首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developmental regulation, from the fetal period to 11 months of age, and the influence of denervation on the appearance and disappearance of the molecular forms of acetylcholinesterase (AchE) and butyrylcholinesterase (BuchE) in rat skeletal muscle were examined. The enzyme forms were extracted from anterior tibialis in 0.01 M sodium phosphate buffer, pH 7.0, containing 1 N NaCl, 0.01 M EGTA, 1% Triton X-100, and a cocktail of antiproteases, and analyzed by velocity sedimentation on 5-20% linear sucrose gradients. Three principal forms, denoted by sedimentation coefficients of 4, 10.8, and 16 S, were observed in muscle from all age groups. The amounts of each of the molecular forms of AchE and BuchE in skeletal muscle exhibited distinct and reciprocal patterns of appearance and disappearance during pre- and postnatal development. In tissue derived from animals less than 2 weeks of age, BuchE represented the predominant component of activity in the 4 S form, was present equally with AchE in the 10.8 S form, and was subordinate to AchE in the 16 S form. Between 1 and 2 weeks of age a progressive increase in AchE activities coincident with a reduction in BuchE activities resulted in inversion in the amounts of the two enzymes present in adult muscle. Denervation of muscle caused a dramatic reduction in the presence of AchE molecular forms with no discernable influence on the presence of BuchE molecular forms. These results indicate that biosynthesis of BuchE is strictly regulated in a reciprocal manner with that of AchE, and that BuchE metabolism is independent of the state of muscle innervation. Increased synthesis of AchE and either reduced synthesis or increased degradation of BuchE can account for the reciprocal regulation of these enzymes. These characteristics of mammalian muscle contrast sharply with characteristics deduced for avian tissue (Silman et al. (1979) Nature (London) 280, 160-162). The innervation-independent metabolism of BuchE and the diverse modes of its regulation in different tissue from different species signify that BuchE function may be unrelated to cholinergic neurotransmission.  相似文献   

2.
1. We analyzed the mode of attachment of 16 S tailed acetylcholinesterase (AChE; EC 3.1.1.7) to rat superior cervical ganglion (SCG) neuronal membranes. Using extractions by high-salt (HS) and nonionic detergent (Triton X-100), we found two pools of 16 S AChE. 2. The detergent-extracted (DE) 16 S AChE was tightly bound to membranes through detergent-sensitive, high-salt insensitive interactions and was distinct from high-salt-soluble 16 S AChE. The detergent-extracted (DE) 16 S AChE constituted a significant proportion of about one-third of the total 16 S AChE. 3. Treatment of the neuronal membranes by a phosphatidylinositol-specific phospholipase C (PIPLC) resulted in the release of some, but not all DE 16 S AChE, indicating that a significant amount of the neuronal DE 16 S AChE, about one-third, is anchored to membranes through a phosphatidylinositol containing residue. Thus, a covalent association of a glycolipid and catalytic or structural AChE polypeptidic chains occurs not only for dimeric AChE but also for the asymmetric species of AChE. 4. The complex polymorphism of AChE is due not only to different globular or asymmetric associations of catalytic and structural subunits but also to the alternative existence of a transmembrane domain or a glycolipid membrane anchor.  相似文献   

3.
The effects of rat obturator nerve extracts on total and 16S acetylcholinesterase (AChE) activity were studied in endplate regions of denervated anterior gracilis muscles maintained in organ culture for 48 hr. The decrease of total AChE activity in cultured muscles was similar to that observed in denervated muscles in vivo. This decrease in activity was partly prevented by addition of either 100 or 200 μl nerve extract (2.7 mg/ml protein) to the nutrient medium. Nerve extract treatment also decreased the release of AChE activity from the muscle into the bathing medium. Conversely, rat serum (20 μl; 90 mg/ml protein) had no effect on total AChE activity in muscle endplates, nor on release of the enzyme by the muscle. The 16S form of AChE was confined to motor endplate muscle regions and its activity was drastically decreased by denervation in both organ culture and in vivo preparations in a comparable manner. Nerve-extract supplemented cultures contained a significantly (p ? 0.001) larger amount of endplate 16S AChE activity (140–145%) than the corresponding controls (100-). Our results suggest that some nerve soluble substance, other than serum contaminants or 16S AChE itself, affects the maintenance of 16S AChE at the neuromuscular junction.  相似文献   

4.
5.
Native molecular forms of acetylcholinesterase (AChE) present in a microsomal fraction enriched in SR of rabbit skeletal muscle were characterized by sedimentation analysis in sucrose gradients and by digestion with phospholipases and proteinases. The hydrophobic properties of AChE forms were studied by phase-partition of Triton X-114 and Triton X-100-solubilized enzyme and by comparing their migration in sucrose gradient containing either Triton X-100 or Brij 96. We found that in the microsomal preparation two hydrophilic 13.5 S and 10.5 S forms and an amphiphilic 4.5 S form exist. The 13.5 S is an asymmetric molecule which by incubation with collagenase and trypsin is converted into a 'lytic' 10.5 S form. The hydrophobic 4.5 S form is the predominant one in extracts prepared with Triton X-100. Proteolytic digestion of the membranes with trypsin brought into solution a significant portion of the total activity. Incubation of the membranes with phospholipase C failed to solubilize the enzyme. The sedimentation coefficient of the amphiphilic 4.5 S form remained unchanged after partial reduction, thus confirming its monomeric structure. Conversion of the monomeric amphiphilic form into a monomeric hydrophilic molecule was performed by incubating the 4.5 S AChE with trypsin. This conversion was not produced by phospholipase treatment.  相似文献   

6.
7.
While it has been recognized for many years that different limb muscles belonging to the same mammal may have markedly differing contractile characteristics, it is only comparatively recently that it has been demonstrated that these differences depend upon the motor innervation. By appropriately changing the peripheral nerve innervating a mammalian skeletal muscle, it is possible to change dramatically the contractile behaviour of the reinnervated muscle. The manner by which the motor innervation determines the nature of a muscle fibre's contractile machinery is not completely understood, but it appears that the number and pattern of motor nerve impulses reaching the muscle play an important role. The biochemical changes occurring within muscle fibres whose contractile properties have been modified by altered motor innervation include the synthesis of different contractile proteins.  相似文献   

8.
Summary Potassium (K-) contractures were recorded from slow-twitch (mouse soleus) and fast-twitch (mouse extensor digitorum longus (EDL) and rat sternomastoid) muscles. The mouse limb muscles responded to a maintained increase in external potassium concentration with a rapid increase in tension (fast contracture) which inactivated and was followed by a slow contracture. Rat sternomatoid muscles responded with fast contractures only. The threshold potassium concentration for contraction was higher in fast-twitch muscles than in soleus muscles, at 22 and at 37°C. After corrections had been made for the more rapid depolarization of soleus fibers, the threshold potential for soleus fiber contraction was 15 mV closer to the resting membrane potential than the threshold for fast-twitch fiber contraction. The K-contracture results were confirmed by two microelectrode voltage-clamp experiments. Activation of fast twitch fibers required depolarizing pulses that were 15 to 20 mV greater than the pulses required to activate soleus fibers. When the time courses of K-contractures were compared it was evident that inactivation with prolonged depolarization was much faster in the fast-twitch muscles than in the soleus muscles. The results suggest that the voltage dependence and kinetics of the process coupling T-tubule depolarization with calcium release from the sarcoplasmic reticulum may depend on fiber type in mammalian skeletal muscle.  相似文献   

9.
This work addresses the physiological regulation of skeletal muscle acetylcholinesterase (AChE) isoforms by examining endplate-enriched samples from adult rat gracilis muscles 48 h after: lowintensity treadmill exercise; obturator nerve transection; nerve impulse conduction blockade by tetrodotoxin; acetylcholine (ACh) receptor (AChR) inactivation by -bungarotoxin; and, addition of obturator nerve extracts to muscles in organ culture. Results document the important role(s) of functional AChRs and ACh-AChR interactions in the differential control of individual AChE isoenzymes. A theoretical model based on these and other findings considers that: AChR activation by spontaneously released ACh is the only neural factor required for the maintenance of G1+G2 AChE; the amount of A12 AChE is determined by the combined effects of ACh and another neurogenic substance; although mechanisms intrinsic to myofibers control normal levels of G4 AChE, enhanced production of this isoform is initiated through increasing the frequency of ACh-AChR interactions.Special issue dedicated to Dr. Frederick E. Samson  相似文献   

10.
Myosin isoforms in mammalian skeletal muscle   总被引:9,自引:0,他引:9  
  相似文献   

11.
Bacterial chondroitinases (both ABC and AC types) release asymmetric and globular forms of AChE from chick skeletal muscle samples. Heparinases, however, including heparitinase I, fail to do so under different incubation conditions. These results do not support the direct implication of the heparin/heparan sulfate family of GAGs in the interaction of the different AChE molecular forms with the muscle ECM. GAGs of the chondroitin/dermatan sulfate group could however be involved, either directly or indirectly, in the attachment of the AChE collagen-like tail to the muscle basal lamina.  相似文献   

12.
The characteristics of ADP-ribosyltransferase activity in skeletal muscle membranes have been studied. The membrane enzymes can ADP-ribosylate exogenous substrates such as guanylhydrazones, polyarginine, lysozyme, and histones. The properties of the enzyme are investigated by using diethylaminobenzylidineaminoguanidine as a model substrate. Incubation of the membranes with [32P]adenylate-labeled NAD results in the labeling of a number of cellular proteins. Magnesium ions, detergents, and diethylaminobenzylidineaminoguanidine stimulated the ADP-ribosylation of membrane proteins, whereas L-arginine methyl ester and arginine inhibited ADP-ribosylation. The labeling of specific proteins in the sarcoplasmic reticulum and glycogen pellet is influenced significantly by detergents, nucleotides, and thiols. The hydroxylamine sensitivity of the ADP-ribose linkage in the membrane proteins is similar to that reported for (ADP-ribose)-arginine linkage. Snake venom phosphodiesterase digestion of the ADP-ribosylated membranes produces 5'-AMP as the major acid-soluble digestion product. The results suggest that the primary mode of modification is mono(ADP-ribosyl)ation. The ADP-ribosyltransferase activity in the membrane preparations is not extracted under conditions used for solubilization of extrinsic proteins, suggesting that the activity is associated with some integral membrane protein.  相似文献   

13.
Fast (extensor digitorum longus) and slow (soleus) rat skeletal muscles served as the source for isolation and biochemical comparison of two distinct surface membrane fractions with properties of the sarcolemma and transverse tubular system. Enriched sarcolemmal membrane from soleus demonstrated a lighter density after sucrose density centrifugation. Sialic acid content was 1.5-fold higher in soleus (62 nmol/mg) than extensor (40 nmol/mg). The specific activity of (Na+ + K+ + Mg2+)-ATPase was similar (1.40 and 1.65 μmol Pi/mg per 5 min) with the soleus enzyme displaying a (1) greater resistance to inhibition by ouabain, and (2) broader ionic ratio (Na+K+) requirement than extensor enzyme. The polypeptide and phospholipid composition showed no major differences between the two muscle types.The second surface membrane fraction, tentatively identified as transverse tubule, differed in membrane composition. The major polypeptide of extensor was of 95 000 molecular weight whereas for soleus a Mr = 28 000 species was dominant. Total phospholipid content of soleus was 1.5-fold greater than extensor due mostly to increased levels of phosphatidylcholine and phosphatidylethanolamine. Endogenous membrane protein kinase for the 28 000 molecular weight polypeptide was found exclusively in this membrane. The reaction conditions were identical for extensor and soleus since both required divalent cations (Ca2+ and Mg2+) and neither was affected by cyclic AMP. Soleus showed a 2-fold higher capacity for phosphate incorporation than extensor.These studies show that surface membrane fractions derived from fast and slow muscles differ in terms of functional and compositional properties. These differences are specific not only for the surface membrane but for the muscle type and may relate to the known physiological differences observed between fast and slow mammalian muscle.  相似文献   

14.
Slow charge movement in mammalian skeletal muscle   总被引:6,自引:5,他引:6       下载免费PDF全文
Voltage-dependent charge movements were measured in the rat omohyoid muscle with the three-microelectrode voltage-clamp technique. Contraction was abolished with hypertonic sucrose. The standard (ON-OFF) protocol for eliciting charge movements was to depolarize the fiber from -90 mV to a variable test potential (V) and then repolarize the fiber to -90 mV. The quantity of charge moved saturated at test potentials of approximately 0 mV. The steady state dependence of the amount of charge that moves as a function of test potential could be well fitted by the Boltzmann relation: Q = Qmax/(1 + exp[-(V - V)/k]), where Qmax is the maximum charge that can be moved, V is the potential at which half the charge moves, and k is a constant. At 15 degrees C, these values were Qmax = 28.5 nC/microF, V = -34.2 mV, and k = 8.7 mV. Qmax, k, and V exhibited little temperature dependence over the range 7-25 degrees C. "Stepped OFF" charge movements were elicited by depolarizing the fiber from -90 mV to a fixed conditioning level that moved nearly all the mobile charge (0 mV), and then repolarizing the fiber to varying test potentials. The sum of the charge that moved when the fiber was depolarized directly from -90 mV to a given test potential and the stepped OFF charge that moved when the fiber was repolarized to the same test potential had at all test potentials a value close to Qmax for that fiber. In nearly all cases, the decay phase of ON, OFF, and stepped OFF charge movements could be well fitted with a single exponential. The time constant, tau decay, for an ON charge movement at a given test potential was comparable to tau decay for a stepped OFF charge movement at the same test potential. Tau decay had a bell-shaped dependence on membrane potential: it was slowest at a potential near V (the midpoint of the steady state charge distribution) and became symmetrically faster on either side of this potential. Raising the temperature from 7 to 15 degrees C caused tau decay to become faster by about the same proportion at all potentials, with a Q10 averaging 2.16. Raising the temperature from 15 to 25 degrees C caused tau decay to become faster at potentials near V, but not at potentials farther away.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
In order to determine whether catalytic hydrolysis of acetylcholine, observed in muscle microsomes enriched in sarcoplasmic reticulum membranes, was carried out by true acetylcholinesterase we studied the substrate specificity of this enzyme, its kinetic behaviour and its sensitivity against several reversible inhibitors. The results showed that the enzyme from muscle microsomes had acetylcholine (or acetylthiocholine) as the preferent substrate and was also able to hydrolyze acetyl-beta-methylcholine. The enzyme had a Km of 100-120 microM, being inhibited by a high substrate concentration. Acetylcholinesterase in this source was competitively inhibited by BW-284-c-51, eserine and decamethonium with ki values of 0.025 microM, 0.021 microM and 65 microM, respectively. The enzyme was poorly inhibited by the pseudocholinesterase inhibitor ethopropazine. The results show that the hydrolytic enzyme is indeed acetylcholinesterase.  相似文献   

16.
17.
Fast (extensor digitorum longus) and slow (soleus) rat skeletal muscles served as the source for isolation and biochemical comparison of two distinct surface membrane fractions with properties of the sarcolemma and transverse tubular system. Enriched sarcolemmal membrane from soleus demonstrated a lighter density after sucrose density centrifugation. Sialic acid content was 1.5-fold higher in soleus (62 nmol/mg) than extensor (40 nmol/mg). The specific activity of (Na+ + K+ + Mg2+)-ATPase was similar (1.40 and 1.65 micronmol Pi/mg per 5 min) with the soleus enzyme displaying a (1) greater resistance to inhibition by ouabain, and (2) broader ionic ratio (Na+/K+) requirement than extensor enzyme. The polypeptide and phospholipid composition showed no major differences between the two muscle types. The second surface membrane fraction, tentatively identified as transverse tubule, differed in membrane composition. The major polypeptide of extensor was of 95 000 molecular weight whereas for soleus a Mr=28 000 species was dominant. Total phospholipid content of soleus was 1.5-fold greater than extensor due mostly to increased levels of phosphatidylcholine and phosphatidylethanolamine. Endogenous membrane protein kinase for the 28 000 molecular weight polypeptide was found exclusively in this membrane. The reaction conditions were identical for extensor and soleus since both required divalent cations (Ca2+ and Mg2+) and neither was affected by cyclic AMP. Soleus showed a 2-fold higher capacity for phosphate incorporation than extensor. These studies show that surface membrane fractions derived from fast and slow muscles differ in terms of functional and compositional properties. These differences are specific not only for the surface membrane but for the muscle type and may relate to the known physiological differences observed between fast and slow mammalian muscle.  相似文献   

18.
19.
The dynamic properties of mammalian skeletal muscle   总被引:1,自引:1,他引:1       下载免费PDF全文
The dynamic characteristics of the rat gracilis anticus muscle at 17.5°C have been determined by isotonic and isometric loading. For a fixed initial length these characteristics were represented either as a family of length-velocity phase trajectories at various isotonic afterloads or as a series of force-velocity curves at different lengths. An alternate method of viewing these data, the length-external load-velocity phase space, was also generated. When the muscle was allowed to shorten from different initial lengths, the velocity of shortening achieved at a given length was lower for longer initial lengths. The amount of departure was also dependent upon the isotonic load, the greater the load the greater the departure. The departures were not caused by changes in the elastic elements of the muscle or fatigue in the ordinary sense. When the behavior of the muscle was investigated at different frequencies of stimulation, the shortening velocity was a function of the number of stimulating pulses received by the muscle at a given frequency. The shortening velocity of the rat gracilis anticus muscle is, therefore, not only a function of load and length, but also of an additional variable related to the time elapsed from onset of stimulation.  相似文献   

20.
Skeletal muscle triads are possessing the whole set of enzymes of the phosphatidylinositol (PI)-linked signal generating pathway, PI-kinase, PI(4)P-kinase, and PI(4,5)P2-phospholipase C (PLC). The activities of these enzymes are comparable to those found in other cell types for which a functional role of the PI-pathway in intracellular signal transduction has been established. For skeletal muscle an unequivocal function and an initiating signal for Ins(1,4,5)P3-liberation is still unknown. However, the observed Ca-dependency of PLC activity suggests that here Ins(1,4,5)P3 production is a consequence rather than a cause of increasing cytosolic Ca2+. Recently, the glycolytic enzyme aldolase, whose activity can be modulated by inositol polyphosphates, has been localized in the triadic structure. The enzyme which has a high affinity to Ins(1,4)P2, Ins(1,4,5)P3 and Ins(1,3,4,5)P4, seems to be compartmentalized to the junctional foot structure from which it is released upon binding of these molecules. This phenomenon could reflect a capability for regulation of the glycolytic flux even for aldolase, especially if a non steady-state situation in the junctional gap is considered. Meanwhile we have accumulated evidence for the operation of a partial glycolytic sequence in the junctional region established by the enzymes aldolase, glyceraldehyde-3-P (GAP) dehydrogenase and phosphoglycerate kinase. This system is able to produce ATP upon oxidation of GAP and could be, because of the inositol polyphosphate-sensing abilities of aldolase, a target for the membrane associated PI-pathway. The ATP production is however transient which indicates the coupling to an ATP hydrolyzing reaction. Thus, it appears that the ATP produced by the membrane associated system is effectively utilized by an ATP consuming membrane localized system like PI-metabolism or protein kinases. There are indications that exogeneously added ATP does not equilibrate with the ATP synthesized in the junctional region which suggests an effective structural or kinetical compartmentalization of this system. Therefore it is hypothesized that the ATP synthesized by the membrane associated glycolytic sequence is utilized in membrane localized reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号