首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
—Exhaustive stress in rats is followed by a temporary reduction of hypothalamic norepinephrine (NE) together with a persistent increase in turnover during recovery. To test for persistent alterations of NE storage and metabolism produced by stress, rats were subjected to 3 h of forced running and were then injected intraventricularly with [3H]NE or [3H]dopamine (DA). The hypothalamus was assayed for [3H]NE and its metabolites at various intervals after injection. The effects of stress were compared with those of reserpine (7·5 mg/kg) or α-methyltyrosine (AMT, 300 mg/kg) pretreatment. It was found that the stress-induced reduction of endogenous NE was not accompanied by a change in the accumulation of exogenous [3H]NE either 10 or 30 min after injection, whereas the NE depletions produced by reserpine or AMT were associated with decreased or increased accumulation, respectively. However, stress did produce an increased accumulation of [3H]NE endogenously synthesized from [3H]DA. These results indicate that exhaustive stress does not adversely affect the storage of NE. They also suggest that stores of NE depleted by stress are replenished chiefly with newly synthesized NE and not through an increased uptake and binding or decreased metabolism of extraneuronal NE. The latter factors may play a role in the maintenance of brain NE stores when biosynthesis is low, i.e. after AMT. The major metabolites of exogenous [3H]NE, at 30 min after injection, were identified as conjugates of 3,4-dihydroxyphenylglycol (DOPEG) and 3-methoxy-4-hydroxyphenylglycol (MOPEG) in approximately equal amounts. The finding of high levels of conjugated DOPEG confirms a recent report (Slgden and Eccleston , 1971) that this compound is a major metabolite of brain NE. Reserpine produced marked elevations of both conjugates; AMT slightly reduced each. Prior stress increased only conjugated MOPEG, an observation suggesting that CNS levels of this metabolite may reflect NE released by nervous activity.  相似文献   

2.
Abstract

The pharmacological characteristics of muscarinic receptor (mAChR) subtypes in canine left ventricular membranes (LVM) were determined using [3H]quinuclidinyl benzilate ([3H]QNB) and [3H] N-methyl scopolamine ([3H]NMS) as ligands. Binding of [3H]QNB and [3H]NMS was saturable with respect to the radioligand concentrations. Analysis of binding isotherms by Scatchard plot showed that [3H]QNB and [3H] NMS bound to an apparently homogeneous population of mAChRs in LVM, with KD values of 390 ± 100 and 285 ± 34 pM and Bmax values of 240 ± 20 and 133 ± 9 fmol/mg protein, (n=6), respectively. The Hill coefficients for [3H]QNB and [3H]NMS binding were 0.95 ± 0.02 and 0.99 ± 0.01, respectively. Based on the competitive inhibition of [3H] ligand binding, atropine and NMS as well as the selective M1 antagonist PZ revealed no selectivity for these mAChRs. PZ competed with [3H]QNB or [3H]NMS for a single binding site with a Ki value of 0.23 ± 0.03 μM and 0.62 ± 0.10 μM, (n = 6), respectively, which is close to the values of M2 or M3 receptors. The data indicate that the M1 receptor subtype did not exist in canine LVM. Competition of [3H] ligand binding with selective M2 antagonists, AF-DX 116 and methoctramine and the selective M3 antagonists, 4-DAMP and hexahydrosiladifenidol, gave a best fit for a two-binding site model. The inhibition of carbachol-mediated phosphoinositide hydrolysis by PZ, AF-DX 116 and 4-DAMP, generated an affinity profile for this response also dissimilar to that described for the classical cardiac M2 response. Although no other muscarinic receptor mRNA has been detected in this tissue, these data suggest the presence of a second population of muscarinic sites, which may signify an M2 receptor diversity.  相似文献   

3.
The specific activities of released and retained norepinephrine (NE) in the isolated superfused dog saphenous vein preparation, prelabeled with [3H]NE, have been determined. Norepinephrine was isolated from extracts of vein superfusate and its concentrations were measured by high pressure liquid chromatography with electrochemical detection. The specific activity of NE in superfusate collected under basal conditions was lower than that of NE in veins after electrical stimulation or in parallel unstimulated veins. However, NE released during electrical stimulation had a specific activity 1.5 to 3 times higher than the NE in the veins. Thus, NE taken up by neuronal uptake in the prelabeling procedure enters a pool from which is preferentially released by electric stimulation. In addition, NE is released from different compartments during basal conditions and during electric stimulation.  相似文献   

4.
The uptake of [3H]norepinephrine ([3H]NE) was studied in dissociated brain cell cultures prepared from 8-day-old chick embryos using the whole brain (minus optic lobes). Uptake of [3H]NE, 5×10–9 M, 10 min incubation, in freshly dissociated noncultured embryonic chick brain cells, was detected in 6-day-old embryos; it was temperature and drug (cocaine, metanephrine) sensitive and increased with brain development. In cultured cells, which were assayed at various days in culture, the increase in [3H]NE accumulation per culture was less than that seen in freshly dissociated noncultured embryonic cells. When [3H]NE uptake was expressed per mg protein, a decrease with days in culture was observed, reflecting perhaps a dilution of growth or proliferation of cells not accumulating NE. Metanephrine, 5×10–6 M, an inhibitor of extraneuronal uptake, inhibited [3H]NE in 5-day-old cultures whereas desmethylimipramine, an inhibitor of neuronal uptake, inhibited [3H]NE uptake in 15- and 20-day-old cultures. Cocaine, another neuronal inhibitor, inhibited [3H]NE at 10 and 15 days only. We interpret these findings to suggest that during early growth in culture most neuroblasts accumulate NE nonspecifically and, as neuronal maturation proceeds, NE accumulation becomes specific.  相似文献   

5.
Protoplasts of Saccharomyces strain 1016 took up [3H]glucosamine in the presence of an energy source; mannose was chosen to minimize randomization. It accumulated in the soluble intracellular pool primarily as UDP-N-acetyl[3H]glucosamine along with a small amount of [3H]glucosamine 6-phosphate. The antibiotic tunicamycin (TM) at 10 μg/ml did not affect the levels of these metabolites or inhibit the formation of the Nacetylglucosamine polymer, chitin, but did prevent the incorporation of [3H]glucosamine into mannan peptides and the synthesis of invertase. In vitro incorporation of [14C]mannose from GDP-[14C]mannose into mannan in a membrane preparation was not sensitive to 100 μg of TM/ml. TM appears to inhibit an N-acetylglucosaminyl transferase essential for glycoprotein biosynthesis. Binding of [3H]TM reflects its association with the plasma membrane fraction. This material could be recovered in an unaltered form by extraction with chloroform/methanol. If 0.2% phosphatidyl choline or phosphatidyl serine was added simultaneously with the [3H]TM, the binding of [3H]TM was greatly reduced, and the inhibitory effects of TM on protoplasts were prevented; however, addition of phospholipid 20 min later did not eliminate the inhibition, although about 80% of the bound [3H]TM was removed. TM interacts with lipophilic membrane components as well as inhibiting glycoprotein synthesis.  相似文献   

6.
Abstract

In the present study, we have provided evidence that [3H] rauwolscine and [3H] idazoxan bind to different sites in rabbit urethra. The [3H] idazoxan capacity and affinity was 215 ± 14 fmol/mg protein and 1.59 ± 0.16 nM while [3H] rauwolscine binding parameters were 45.9 ± 3.4 fmol/mg protein and 2.39 ± 0.27 nM. [3H] idazoxan specific binding was inhibited only by compounds possessing an imidazoli(di)ne or a guanidinium moiety, while [3H] rauwolscine specific binding was inhibited by phenylethanolamines and classical α-antagonists. [3H] idazoxan was inhibited by KCI in a competitive and by MnCI2 in a non-competitive way, while other cations such as Na+, Li+ and Mg2+ did not inhibit [3H] idazoxan binding. Moreover, we investigated the regional distribution of [3H] idazoxan and [3H] rauwolscine along the rabbit urethra using quantitative autoradiography. Analysis of the films revealed a different distribution of these two binding sites on the urethral sections.  相似文献   

7.
This study investigates the effect of Lipoprotein (a) (Lp(a)) on cellular cholesterol synthesis in non-diabetic (n = 7) and Type 2 (non-insulin-dependent) diabetic subjects (n = 7) with elevated levels of Lp(a) (> 20 mg/dl). N-Acetylcysteine was used to lower Lp(a) in the control subjects and their lipoproteins were re-examined after 7 days of treatment. Low-density lipoprotein (LDL) was isolated and separated from Lp(a) by sequential ultracentrifugation. Regulation of cellular cholesterol synthesis was assessed by measuring incorporation of [14C]acetate into mononuclear leucocytes in the presence of LDL and Lp(a). Cellular cholesterol content was determined by a fluorometric assay. Delivery of cholesterol to the cell was examined using [3H]cholesteryl oleate-labelled LDL or Lp(a). LDL (5 μg/ml) from non-diabetic subjects suppressed cellular cholesterol synthesis by 66.2%, while Lp(a) at a similar concentration only suppressed cholesterol synthesis by 5.8% (P < 0.001). At a concentration of 20 μg/ml, Lp(a) suppressed cholesterol synthesis by 31.7%. The situation was similar in the diabetic subjects. Serum LDL cholesterol in non-diabetic subjects was 4.2 ± 0.5 mmol/1 and the LDL esterified/free cholesterol ratio was 2.6 ± 0.2. Following treatment with N-acetylcysteine, LDL cholesterol did not change, while Lp(a) decreased significantly by 24% (P < 0.05). The LDL esterified/free cholesterol ratio decreased to 2.2 ± 0.2 (P < 0.05) and there was a significant increase in the ability of the subjects LDL to inhibit cellular cholesterol synthesis (P < 0.05). There was a significant negative correlation between plasma Lp(a) and the ability of the patients' LDL to inhibit cellular cholesterol synthesis (r = − 0.68, P < 0.01). [3H]Cholesteryl-oleate-LDL (5 μg/ml) delivered 266 ± 13 ng cholesteryl oleate/mg cell protein, while it took 20 μg of [3H]cholesteryl oleate-labelled-Lp(a) to deliver a similar concentration (315 ± 21 ng cholesteryl oleate/mg cell protein). In conclusion it appears possible that the atherogenicity of Lp(a) may be associated with its effect on the LDL receptor which alters LDL receptor uptake, LDL composition and cellular cholesterol synthesis.  相似文献   

8.
Abstract: Primary astrocyte cultures from neonatal rat brains show uptake of [3H]norepinephrine ([3H]NE). This uptake has a high-affinity component with an apparent Km of approximately 3 × 10?7 M. At 10?7 M [3H]NE both the initial rate of uptake and steady-state content of [3H]NE is inhibited by up to 95% by omission of external Na+. The Na+-dependent component of this uptake is totally inhibited by the tricyclic antidepressants desipramine (DMI) and amitryptyline with IC50 values of 2 × 10?9 and 4 × 10?8 M, respectively. Inhibition of [3H]NE uptake by DMI shows competitive kinetics. These characteristics are essentially identical to those found for high-affinity uptake of NE in total membrane or synaptosome fractions from rodent brains and suggests that such uptake in neural tissue is not exclusively neuronal.  相似文献   

9.
Bone cells derived from the human jaw were cultured on titanium, titanium coated with hydroxyapatite (THA) or with plasma spray (TPS) to study the behaviour of the cells anchored to implant substrates. Bone cells were cultured in MEM with the addition of [3H]-thymidine to evaluate cellular proliferation, and [3H]-glucosamine to evaluate GAG synthesis and accumulation in the extra-cellular matrix (ECM). Moreover, to study the degradation of GAG bone cells were cultured in the presence of NH4Cl, an amine known to inhibit lysosomal activity. Our results show that TPS is the substrate that favours both cellular proliferation and the accumulation of GAG in the ECM. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract: These experiments characterize the nucleoside transport and quantify the neurotoxicity of adenosine and 2′-deoxyadenosine (dAdo) in chick sympathetic neurons. We show that [3H]adenosine transport was sensitive to low temperature, specific inhibitors of nucleoside transport, and an excess concentration of adenosine. However, many of these treatments had a marginal effect on [3H]dAdo transport. Total retention of [3H]dAdo over short and long periods was ~10 times less than that of [3H]adenosine. These data suggest that adenosine and dAdo enter sympathetic neurons by different routes. Uptake of [3H]norepinephrine ([3H]NE) decreased in neurons damaged by nucleosides and increased to control levels when neurons were protected by various agents against adenosine or dAdo toxicity. These results indicate that [3H]NE uptake serves as a quantitative index of toxicity by the nucleosides. Using this approach we demonstrate that phosphorylation of both nucleosides is essential for their lethal action. For example, iodotubercidin prevented nucleoside-induced neuronal death, but the effect was much more pronounced in the case of dAdo toxicity (IC50 of 0.83 ± 0.4 vs. 30 ± 1.6 nM). Another kinase inhibitor, 5′-amino 5′-deoxyadenosine, was effective in protecting neurons against dAdo but had no effect against adenosine toxicity. These results suggest that specific kinases are associated with the phosphorylation of adenosine and dAdo in sympathetic neurons to produce toxic metabolic products. Finally, neurons were susceptible to dAdo toxicity from the time of plating to 4 weeks in culture but were resistant to adenosine toxicity 8 h after plating. In conclusion, our results highlight major differences in the mechanism of neurotoxicity by adenosine and dAdo and provide insights for identification of biochemical pathways leading to neuronal death.  相似文献   

11.
Abstract: The objective of these experiments was to determine whether the chronic administration of nicotine, at a dose regimen that increases the density of nicotine binding sites, alters the nicotine-induced release of [3H]dopamine ([3H]DA), [3H]norepinephrine ([3H]NE), [3H]serotonin ([3H]5-HT), or [3H]acetylcholine ([3H]ACh) from rat striatal slices. For these experiments, rats received subcutaneous injections of either saline or nicotine bitartrate [1.76 mg (3.6 µmol)/kg, dissolved in saline] twice daily for 10 days, and neurotransmitter release was measured following preloading of the tissues with [3H]DA, [3H]NE, [3H]5-HT, or [3H]choline. Chronic nicotine administration did not affect the accumulation of tritium by striatal slices, the basal release of radioactivity, or the 25 mM KCl-evoked release of neurotransmitter. Superfusion of striatal slices with 1, 10, and 100 µM nicotine increased [3H]DA release in a concentration-dependent manner, and release from slices from nicotine-injected animals was significantly (p < 0.05) greater than release from saline-injected controls; release from the former increased to 132, 191, and 172% of release from the controls following superfusion with 1, 10, and 100 µM nicotine, respectively. Similarly, [3H]5-HT release increased in a concentration-related manner following superfusion with nicotine, and release from slices from nicotine-injected rats was significantly (p < 0.05) greater than that from controls. [3H]5-HT release from slices from nicotine-injected rats evoked by superfusion with 1 and 10 µM nicotine increased to 453 and 217%, respectively, of release from slices from saline-injected animals. The nicotine-induced release of [3H]NE from striatal slices was also concentration dependent but was unaffected by chronic nicotine administration. [3H]ACh release from striatal slices could not be detected when samples were superfused with nicotine but was measurable when tissues were incubated with nicotine. The release of [3H]ACh from slices from nicotine-injected rats was significantly (p < 0.05) less than release from controls and decreased to 36, 83, and 77% of control values following incubation with 1, 10, or 100 µM nicotine, respectively. This decreased [3H]ACh release could not be attributed to methodological differences because slices from nicotine-injected rats incubated with nicotine exhibited an increased [3H]DA release, similar to results from superfusion studies. In addition, it is unlikely that the decreased release of [3H]ACh from striatal slices from nicotine-injected rats was secondary to increased DA release because [3H]ACh release from slices from hippocampus, which is not tonically inhibited by DA, also decreased significantly (p < 0.05) in response to nicotine; hippocampal slices from nicotine-injected rats incubated with 1 and 10 µM nicotine decreased to 42 and 70%, respectively, of release from slices from saline-injected animals. Results indicate that the chronic administration of nicotine increases the ability of nicotine to induce the release of [3H]DA and [3H]5-HT and decreases the ability of nicotine to evoke the release of [3H]ACh but does not alter the nicotine-induced release of [3H]NE from brain slices.  相似文献   

12.
The tritium-labeled selective agonist of the nonopioid β-endorphin receptor the decapeptide immunorphin ([3H]SLTCLVKGFY) with a specific activity of 24 Ci/mmol was prepared. It was shown that [3H]immunorphin binds with a high affinity to the non-opioid β-endorphin receptor of mouse peritoneal macrophages (K d 2.4 ± 0.1 nM). The specific binding of [3H]immunorphin to macrophages was inhibited by unlabeled β-endorphin (K i of the [3H]immunorphin-receptor complex 2.9 ± 0.2 nM) and was not inhibited by unlabeled naloxone, α-endorphin, γ-endorphin, and [Met5]enkephalin (K i > 10 μM). Thirty fragments of β-endorphin were synthesized, and their ability to inhibit the specific binding of [3H]immunorphin to macrophages was studied. It was found that the shortest peptide having practically the same inhibitory activity as β-endorphin is its fragment 12–19 (K i 3.1 ± 0.3 nM).  相似文献   

13.
Leukemia in AKR mice was found to be associated with the presence of a serum factor(s) termed AKR leukemic suppressor factor (AKR-LSF). Suppression was quantitated by measuring the inhibition of PHA-stimulated [3H]thymidine incorporation by normal AKR spleen cells at various dilutions of leukemic mouse serum (LMS). AKR-LSF activity was expressed as units per milliliter, which is the reciprocal of the LMS dilution that inhibited [3H]thymidine uptake by 50% with respect to fetal calf serum control cultures. The amount of activity in the serum directly correlated to the rate of tumor cell growth. Mice receiving 107 BW5147 transplanted leukemia cells had 130 ± 12 units of AKR-LSF activity/ml of serum compared to 40 ± 8 units/ ml for mice with spontaneous leukemia. Normal mouse serum contained 33 ± 11 units/ml. The leukemic serum exhibited no strain specificity in either phytohemagglutinin or lipopolysaccharide assays, but was found to be twofold more inhibitory against mouse spleen cells than that against rat spleen cells. Human lymphocyte blastogenesis was not inhibited by the leukemic serum. LMS did not inhibit the growth of L929 fibroblasts or murine tumor cells in vitro. Further work is necessary to determine what role the suppressor factor may play in the regulation of antitumor cell immunity.  相似文献   

14.
Abstract: Removal of nerve growth factor (NGF) from sympathetic neurons initiates a neuronal death program and apoptosis. We show that pituitary adenylyl cyclase-activating polypeptide (PACAP) prevents apoptosis in NGF-deprived sympathetic neurons. PACAP (100 nM) added to culture medium at the time of plating failed to support neuronal survival. However, in neurons grown for 2 days with NGF and then deprived of NGF, PACAP prevented cell death for the next 24–48 h. Uptake of [3H]norepinephrine ([3H]NE) was used as an index of survival and decreased >50% in NGF-deprived cultures within 24 h. PACAP (1–100 nM) restored [3H]NE uptake to 92 ± 8% of that of NGF-supported controls. Depolarization-induced [3H]NE release in neurons rescued by PACAP was the same as that in NGF-supported neurons. PACAP rescue was not mimicked by forskolin or 8-bromo-cyclic AMP and was not blocked by the protein kinase A inhibitor Rp-adenosine 3′,5′-cyclic monophosphothioate. Mobilization of phosphatidylinositol by muscarine failed to support NGF-deprived neurons. Thus, PACAP may use novel signaling to promote survival of sympathetic neurons. The apoptosis-associated caspase CPP32 activity increased approximately fourfold during 6 h of NGF withdrawal (145 ± 40 versus 38 ± 17 nmol of substrate cleaved/min/mg of protein) and returned to even below the control level in NGF-deprived, PACAP-rescued cultures (14 ± 7 nmol/min/mg of protein). Readdition of NGF or PACAP to NGF-deprived cultures reversed CPP32 activation, and this was blocked by lactacystin, a potent and specific inhibitor of the 20S proteasome, suggesting that NGF and PACAP target CPP32 for destruction by the proteasome. As PACAP is a preganglionic neurotransmitter in autonomic ganglia, we propose a novel function for this transmitter as an apoptotic rescuer of sympathetic neurons when the supply of NGF is compromised.  相似文献   

15.
Substantial extrasplanchnic metabolism of estrogens is known to occur in humans and dogs. As part of an investigation into the anatomic sites of such metabolism, the extraction of estrogens by the hind limb of the dog was studied during a constant infusion of [3H]estrone. Simultaneous femoral artery (A) and femoral vein (FV) plasma samples were obtained and analyzed for total radioactivity, unconjugated and conjugated radioactivity, for [3H]estrone and for its metabolites estradiol-17β, estrone sulfate and estrone glucosiduronate. The percent extraction across the hind limb was calculated [100(1-FV/A)]. The mean percent extraction ± SE of total, conjugated and unconjugated radioactivity was 31 ± 3.9, 27 ± 4.4 and 16 ± 3.7 respectively, indicating significant net uptake of these moieties by the hind limb (P<.01). Mean percent extractions ± SE for estrone and estradiol-17β were 40 ± 4.9 and 32 ± 2.7, indicating significant net uptake of these specific unconjugated estrogens by the hind limb (P<.01). The mean percent extraction of estrone glucosiduronate was 16 ± 3.1 indicating significant net uptake of this conjugate (P<.01). However, the mean percent extraction of estrone sulfate was negative (?12 ± 4.1) indicating net production of this conjugate by the hind limb (P<.01). Since the net uptake of total radioactivity cannot be explained on the basis of metabolism by the hind limb, the lymphatics were investigated as an alternate efferent pathway. In similar experiments the thoracic duct was cannulated, the estrogens in lymph were analyzed and compared with those in femoral artery plasma. Each estrogen measured in plasma appeared in lymph within 10 minutes following the start of the [3H]estrone infusion. The lymph/femoral artery concentration ratios reached a plateau at 70–100 minutes after the start of the infusion. The plateau concentrations were 20–70% of those in plasma. It is suggested that removal of estrogens in the lymph may account, in part at least, for the net uptake of total radioactivity across the hind limb calculated from the plasma data.  相似文献   

16.
Kinetic analysis of binding of [3H][N-[2-[4-(2-[O-methyl-3H]methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)cyclohexane carboxamide ([3H]WAY100635) to 5-HT1A receptors in rat hippocampal membranes has revealed complex regulation mechanism for this radioligand. Saturation binding experiments revealed that [3H]WAY100635 binds to a single class of receptors with very high apparent affinity (K D = 87 ± 4 pM, B max = 15.1 ± 0.2 fmol/mg protein). The binding was almost irreversible, as the dissociation rate constant obtained k off = (7.8 ± 1.1) × 10−3 min−1, means that equilibrium with this radioligand cannot be achieved before 7.5 h incubation at 25°C. Systematic association kinetic studies of [3H]WAY100635 binding revealed sharp reaction acceleration at higher radioligand concentration, proposing mechanism of positive cooperativity. The affinities of antagonists determined from competition with [3H]WAY100635 did not coincide with their abilities to inhibit 5-HT-dependent activation of [35S]GTPγS binding probably due to the ligand’s kinetic peculiarities. Thus, [3H]WAY100635 appears to be an excellent tool for determining receptor binding sites, but its applicability in equilibrium studies is strongly limited.  相似文献   

17.
In stably-transfected human neuroblastoma SH-SY5Y cells, we have compared the effect of activating two isoforms of 445 and 365 amino acids of the human histamine H3 receptor (hH3R445 and hH3R365) on [35S]-GTPγS binding, forskolin-induced cAMP formation, depolarization-induced increase in the intracellular concentration of Ca2+ ions ([Ca2+]i) and depolarization-evoked [3?H]-dopamine release. Maximal specific binding (Bmax) of [3?H]-N-methyl-histamine to cell membranes was 953?±?204 and 555?±?140?fmol/mg protein for SH-SY5Y-hH3R445 and SH-SY5Y-hH3R365 cells, respectively, with similar dissociation constants (Kd, 0.86?nM and 0.81?nM). The mRNA of the hH3R365 isoform was 40.9?±?7.9% of the hH3R445 isoform. No differences in receptor affinity were found for the H3R ligands histamine, immepip, (R)(-)-α-methylhistamine (RAMH), A-331440, clobenpropit and ciproxifan. Both the stimulation of [35S]-GTPγS binding and the inhibition of forskolin-stimulated cAMP accumulation by the agonist RAMH were significantly larger in SH-SY5Y-hH3R445 cells ([35S]-GTPγS binding, 158.1?±?7.5% versus 136.5?±?3.6% for SH-SY5Y-hH3R365 cells; cAMP accumulation, ?74.0?±?4.9% versus ?43.5?±?5.3%), with no significant effect on agonist potency. In contrast, there were no differences in the efficacy and potency of RAMH to inhibit [3?H]-dopamine release evoked by 100?mM K+ (?18.9?±?3.0% and ?20.5?±?3.3%, for SH-SY5Y-hH3R445 and SH-SY5Y-hH3R365 cells), or the inhibition of depolarization-induced increase in [Ca2+]i (S2/S1 ratios: parental cells 0.967?±?0.069, SH-SY5Y-hH3R445 cells 0.639?±?0.049, SH-SY5Y-hH3R365 cells 0.737?±?0.045). These results indicate that in SH-SY5Y cells, hH3R445 and hH3R365 isoforms regulate in a differential manner the signaling pathways triggered by receptor activation.  相似文献   

18.
Selective agonist of nonopioid β‐endorphin receptor decapeptide immunorphin (SLTCLVKGFY) was labeled with tritium (the specific activity of 24 Ci/mmol). [3H]Immunorphin was found to bind to nonopioid β‐endorphin receptor of mouse peritoneal macrophages (Kd = 2.0 ± 0.1 nM ). The [3H]immunorphin specific binding with macrophages was inhibited by unlabeled β‐endorphin (Ki = 2.9 ± 0.2 nM ) and was not inhibited by unlabeled naloxone, α‐endorphin, γ‐endorphin and [Met5]enkephalin (Ki > 10 µM ). Thirty fragments of β‐endorphin have been synthesized and their ability to inhibit the [3H]immunorphin specific binding to macrophages was studied. Unlabeled fragment 12–19 (TPLVTLFK, the author's name of the peptide octarphin) was found to be the shortest peptide possessing practically the same inhibitory activity as β‐endorphin (Ki = 3.1 ± 0.3 nM ). The peptide octarphin was labeled with tritium (the specific activity of 28 Ci/mmol). [3H]Octarphin was found to bind to macrophages with high affinity (Kd = 2.3 ± 0.2 nM ). The specific binding of [3H]octarphin was inhibited by unlabeled immunorphin and β‐endorphin (Ki = 2.4 ± 0.2 and 2.7 ± 0.2 nM , respectively). Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
The biosynthetic relations between protoberberine-, benzo[C]phenanthridine- and B-secoprotoberberine type alkaloids were demonstrated by use of (±)-tetrahydrocoptisine-[8,14-3H HCl, (±)-tetrahydrocorysamine-[8,14-3H]HCl and corynoline-[6-3H]HCl in Corydalis incisa, and the following results were presented. (±)-Tetrahydrocoptisine was converted to corynoline, corydalic acid methyl ester and corydamine hydrochloride. (±)-Tetrahydrocorysamine was converted to corynoline and corydalic acid methyl ester. Evidence that N-methyl-3-[6′-(3′,4′-methylenedioxyphenethylalcohol)]-4-methyl-7,8-methylenedioxy-1,2,3,4-tetrahydroisoquinoline-[α-3H] HCl was incorporated into corynoline-[11-3H] indicates the occurrence of the ring fission at C6-N followed by linking ofthe C6 and C13 positions in (±)-tetrahydrocoptisine and (±)-tetrahydrocorysamine, and suggests the participation of one of two possible intermediates in the biosynthesis of these alkaloids.  相似文献   

20.
Tritium-labeled synthetic fragments of human adrenocorticotropic hormone (ACTH) [3H]ACTH (11–24) and [3H]ACTH (15–18) with a specific activity of 22 and 26 Ci/mmol, respectively, were obtained. It was found that [3H]ACTH-(11–24) binds to membranes of the rat adrenal cortex with high affinity and high specificity (K d 1.8 ± 0.1 nM). Twenty nine fragments of ACTH (11–24) were synthesized, and their ability to inhibit the specific binding of [3H]ACTH (11–24) to adrenocortical membranes was investigated. The shortest active peptide was found to be an ACTH fragment (15–18) (KKRR) (K i 2.3 ± 0.2 nM), whose [3H] labeled derivative binds to rat adrenocortical membranes (K d 2.1 ± 0.1 nM) with a high affinity. The specific binding of [3H]ACTH-(15–18) was inhibited by 100% by unlabeled ACTH (11–24) (K i 2.0 ± 0.1 nM). ACTH (15–18) in the concentration range of 1–1000 nM did not affect the adenylate cyclase activity of adrenocortical membranes and, therefore, is an antagonist of the ACTH receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号