首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A pulse-chase experiment was performed in embryonic rat myotube cultures to examine possible precursor-product relationships among the various molecular forms of acetylcholinesterase (AChE). AChE was labeled with paraoxon, a compound which diethylphosphorylates AChE at its active site. Diethylphosphorylated (labeled) AChE is inactive but can be reactivated by treatment with 1-methyl-2-hydroxyiminomethyl-pyridinium. Thus labeled enzyme could be followed as AChE that regained activity following treatment with 1-methyl-2-hydroxyiminomethylpyridium. To selectively label monomeric AChE (the hypothesized precursor form), cultures were treated with methanesulfonylfluoride which irreversibly inactivated more than 97% of total cellular AChE. Methylsulfonylfluoride was then washed from the cultures, and they were labeled with paraoxon during a 40-55-min recovery period. AChE appearing in the cultures during this recovery period is newly synthesized and consists almost entirely (92%) of the monomeric form. Immediately and 120-130 min after labeling, cultures were subjected to a sequential extraction procedure to separate globular from asymmetric forms. Individual forms were then separated by velocity sedimentation on sucrose gradients. In our first series of experiments, we observed a 55% decrease in labeled monomers during the chase, a 36% increase in labeled tetramers, and a 36% increase in labeled asymmetric forms. In a second series of experiments focused on individual asymmetric forms, we observed a 55% decrease in labeled monomers, a 58% increase in labeled tetramers, an overall increase of 81% in labeled asymmetric forms, and a 380% increase in labeled A12 AChE. These data provide the first uniequivocal proof that complex forms of AChE are assembled from active monomeric precursors.  相似文献   

2.
We have carried out a comparative study of the developmental profiles of the enzyme acetylcholinesterase, and of its collagen-tailed and globular structural forms, solubilized in the presence of 1 M NaCl, 1% (w/v) sodium cholate and 2 mM EDTA, in the chick retina and optic lobes. The overall acetylcholinesterase activities, both per mg protein and per embryo or chick, are substantially higher in tectum than in retina, from embryonic day 16. The A12 collagen-tailed form of the enzyme is present in similar amounts in the embryonic retina and optic tectum; however, while the A12 activity increases significantly in retina after birth, both by percentage and in absolute terms, the tectal tailed enzyme follows a declining developmental profile, reaching a minimum after 6 months of life. On the other hand, the globular G4 species shows developmental profiles, both in retina and tectum, rather similar to those obtained for the overall enzyme activity, while the G2 and G1 forms are present in comparable concentrations in both tissues. Besides, G4 is the predominant globular form in the chick optic lobe after hatching, G2 and G1 being enriched in the embryonic tectum. In the case of retina, however, all the globular forms contribute more evenly to the total acetylcholinesterase activity, along the developmental period considered.The potential significance of some of the postnatal developmental profiles is discussed in terms of the progressive adjustment of retina and tectum to the requirements of visual function.  相似文献   

3.
Summary Micro-polyacrylamide gradient electrophoresis followed by active staining is applied for the demonstration of the multiple forms of acetylcholinesterase. Among other advantages the very small samples that enable the analysis of well-defined brain material as well as the almost histochemical conditions of incubation enable its successful use in topochemical investigations of the multiple form pattern of brain acetylcholinesterase.The acetylcholinesterase of bovine nc. caudatus could be separated into 4 multiple forms and the pattern was analysed microdensitometrically. These forms differ in their molecular weight as well as well as in their degree of membrane binding. Increasing ionic strength (NaCl) is followed by changes in the pattern. This result is discussed as caused by aggregation of enzyme subunits.The research reported in this paper was supported by the Ministerium für Wissenschaft und Technik der DDR  相似文献   

4.
Summary The pattern of the multiple forms of the acetylocholinesterase (AChE, E.C. 3.1.1.7) of the rat brain is investigated using polyacrylamide gradient micro-gel electrophoresis with regard to a possible functional importance of this individual forms. The patterns of the AChE-forms of selected regions of the CNS are compared and certain differences could be shown. After increased cholinergic input (into the hippocampus by electrical stimulation of the nc. septi medialis) an aggregation of AChE subunits is detectable. Subletal intoxication with an irreversible inhibitor of AChE is followed by a faster recovery of the smaller forms. A suggestion of a possible functional role of the multiple forms of AChE is discussed.The research reported in this paper was supported by the Ministerium für Wissenschaft und Technik der DDR  相似文献   

5.
The conformation of the globular dimer (G2), the tailed asymmetric dodecamer (A12, also containing some tailed octamer A8) and the globular tetramer (G4, prepared by removing the collagen-like tail from A12) of acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) was studied by circular dichroism (CD) in the ultraviolet region. The G2 and G4 forms had similar conformation with about 40% α-helix, 35% β-sheets and 4% β-turns; the tailed form had a lower helicity (about 34%) and β-form (about 25%) content probably because of the presence of the tail whose CD spectrum resembles that of an unordered form, but it had about the same amount of β-turns as the other two forms. All three forms also had similar CD spectra in the near-ultraviolet region due to their non-peptide chromophores. The pH, thermal and urea denaturation of the three acetylcholinesterase forms was also similar to each other. The pH-dependency of both the enzymatic activity and CD intensity of the three forms showed bell-shaped curves with a plateau at pH 7–8. The activity was completely lost at pH below 5 or above 10, but the corresponding CD spectra retained 70–80% of the original magnitudes. Thermal denaturation of the three forms at pH 7.5 showed a conformational transition and loss of activity between 30 and 40°C, but the CD intensity of the helical band at 222 nm was reduced by only 20–30%. Urea denaturation of the three form began at 1 M urea; it was protein concentration- and time-dependent. Again, the activity disappeared faster than the decreasing CD intensity. Thus, the overall conformation of the three acetylcholinesterase forms appears to be relatively stable, but their active site is easily perturbed by changing the environment. The loss of activity correlated well with the disapperance of the CD band of tryptophan(s) in the near-ultraviolet region, suggesting that the Trp residue(s) might be at or near the active center of the enzyme.  相似文献   

6.
The conformation of the globular dimer (G2), the tailed asymmetric dodecamer (A12, also containing some tailed octamer A8) and the globular tetramer (G4, prepared by removing the collagen-like tail from A12) of acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) was studied by circular dichroism (CD) in the ultraviolet region. The G2 and G4 forms had similar conformation with about 40% alpha-helix, 35% beta-sheets and 4% beta-turns; the tailed form had a lower helicity (about 34%) and beta-form (about 25%) content probably because of the presence of the tail whose CD spectrum resembles that of an unordered form, but it had about the same amount of beta-turns as the other two forms. All three forms also had similar CD spectra in the near-ultraviolet region due to their non-peptide chromophores. The pH, thermal and urea denaturation of the three acetylcholinesterase forms was also similar to each other. The pH-dependency of both the enzymatic activity and CD intensity of the three forms showed bell-shaped curves with a plateau at pH 7-8. The activity was completely lost at pH below 5 or above 10, but the corresponding CD spectra retained 70-80% of the original magnitudes. Thermal denaturation of the three forms at pH 7.5 showed a conformational transition and loss of activity between 30 and 40 degrees C, but the CD intensity of the helical band at 222 nm was reduced by only 20-30%. Urea denaturation of the three forms began at 1 M urea; it was protein concentration- and time-dependent. Again, the activity disappeared faster than the decreasing CD intensity. Thus, the overall conformation of the three acetylcholinesterase forms appears to be relatively stable, but their active site is easily perturbed by changing the environment. The loss of activity correlated well with the disappearance of the CD band of tryptophan(s) in the near-ultraviolet region, suggesting that the Trp residue(s) might be at or near the active center of the enzyme.  相似文献   

7.
Multiple forms of acetylcholinesterase from pig brain   总被引:10,自引:6,他引:4  
1. A number of methods of solubilization of pig brain acetylcholinesterase (EC 3.1.1.7) were studied. The multiple enzymic forms of the resultant preparations were examined by polyacrylamide-gel electrophoresis. 2. Butanol extraction, Nagarase treatment and ultrasonication proved unsuitable as preparatory methods, but detergent treatment (Triton X-100, Triton X-100-KCl and lysolecithin) gave good yields. 3. Separation of soluble enzyme in three systems of polyacrylamide-gel electrophoresis were compared and the relative advantages are discussed. 4. By using a 6% (w/v) gel and continuous buffer system two forms of acetylcholinesterase were detected in Triton X-100-solubilized enzyme, but the incorporation of a sample and spacer gel and a discontinuous buffer system resolved this into four components. The forms of the soluble enzyme extracted by different methods differed in mobility. 5. With gradient polyacrylamide-gel electrophoresis between two and six forms were detected, depending on the method used for extraction. The average molecular weights of the five forms most frequently found were 60000, 130000, 198000, 266000 and 350000. 6. Treatment of the Triton X-100-extracted enzyme with 2.5m-urea altered the pattern and evidence of dissociation was observed. 7. The results are discussed in the light of present theories on the molecular structure of acetylcholinesterase.  相似文献   

8.
Binding of the asymmetric forms of acetylcholinesterase to heparin.   总被引:5,自引:0,他引:5       下载免费PDF全文
The interaction between acetylcholinesterase (EC 3.1.1.7) and heparin, a sulphated glycosaminoglycan, was studied by affinity chromatography. A specific binding of the asymmetric acetylcholinesterase to an agarose gel containing covalently bound heparin was demonstrated. This interaction required an intact collagenous tail, shown by the fact that the binding is abolished by pretreatment with collagenase. The globular forms did not bind to the column. Both total and intracellular asymmetric acetylcholinesterase forms isolated from the endplate region of the rat diaphragm muscle showed higher affinity for the heparin than did the enzyme from the non-endplate region. The binding to the resin was destabilized with 0.55 M-NaCl, and, among the various glycosaminoglycans tested, only heparin was able to displace the acetylcholinesterase bound to the column. Our results added further support to the concept that the asymmetric acetylcholinesterase forms are immobilized on the synaptic basal lamina via interactions with heparin-like molecules, probably related to heparan sulphate proteoglycans.  相似文献   

9.
We prepared myofiber basal lamina sheaths (BLs) using the in vivo experimental procedure of Sanes et al. (J. Cell Biol.78, 176–198, 1978) on frog cutaneus pectoris muscle. On the 15 days post-operatively, acetylcholinesterase (AChE) is still found concentrated in native BLs and purified BLs preparations and both globular and asymmetric molecular forms coexist (Nicolet et al., J. Cell Biol., 107, 762–768, 1986). We describe here at least two distinct AChE pools, according to their differential solubility in non-ionic detergent and high-salt media. One is detergent-extracted (DE) and the other is detergent-insoluble, high-salt extracted (HSS). In the BLs preparation as well as in control motor end-plate rich regions (MEP-r) of muscle, both globular and asymmetric forms of AChE are found as DE and HSS variants. These observations suggest that all AChE forms are present in the extracellular muscle basal lamina and are bound through not only hydrophilic but also hydrophobic bonds, to probably distinct structural domains of the muscle basal lamina.  相似文献   

10.
11.
The effect of eight different acetylcholinesterase inhibitors (AChEIs) on the activity of acetylcholinesterase (AChE) molecular forms was investigated. Aqueous-soluble and detergent-soluble AChE molecular forms were separated from rat brain homogenate by sucrose density sedimentation. The bulk of soluble AChE corresponds to globular tetrameric (G4), and monomeric (G1) forms. Heptylphysostigmine (HEP) and diisopropylfluorophosphate were more selective for the G1 than for the G4 form in aqueous-soluble extract. Neostigmine showed slightly more selectivity for the G1 form both in aqueous- and detergent-soluble extracts. Other drugs such as physostigmine, echothiophate, BW284C51, tetrahydroaminoacridine, and metrifonate inhibited both aqueous- and detergent-soluble AChE molecular forms with similar potency. Inhibition of aqueous-soluble AChE by HEP was highly competitive with Triton X-100 in a gradient, indicating that HEP may bind to a detergent-sensitive non-catalytic site of AChE. These results suggest a differential sensitivity among AChE molecular forms to inhibition by drugs through an allosteric mechanism. The application of these properties in developing AChEIs for treatment of Alzheimer disease is considered.Special issue dedicated to Dr. Morris H. Aprison.  相似文献   

12.
Molecular forms of acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7) differ in their solubility properties as well as in the number of their catalytic subunits. We used monoclonal antibodies to investigate the structure of acetylcholinesterase forms in brain, erythrocytes and serum of rats, rabbits and other mammals. Two antibodies were found to bind tetrameric acetylcholinesterase in preference to the monomeric enzyme. These antibodies also displayed lower affinity for certain forms of 'soluble' brain acetylcholinesterase than for the 'membrane-associated' counterparts. Furthermore, one of them was virtually lacking in affinity for the membrane-associated enzyme of erythrocytes. The basis for the antibody specificity was not fully determined. However, the immunochemical results were supported by measurements of enzyme thermolability, which showed that the catalytic activity of 'soluble' acetylcholinesterase was comparatively heat-resistant. These observations point toward structural differences among the solubility classes of acetylcholinesterase.  相似文献   

13.
Three forms of brain acetylcholinesterase were purified from bovine caudate-nucleus tissue and determined by calibrated gel filtration to have mol.wts. of approx. 120 000 (C), 230 000 (B) and 330 000 (A). [3H]Di-isopropyl phosphorofluoridate (isopropyl moiety labelled) was purified from commercial preparations and its concentration estimated by an enzyme-titration procedure. Brain acetylcholinesterase preparations and enzyme from eel electric tissue were allowed to react with [3H]di-isopropyl phosphorofluridate in phosphate buffer until enzyme activity was inhibited by 98%. Excess of [3H]di-isopropyl phosphorofluoridate that had not reacted was separated from the labelled enzyme protein by gel filtration, or by vacuum filtration or by extensive dialysis. The specificity of active-site labelling was confirmed by use of the enzyme reactivator, pyridine 2-aldoxime. The forms of brain acetylcholinesterase were calculted to contain approximately two (C) four (B) and six (A) active sites per molecule respectively. Acetylcholinesterase (mol.wt. 250 000) from electric-eel tissue was estimated to contain two active sites per molecule. Gradient-gel electrophoresis was used to confirm the estimation of molecular weights of brain acetylcholinesterase forms made by gel filtration. Under the conditions of electrophoresis acetylcholinesterase form A was stable, but form B was converted into a species of approx. 120 000 mol. wt. Similarly, form C of the brain enzyme was converted into a 60 000-mol.wt. form during electrophoresis. These results are in general accord with the suggestion that the multiple forms of brain acetylcholinesterase may be related to the aggregation of a single low-molecular-weight species.  相似文献   

14.
Calcium activation of acetylcholine hydrolysis by bovine brain acetylcholinesterase (Acetylcholine hydrolase, EC 3.1.1.7) forms has been analyzed in terms of changes in kinetic constants and thermodynamic activation parameters. De-acetylation was determined to be the major rate-influencing step in acetylcholine hydrolysis by both 60 000- and 240 000-dalton forms of the brain enzyme and 10 mM Ca2+ increased the rate constant for this step (k+3) by approximately 30% for both forms. For the smaller acetylcholinesterase form the effects of Ca2+ on de-acetylation was equivalent to its effect on the overall rate constant (k) and occurred without an effect on pK. In the case of the 240 000-dalton species, the overall rate constant was increased by Ca2+ by 33% at pH 8.0 and 81% at pH 7.25 and involved a pK shift of -0.2 pH units. For both enzyme forms the rate constants for acetylation (k+2) were increased by Ca2+. Thermodynamic analysis suggested that Ca2+ activation of the acetylation step was entropically driven. Differences between the two enzymes forms in terms of Ca2+ appear to result from association of low molecular weight species.  相似文献   

15.
16.
Both salt-soluble and detergent-soluble rat brain globular acetylcholinesterases (SS- and DS- AChE EC 3.1.1.7) are amphiphiles, as shown by detergent dependency of enzymatic activity and binding to liposomes. Proteinase K and papain treatment transformed SS-AChE and DS-AChE into forms that, in absence of detergent, no longer aggregated nor bound to liposomes. In contrast, phosphatidylinositol-specific phospholipase C had no effect on these properties. Labeling DS-AChE with 3-(trifluoromethyl)-3-(m-(125I)-iodophenyl) diazirine ([125I]TID) revealed, by polyacrylamide gel electrophoresis under reducing conditions, one single band of 69 kD apparent molecular mass. The same pattern was previously obtained with Bolton and Hunter reagent-labeled enzyme (1). Proteinase K treatment transformed the 11 S [125I]TID labeled AChE into a 4 S form which no longer showed125I-radioactivity and was unable to bind to liposomes. These results are compatible with the existence of a hydrophobic segment present both on salt-soluble and detergent-soluble 11 S AChE as well as on the minor forms 4 S and 7 S. This segment is not linked to the catalytic subunits by disulfide bounds in contrast to the 20 kD non-catalytic subunit described by Inestrosa et al. (2).Abbreviations used AChE acetylcholinesterase - SS-AChE salt-soluble AChE - DS-AChE detergent-soluble AChE - BSA bovine serum albumin - ChE serum (butyryl) cholinesterase - ConA-Sepharose concanavalin A-Sepharose 4B - DMAEBA-Sepharose dimethylaminoethylbenzoic acid-Sepharose 4B - PC-Chol-SA liposomes phosphatidylcholine-cholesterol-stearylamine liposomes - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - 125I-TID 3-(trifluoromethyl)-3-(m-(125I)-iodophenyl) diazirine  相似文献   

17.
A method for preparing various forms of acetylcholinesterase (A ChE) from chicken brain has been developed and they have been characterized in terms of kinetic parameters such as Km, rate constant (k), turnover number (kp), specificity constant (ksp), Vmax and half-life (t1/2). The solubility experiments show that, there are two major forms of A ChE i.e. water-soluble and membrane-bound A ChE (MBA ChE). The MBA ChE shows several subforms, and on the basis of percentage activity only three MBA ChE forms have been selected for complete characterization by various kinetic parameters. It was found that these three forms of MBA ChE demonstrate significant differences in their kinetic properties.  相似文献   

18.
The solubilization of 80% of the acetylcholinesterase activity of mouse brain was performed by repeated 2h incubations of homogenates at 37 degrees C in an aqueous medium. Analysis of the soluble extract by gel filtration on Sephadex G-200 showed that up to 80% of the enzyme activity was eluted in a peak which was estimated to consist of molecules of about 74000mol.wt. This peak was called the monomer form of the enzyme. After 3 days at 4 degrees C, the soluble extract was re-analysed and was eluted from the column in four peaks of about 74000, 155000, 360000 and 720000 mol.wt. Since the total activity of the enzyme in these peaks was the same as that in the predominantly monomer elution profile of fresh enzyme, we concluded that the monomer had aggregated, possibly into dimers, tetramers and octomers. Extracts of the enzyme were analysed by polyacrylamide-gel electrophoresis and the resulting multiple bands of enzyme activity on gels were shown to separate according to their molecular sizes, that is by molecular sieving. All these forms had similar susceptibilities to the inhibitors eserine, tetra-isopropyl pyrophosphoramide and compound BW 284c51 [1,5-bis-(4-allyldimethylammoniumphenyl)pentan-3-one dibromide]. Thus the forms of the enzyme in mouse brain which can be detected by gel filtration and polyacrylamide-gel electrophoresis may all be related to a single low-molecular-weight form which aggregates during storage. This supports similar suggestions made for the enzyme in other locations.  相似文献   

19.
S Bon  J Y Chang  A D Strosberg 《FEBS letters》1986,209(2):206-212
We have determined partial N-terminal sequences of acetylcholinesterase (AChE) catalytic subunits from Torpedo marmorata electric organs and from bovine caudate nucleus. We obtain identical sequences (23 amino acids) for the soluble ('low-salt-soluble' or LSS fraction) and particulate ('detergent-soluble', or DS fraction) amphiphilic dimers (G2 form) and for the asymmetric, collagen-tailed forms ('high-salt-soluble', or HSS fraction, A12 + A8 forms). There are two amino acid differences, at position 3 (Asp/His) and 20 (Ile/Val), with the sequences obtained for T. californica by MacPhee-Quigley et al. [(1985) J. Biol. Chem. 260, 12185-12189] for the soluble G2 form and the lytic G4 form which is derived from asymmetric AChE. The bovine sequence (12 amino acids) presents an identity of 4 amino acids (Glu-Leu-Leu-Val) with that of Torpedo, at positions 5-8 (Torpedo) and 7-10 (bovine). There is also a clear homology with the sequence of human butyrylcholinesterase [(1986) Lockridge et al. J. Biol. Chem., in press] indicating that these enzymes probably derive from a common ancestor.  相似文献   

20.
Rat brain acetylcholinesterase (AChE, EC 3.1.1.7) consists of about 80% amphiphilic detergent-soluble (DS-) AChE and 20% hydrophilic salt-soluble (SS-) AChE. DS-AChE contains about 65% tetrameric, 20% dimeric and 10% monomeric, SS-AChE about 40% tetrameric and 60% monomeric forms. N-terminal sequencing of DS- and SS-AChE gave identical N-termini corresponding to the published cDNA sequence of the mature enzyme. The band pattern on SDS-gels is similar to that of AChE from human and bovine brain. SDS-PAGE of hydrophobically labeled DS-AChE revealed the presence of a disulfide bonded hydrophobic membrane anchor of about 20 kDa. Monoclonal antibodies (mAbs) recognizing the anchor-containing subunits of mammalian brain DS-AChE, crossreacted with rat brain DS-AChE but not with SS-AChE. DS- and SS-AChE also reacted with antibodies raised against a peptide comprising the last 10 amino acids of the sequence of bovine brain AChE. Our results led us to conclude that both DS- and SS-AChE from rat brain contain T-type catalytic subunits, and DS-AChE in addition a P-type hydrophobic anchor similar to other mammalian brain DS-AChE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号