of treatment with estrogen, both the enzyme activity level and the relative synthetic rate of OAT in male rat kidney were elevated nearly 10-fold. Hepatic OAT activity and synthesis were unaffected by this regimen. Thyroidectomy almost completely abolished the estrogen induction of OAT in kidney. OAT induction by estrogen could be restored by treating thyroidectomized rats with T3. Simultaneous administration of T3 plus estrogen to intact rats produced a multiple effect, resulting in a striking 20-fold induction of renal OAT. Although administration of either T3 or estrogen causes an increase in the synthesis of immunoprecipitable OAT protein in rat kidney, each of these hormones may induce OAT by a different mechanism.  相似文献   

18.
Ornithine aminotransferase (l-ornithine 2-oxoacid aminotransferase, OAT) is widely expressed in organs, but studies in mice have focused primarily on the intestine, kidney and liver because of the high OAT-specific activity in these tissues. This study aimed to investigate OAT activity in adult mouse tissues to assess the potential contribution to ornithine metabolism and to determine OAT control during postnatal development. OAT activity was widely distributed in mouse tissues. Sexual dimorphism was observed for most tissues in adults, with greater activity in females than in males. The contribution of skeletal muscles to total OAT activity (34 % in males and 27 % in females) was the greatest (50 %) of the investigated tissues in pre-weaned mice and was similar to that of the liver in adults. OAT activity was found to be regulated in a tissue-specific manner during postnatal development in parallel with large changes in the plasma testosterone and corticosterone levels. After weaning, OAT activity markedly increased in the liver but dropped in the skeletal muscle and adipose tissue. Anticipating weaning for 3 days led to an earlier reduction of OAT activity in skeletal muscles. Orchidectomy in adults decreased OAT activity in the liver but increased it in skeletal muscle and adipose tissue. We concluded that the contribution of skeletal muscle to mouse ornithine metabolism may have been underestimated. The regulation of OAT in skeletal muscles differs from that in the liver. The present findings suggest important and tissue-specific metabolic roles for OAT during postnatal development in mice.  相似文献   

19.
Summary Gyrate atrophy (GA), a degenerative disease of the human chorioretina, is associated with a deficiency of ornithine aminotransferase (OAT) activity, hyperornithinemia, and ornithinuria. We have characterized a cDNA clone for OAT (HLOAT) that was isolated from a cDNA library constructed from mRNA prepared from Hep G2, cells, a human hepatoma cell line. We have used HLOAT and a nearly full length OAT cDNA clone isolated from, a rat liver library (RLOAT) to examine in cultured fibroblasts from individuals with GA and control individuals, the expression of OAT mRNA and the gross structure of the OAT gene. Northern blot analyses of total cellular RNA indicated that 3 of 3 control cell lines and 5 of 6 GA cell lines are capable of expressing an OAT related mRNA of approximately 2100 bases, the size of OAT mRNA. To date, this is the only case of GA in which a complete lack of OAT mRNA has been observed. Southern blot analyses of DNA isolated from these cell lines indicated that the gross structure of the OAT gene is usually not detectably altered in individuals with GA. However, a unique pattern, of restriction fragments was observed upon digestion with Eco RI or Hind III of DNA from the GA cell line that does not express OAT mRNA. These unique Eco RI and Hind III fragments arise from the OAT structural gene and will serve as useful molecular markers that allow this particular defective OAT allele to be identified. When the cellular DNAs were digested with Hinf I and examined with a probe that corresponds to at least a portion of the active site of the enzyme, i. e., the pyridoxal phosphate binding site, identical patterns of fragments were detected in all samples. Therefore, it appears unlikely that the loss of OAT activity associated with these GA cases, 4 of which are pyridoxal phosphate responders, is the result of insertions or deletions in this region of the OAT gene. This study indicates that the lack of OAT enzyme activity associated with GA is the result of a variety of different molecular defects within the OAT gene. This project was initiated in the laboratory of H. C. P. and was supported by grants CA07175, CA22484, and 5 T32 CA09020 from the National Cancer Institute and Postdoctoral Fellowship PF-2414 from the American Cancer Society. The continuing work in the laboratory of J. D. S. was supported by grants CA36727 and HD24189 from the National, Institutes of Health, grants SIG-16, ACS-IN165A, and a Junior Faculty Research Award (JFRA-227) from the American Cancer Society, and by University of Nebraska Medical Center Seed Research Grant 88-10.  相似文献   

20.
We have developed two new continuous coupled assays for ornithine-δ-aminotransferase (OAT) that are more sensitive than previous methods, measure activity in real time, and can be carried out in multiwell plates for convenience and high throughput. The first assay is based on the reduction of Δ1-pyrroline-5-carboxylate (P5C), generated from ornithine by OAT, using human pyrroline 5-carboxylate reductase 1 (PYCR1), which results in the concomitant oxidation of NADH (nicotinamide adenine dinucleotide, reduced form) to NAD+ (nicotinamide adenine dinucleotide, oxidized form). This procedure was found to be three times more sensitive than previous methods and is suitable for the study of small molecules as inhibitors or inactivators of OAT or as a method to determine OAT activity in unknown samples. The second method involves the detection of l-glutamate, produced during the regeneration of the cofactor pyridoxal 5’-phosphate (PLP) of OAT by an unamplified modification of the commercially available Amplex Red l-glutamate detection kit (Life Technologies). This assay is recommended for the determination of the substrate activity of small molecules against OAT; measuring the transformation of l-ornithine at high concentrations by this assay is complicated by the fact that it also acts as a substrate for the l-glutamate oxidase (GluOx) reporter enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号