首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under UV-excitation, leaves emit red (RF) and far-red (FRF) fluorescence from chlorophyll and blue-green fluorescence (BGF) from hydroxycinnamic acids. In this study, the aim was to develop a fluorescence signature of wheat leaf ageing after the emergence of the lamina. FRF and BGF were examined in the first three leaves of 2-week-old wheat plants. It was investigated how FRF and BGF vary as leaf and tissue aged by spectroscopic measurements, time-resolved BGF analysis and microscopic imaging of the leaf surface. It was found that FRF decreased with leaf and tissue ageing because of an accumulation of UV-absorbers in the epidermis. BGF also decreased, but without changes either in the shape of excitation and emission spectra or in the fluorescence lifetime. So, BGF emanated from the leaf surface, without changes in fluorophore composition during leaf ageing. The shape of the BGF spectrum indicates that ferulic acid bound to the cell wall is the main blue-green fluorophore. The effects of pH and solvents on BGF from intact leaves and ferulic acid in solution were similar, confirming the hydroxycinnamic acid origin of BGF. UV-fluorescence microscopic imaging of the surface of intact leaves showed that different epidermis cell types and sclerenchyma bands emitted BGF. The decreasing gradient of BGF from the base to the apex of the lamina could be related to the decrease in the surface of the fluorescent sclerenchyma bands. The significance of FRF and BGF as potential signatures of wheat lamina growth are discussed.  相似文献   

2.
福建省不同居群轮叶蒲桃叶形态与表皮特征比较   总被引:1,自引:0,他引:1  
通过对福建省16个不同居群轮叶蒲桃叶片形态特征、叶表皮特征的观察及叶片主要性状的测量,探讨不同居群轮叶蒲桃叶型、叶表皮特征多样性,为属下种间鉴定提供依据。对16个居群轮叶蒲桃叶型多样性进行观察,采用直尺测量叶片主要性状如叶长、叶宽等;采用光学显微镜和扫描电镜对叶表皮特征进行观察。结果表明,16个居群轮叶蒲桃叶片中,闽西居群叶形为阔椭圆形;闽东、闽北、闽南等各地居群叶形为长椭圆形或近带形。不同居群轮叶蒲桃叶片表皮毛、角质层纹饰、气孔器形态与类型等表现一致,但表皮细胞垂周壁式样差异明显,具波状、浅波状、平直、弓形等几种类型,且在上下表皮间存在式样一致或有多元化现象。由此说明,福建省不同居群轮叶蒲桃叶形与表皮细胞垂周壁式样均处于较强烈分化的状态,表皮细胞垂周壁式样不能作为属种间分类的依据。  相似文献   

3.
When 14C-labelled abscisic acid ([14C]ABA) was supplied to isolated protoplasts of the barley leaf at pH 6, initial rates of metabolism were about five times higher in epidermal cell protoplasts than in mesophyll cell protoplasts if equal cytosolic volumes were considered. In spite of the fact that epidermal cells make up only about 35% of the total water space in barley leaves, and despite the small cytosolic volume of these cells, in intact leaves all epidermal cells would thus metabolize half as much ABA per unit time as the mesophyll cells (0–27 and 0–51 mmol h?1 m?3 leaf water). Therefore, under these conditions epidermal cells seem to be a stronger sink than mesophyll cells for ABA that arrives via the transpiration stream. However, at an apoplastic pH of 7–25, which occurs in stressed leaves, the proportion of total metabolized ABA would be much smaller in epidermal than in mesophyll cells (0–029 and 0–204 mmolh?l m?3 leaf water). Our results indicate that under conditions of slightly alkaline apoplastic pH the epidermis may serve as the main source for fast stress-dependent ABA redistribution into the guard cell apoplast. This is partly the result of ABA transport across the epidermal tonoplast, which is dependent on the apoplastic pH and possibly on the cytosolic calcium concentration. The cuticle seems to be of no particular importance in stress-induced apoplastic ABA shifts and cannot be regarded as a significant sink for high ABA concentrations under stress.  相似文献   

4.
A comparison is made between the flavone patterns accumulating in epidermal tissues and in the mesophyll of oat primary leaves grown in a phytotron and under field conditions. In developing leaves cultivated under standard conditions, varying patterns of two vitexin-derived O-rhamnosides and of one isovitexin O-arabinoside are produced in the basal region as the result of basal meristem activity. These patterns are tissue specific and differ quantitatively in the epidermis and the mesophyll. During the course of subsequent growth and differentiation, this pattern is constant as the compounds are moved upwards due to basipetal leaf growth. In comparison, the flavone patterns generated in the basal section of leaves grown in the field do not vary significantly. There is the additional accumulation of isoorientin O-arabinoside. Again flavone patterns are tissue specific, but in contrast to standard growth they are modified characteristically in those leaf tissues which are already morphologically differentiated. It is possible that the isovitexin moiety of the O-arabinoside is oxidized to the corresponding isoorientin derivative in the mesophyll. Moreover, field-grown leaves show a two-fold increase in flavone content in each leaf epidermis and a six-fold increase in the mesophyll when compared to the corresponding tissues of phytotron-grown leaves.  相似文献   

5.
In a study of photosynthetic energy storage efficiency (ES), the adaxial surface of the leaves of Vallisneria americana exhibited the highest ES values (22%) of the four aquatic plants examined. V. americana leaves have a dispersed structure and it was possible to measure the energy storage properties of the epidermal cells independently of the rest of the leaf. The abaxial epidermis had a higher value of ES at zero light fluence than the adaxial epidermis but ES in the abaxial epidermis declined much more rapidly with light fluence. Thus the abaxial epidermis is more suited to lower light fluences than the adaxial epidermis. ES declined as the pH rose from 4.0 to 8.0 at a constant dissolved inorganic carbon concentration. This paralleled the change from carbon dioxide to bicarbonate and suggests that these leaves utilise CO2 more efficiently than bicarbonate. ES increased by about 50% at pH 8.0 as leaf sections further from the leaf tip were examined which demonstrates that the older epidermal cells are less well able to use bicarbonate. Exposure to 30 min of a saturating light fluence caused the epidermal chloroplasts to move from the periclinal walls to the anticlinal walls. This decreased the photothermal signal by increasing the thermal diffusion distance and lowering the light fluence due to greater chloroplast shading. The latter effect increased ES. It appears that chloroplast movement could assist the epidermis to survive harmful light fluences.Abbreviations APW artificial pond water; atrazine- (2-chloro-4-ethylamino-6-(isopropylamine)-s-triazine) - DCMU (3-(3,4 dichlorophenyl)-1,1-dimethyl urea) - DIC dissolved inorganic carbon - DMSO dimethyl sulfoxide - ES energy storage efficiency - HEPES N-[2-Hydroxyethyl]piperazine-N-[2-ethanesulfonic acid] - MOPS 3-[N-Morpholino]propanesulfonic acid - PD photothermal deflection  相似文献   

6.
Metabolism and distribution of xylem-fed ABA were investigated in leaves of maize (Zea mays) and Commelina communis when water stress and xylem pH manipulation were applied. 3H-ABA was fed to excised leaves via the transpiration stream. Water stress was applied through either a previous soil-drying before leaves were excised, or a quick dehydration after leaves were fed with ABA. Xylem-delivered ABA was metabolised rapidly in the leaves (half-life 0.7 h and 1.02 h for maize and Commelina respectively), but a previous soil-drying or a post-feeding dehydration significantly extended the half-life of fed ABA in both species. In the first few hours after ABA was fed into the detached leaves, percentages of applied ABA remaining unmodified were always higher in leaves which received water stress treatments than in control leaves. However the percentage decreased to below the control levels several hours later in leaves which received a previous soil-drying treatment prior to excision, but had then been rehydrated by the xylem-feeding process itself. One possible explanation for this could be a changed pattern of compartmentalisation for xylem-carried ABA. A post-feeding dehydration treatment also changed the distribution of xylem-fed ABA within the leaves: more ABA was found in the epidermis of Commelina leaves which had been dehydrated rapidly after ABA had been fed, compared to the controls. The levels of xylem-delivered ABA remaining unmodified increased as the pH of the feeding solution increased from 5 to 8. The results support the hypothesis that water stress and a putative stress-induced xylem pH change may modify stomatal sensitivity to ABA by changing the actual ABA content of the leaf epidermis.  相似文献   

7.
Germination, penetration and sporulation of Cercospora henningsii (Allesch.) on cassava leaves were studied by scanning electron microscopy. Conidia started to germinate 9 h postinoculation producing one to two germ tubes. The germ tubes entered the leaf tissue through the abaxial surface by direct penetration of the epidermis without forming appressoria. The cassava leaf is characterized by its papillose epidermis on the abaxial surface. The penetrations occurred at smooth areas of the leaf epidermis between the papillae. The germ tubes did not enter stomata even when they passed over stomatal openings. Leaf spots started to appear 9 days after the inoculation (dpi), and the emergence of conidia occurred 14 dpi. The symptoms appeared first on the abaxial leaf surface, followed 2 days later on the adaxial. Conidia emerged in clusters through ruptured epidermis on both sides of the leaves. Conidia emerged also through the epidermal papillae and the leaf veins. Even though small groups of conidia emerged through stomata also, emergence through stomata appeared to be random rather than a preferred route. Each conidium was born on a short conidiophore with a swollen base.  相似文献   

8.
Different mulberry genotypes show great variation in their resistance to the powdery mildew Phyllactinia corylea. Conidial germination and hyphal growth of P. corylea on the leaf surface of two susceptible mulberry genotypes, viz., Kanva 2 (K2) and Victory 1 (V1) varieties of Morus indica, and on two resistant species, viz,, M. laevigata and M. serrata were studied by scanning electron microscopy. Conidial germination and growth of germ tubes were normal on all the leaves. The hyphae of P. corylea identify stomata on host leaves by their topographical features to produce the stomatopodia precisely over them. The holes and/or the grooves of stomata appear to provide the signals for the initiation of stomatopodia and similar structures are erratically developed over many local depressions or grooves on leaf surface. The abaxial surface of K2 leaf is smooth without prominent undulations of epidermal cell surface, and the stomata are flush with the leaf surface. Although successful penetration is also achieved on V1 leaf, its slightly undulated surface occasionally provides inaccurate tropic signals to the hyphae, inducing the development of stomatopodia away from the stomata. The leaf surfaces of M. laevigata and M. serrata are very rough with highly sculptured cuticle and abundant epidermal outgrowths. Stomata mostly remain sunken or hidden amidst the cuticular ornamentations and the hyphae fail to recognise the precise signals from them. As the surface architecture of the leaves provides many immense sources of tropic signals, stomatopodia are often produced over local depressions or grooves. In these cases the fungus fails to penetrate the leaf, does not develop beyond 24 h and penetration is rarely achieved on the leaves of the resistant plants. The study indicates that the stimulatory effect of the leaf surface topography of resistant varieties misleads the pathogen from successful penetration, thus contributing to the plant's resistance.  相似文献   

9.

Background and Aims

Epidermal phenolic compounds (mainly flavonoids) constitute a vital screen that protects the leaf from damage by natural ultraviolet (UV) radiation. The effectiveness of epidermal UV-screening depends on leaf anatomy, the content of UV-screening compounds and their spatial uniformity over the leaf area. To investigate in vivo the spatial pattern of the epidermal UV-screen during leaf development, a fluorescence imaging method was developed to map the epidermal UV-absorbance at a microscopic scale. This study was done on oak (Quercus petraea) leaves that were used as a model of woody dicotyledonous leaves.

Methods

The leaf development of 2-year-old trees, grown outdoors, was monitored, at a macroscopic scale, by in vivo measurements of chlorophyll content per unit area and epidermal UV-absorbance using two optical leaf-clip meters. The distribution of pigments within leaves was assessed in vivo spectroscopically. The microscopic images of UV-induced fluorescence and UV-absorbance acquired in vivo during leaf development were interpreted from spectral characteristics of leaves.

Key Results

At a macroscopic scale, epidermal UV-absorbance was high on the upper leaf side during leaf development, while it increased on the lower leaf side during leaf expansion and reached the adaxial value at maturity. At a microscopic scale, in immature leaves, for both leaf sides, the spatial distribution of epidermal UV-absorbance was heterogeneous, with a pattern depending on the flavonoid content of vacuoles in developing epidermal cells. At maturity, epidermal UV-absorbance was uniform.

Conclusions

The spatial pattern of epidermal UV-screen over the area of oak leaves is related to leaf anatomy during development. In vivo spectroscopy and fluorescence imaging of the leaf surface showed the distribution of pigments within the leaf and hence can provide a tool to monitor optically the leaf development in nature.Key words: Blue-green fluorescence, chlorophyll fluorescence, epidermis, flavonoids, leaf development, microscopic imaging, polyphenols, Quercus petraea  相似文献   

10.
In plants, specialized epidermal cells are arranged in semiordered patterns. In grasses such as maize, stomata and other specialized cell types differentiate in linear patterns within the leaf epidermis. A variety of mechanisms have been proposed to direct patterns of epidermal cell differentiation. One class of models proposes that patterns of cellular differentiation depend on the lineage relationships among epidermal cells. Another class of models proposes that epidermal patterning depends on positional information rather than lineage relationships. In the dicot epidermis, cell lineage is an important factor in the patterning of stomata, but not trichomes. In this study, the role of cell lineage in the linear patterning of stomata and bulliform cells in the maize leaf epidermis is investigated. Clones of epidermal cells in juvenile leaves were marked by excision of dSpm from gl15-m and in adult leaves by excision of Ds2 from bz2-m. These clones were analyzed in relation to patterns of stomata and bulliform cells, testing specific predictions of clonal origin hypotheses for the patterning of these cell types. We found that the great majority of clones analyzed failed to satisfy these predictions. Our results clearly show that lineage does not account for the linear patterning of stomata and bulliform cells, implying that positional information must direct the differentiation patterns of these cell types in maize.  相似文献   

11.
As a result of salt (NaCl)-stress, sensitive varieties of maize (Zea mays L.) respond with a strong inhibition of organ growth. The reduction of leaf elongation investigated here has several causes, including a modification of the mechanical properties of the cell wall. Among the various tissues that form the leaf, the epidermis plays a special role in controlling organ growth, because it is thought to form a rigid outer leaf coat that can restrict elongation by interacting with the inner cell layers. This study was designed to determine whether growth-related changes in the leaf epidermis and its cell wall correspond to the overall reduction in cell expansion of maize leaves during an osmotic stress-phase induced by salt treatment. Two different maize varieties contrasting in their degree of salt resistance (i.e., the hybrids Lector vs. SR03) were compared in order to identify physiological features contributing to resistance towards salinity. Wall loosening-related parameters, such as the capacity of the epidermal cell wall to expand, β-expansin abundance and apoplastic pH values, were analysed. Our data demonstrate that, in the salt-tolerant maize hybrid which maintained leaf growth under salinity, the epidermal cell wall was more extensible under salt stress. This was associated with a shift of the epidermal apoplastic pH into a range more favourable for acid growth. The more sensitive hybrid that displayed a pronounced leaf growth-reduction was shown to have stiffer epidermal cell walls under stress. This may be attributable to the reduced abundance of cell wall-loosening β-expansin proteins following a high salinity-treatment in the nutrient solution (100 mM NaCl, 8 days). This study clearly documents that salt stress impairs epidermal wall-loosening in growth-reduced maize leaves.  相似文献   

12.
The uptake and translocation of fluazifop-butyl was investigated in Setaria viridis. Young plants (three to four leaves) with a portion of the second, third or fourth leaf covered, were sprayed with a dose equivalent to 0.25 kg a.i. ha-1. 14C-fluazifop-butyl was subsequently applied to the unsprayed area and the treatment resulted in plant death within 2 wk. Uptake by leaf 3 was rapid, with less than 5% of the applied dose remaining on the leaf surface after 24 h. The highest proportion of 14C-activity was retained in the treated portion of the leaf. Only 2% of the applied dose was translocated from leaf 3 and 0. 76% accumulated in the apical meristem. Uptake by the younger leaf 4 was more rapid and the pattern of translocation differed in that more 14--activity accumulated in apical meristematic tissue. 6–30% of the applied dose was undetected and this was greatest when foliar uptake was slow. Artificial leaf surface experiments indicated that this undetected activity may have been due to volatility of fluazifop-butyl or degradation to volatile products. 14C-activity extracted from treated leaves was identified as fluazifop-butyl, fluazifop acid and polar conjugates. The major 14C-activity extracted from the apical meristem was fluazifop acid and no fluazifop-butyl was detected in this extract.  相似文献   

13.
Site of Monoterpene Biosynthesis in Majorana hortensis Leaves   总被引:4,自引:3,他引:1       下载免费PDF全文
Croteau R 《Plant physiology》1977,59(3):519-520
Excised epidermis of Majorana hortensis Moench (sweet marjoram) leaves incorporates label from [U-14C]sucrose into monoterpenes as efficiently as do leaf discs, while mesophyll tissue has only a very limited capacity to synthesize monoterpenes from exogenous sucrose. These results strongly suggest that epidermal cells, presumably the epidermal oil glands, are the primary site of monoterpene biosynthesis in marjoram. Using a leaf disc assay, it was demonstrated that label from [U-14C]sucrose is incorporated into monoterpenes most efficiently in very young leaves.  相似文献   

14.
对叶子花(Bougainvillea spectabilis)正常叶和变态叶上气孔密度、气孔指数和保卫细胞大小进行了研究。结果表明:正常叶上表皮的表皮细胞为多边形,垂周壁平直;下表皮的表皮细胞为不规则型,垂周壁浅波状;气孔类型为不规则型。变态叶上表皮没有发现气孔,变态叶下表皮的表皮细胞垂周壁则由浅波形逐渐变为深波形,气孔类型为不规则型和轮列型。随着变态叶的发育,变态叶下表皮的气孔密度降低,气孔指数升高;变态叶保卫细胞的长增大,宽减小。变态叶的平均气孔密度和平均气孔指数明显低于正常叶。正常叶和变态叶的保卫细胞均呈肾形。  相似文献   

15.
Fatty acid synthesis was compared in cell-free extracts of epidermis and parenchyma of Allium porrum L. leaves. Parenchyma extracts had the major fatty acid synthetase (FAS) activity (70-90%) of the whole leaf; palmitic acid was also the major fatty acid synthesized when acetyl-coenzyme A (CoA) was the primer, but when acetyl-acyl carrier protein (ACP) was employed, C18:0 and C16:0 were synthesized in equal proportion. With the epidermal FAS system when either acetyl-CoA or acetyl-ACP was tested in the presence of labeled malonyl-CoA, palmitic acid was the only product synthesized. Specific activities of the FAS enzyme activities were determined in both tissue extracts.

The properties of malonyl-CoA:ACP transacylase were examined from the two different tissues. The molecular weights estimated by Sephadex G-200 chromatography were 38,000 for the epidermal enzyme and 45,000 for parenchymal enzyme. The optimal pH was for both enzymes 7.8 to 8.0 and the maximal velocity 0.4 to 0.5 micromoles per milligram protein per minute. These enzymes had different affinities for malonyl-CoA and ACP. For the malonyl-CoA:ACP transacylase of epidermis, the Km values were 5.6 and 13.7 micromolar for malonyl-CoA and ACP, respectively, and 4.2 and 21.7 micromolar for the parenchymal enzyme. These results suggest that the FAS system in both tissues are nonassociated, that the malonyl-CoA:ACP transacylases are isozymes, and that both in epidermis and in parenchyma tissue two independent FAS system occur. Evidence would suggest that β-ketoacyl-ACP synthase II is present in the parenchymal cells but missing in the epidermal cell.

  相似文献   

16.
Babu  A. M.  Kumar  Jalaja S.  Kumar  Vineet  Sarkar  A.  Datta  R. K. 《Mycopathologia》2003,156(3):207-213
Different mulberry genotypes show great variation in their resistance to the powdery mildew Phyllactinia corylea. Conidial germination and hyphal growth of P. corylea on the leaf surface of two susceptible mulberry genotypes, viz., Kanva 2 (K2) and Victory 1 (V1) varieties of Morus indica, and on two resistant species, viz., M. laevigata and M. serrata were studied by scanning electron microscopy. Conidial germination and growth of germ tubes were normal on all the leaves. The hyphae of P. coryleaidentify stomata on host leaves by their topographical features to produce the stomatopodia precisely over them. The holes and/or the grooves of stomata appear to provide the signals for the initiation of stomatopodia and similar structures are erratically developed over many local depressions or grooves on leaf surface. The abaxial surface of K2 leaf is smooth without prominent undulations of epidermal cell surface, and the stomata are flush with the leaf surface. Although successful penetration is also achieved on V1 leaf, its slightly undulated surface occasionally provides inaccurate tropic signals to the hyphae, inducing the development of stomatopodia away from the stomata. The leaf surfaces of M. laevigata and M. serrata are very rough with highly sculptured cuticle and abundant epidermal outgrowths. Stomata mostly remain sunken or hidden amidst the cuticular ornamentations and the hyphae fail to recognise the precise signals from them. As the surface architecture of the leaves provides many immense sources of tropic signals, stomatopodia are often produced over local depressions or grooves. In these cases the fungus fails to penetrate the leaf, does not develop beyond 24 h and penetration is rarely achieved on the leaves of the resistant plants. The study indicates that the stimulatory effect of the leaf surface topography of resistant varieties misleads the pathogen from successful penetration, thus contributing to the plant's resistance.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

17.
利用光学显微镜对兜兰属(Paphiopedilum)23种植物叶片进行观察,并对其中14种叶表皮微形态性状测量数值进行主成分分析和聚类分析。结果显示:23种植物叶表皮均有较厚角质层,上表皮细胞多为多边形和卵圆形,无气孔分布,部分种叶上表皮细胞有表皮毛,表皮细胞表面会形成乳突状突起,并且一个细胞只形成一个乳突,多数种的叶表面会呈现明显或不明显的龟背隆起,细胞大小及细胞密度在不同种之间存在极大差异;气孔器广泛分布于下表皮,由保卫细胞构成,排列无规则,外壁呈不同程度加厚。主成分分析表明,特征值大于1的主成分共有4个,基于4个主成分进行聚类,结果可将兜兰属分为两大类,即宽瓣亚属(Brachypetalum)和兜兰亚属(Paphiopedilum),小萼亚属(Parvisepalum)被聚类于宽瓣亚属中。本研究表明兜兰属种间部分叶表皮形态特征具有一定的稳定性,叶片表皮细胞的形状与垂周壁式样变异不大;受环境气候的影响,气孔器大小及气孔密度在不同种间的分布不同,表现出种间多样性,因此这部分叶表皮微形态特征可作为其分类的参考依据。  相似文献   

18.
The epidermal cuticle characteristics of Sublepidodendron cf. xinjiangense Sun in Wutong formation of late Devonian from Yixing city of Jiangsu province were studied using the technique of fluorescence analysis. The stem cuticle extended over the leaf cushions and its interval zones, when the cuticle thickness was more than at the leaf cushions. The shape of the epidermal cells in the interval zones differed from that in the leaf cushions; in which the epidermal cells of the central parts of the interval zones appeared in the elongated polygons, with coincided cell stretch direction as the stem growth, and with slightly curve cell walls. The shape of cells in the interval zones near the leaf cushions was similar to that in the former but only one half in size. with straight cell walls. Here the cells extended gradually with a deflection toward the margin of the leaf cushions. The cushion cellsware equilaterl polygons with visible cell interspaces. No stoma was discovered in the epidermis of this species.  相似文献   

19.
兰属、兜兰属、石斛属植物叶片的扫描电镜观察   总被引:10,自引:0,他引:10  
对兰科植物的兰属、兜兰属及石斛属16个种折叶片及其横断面进行了扫描电镜的观察。兰属各种叶片上表皮细胞均为矩形,上表皮细胞表面具小乳突或不明显突起。石斛属及兜兰属的各个种上下表皮细胞均为多边形,但石斛属表皮细胞表面无坦无纹饰,而兜兰属花叶类上表皮细胞表面明显呈乳突状,绿叶类呈龟背状隆起。兰属及石斛属叶片叶肉组织没有栅栏组织及海绵组织的分化,而兜兰属的绿叶类叶肉不分化;花叶类叶肉有分化。  相似文献   

20.
Potamogeton crispus L. grows as a winter producing annual in the shallow lakes of the Pongolo Floodplain, South Africa. Colonization of leaves by algal and bacterial epiphytes, as seen by scanning electron microscopy, followed the established pattern of increasing diversity and density with leaf age. It was apparent from the micrographs that the primary and subsequent colonizers were present even after death of the host leaf. Cross sections of leaves, viewed by transmission electron microscopy, illustrated that bacterial attachment did not damage the surface of young leaves. There was, however, extensive inward swelling and disorganization of the epidermal walls, characteristic of a reaction to invasion by pathogens. In older leaves the swelling was also present in mesophyll cells, while bacteria had invaded and degraded the epidermal cell wall. The bacterial invasion was concomitant with signs of senescence, and in dead leaves the organisms had penetrated and degraded the epidermis and mesophyll cell walls. The epiphyton/ host relationship may therefore be considered necrotrophic with important consequences for the transfer of energy from producers to consumers during decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号