首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Extracting features from high-dimensional data is a critically important task for pattern recognition and machine learning applications. High-dimensional data typically have much more variables than observations, and contain significant noise, missing components, or outliers. Features extracted from high-dimensional data need to be discriminative, sparse, and can capture essential characteristics of the data. In this paper, we present a way to constructing multivariate features and then classify the data into proper classes. The resulting small subset of features is nearly the best in the sense of Greenshtein's persistence; however, the estimated feature weights may be biased. We take a systematic approach for correcting the biases. We use conjugate gradient-based primal-dual interior-point techniques for large-scale problems. We apply our procedure to microarray gene analysis. The effectiveness of our method is confirmed by experimental results.  相似文献   

2.
Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter-parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty-six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age-specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow-up. These data show that PPA is a robust, quantitative and explainable ML-based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation.  相似文献   

3.
Zhao W  Li H  Hou W  Wu R 《Genetics》2007,176(3):1879-1892
The biological and statistical advantages of functional mapping result from joint modeling of the mean-covariance structures for developmental trajectories of a complex trait measured at a series of time points. While an increased number of time points can better describe the dynamic pattern of trait development, significant difficulties in performing functional mapping arise from prohibitive computational times required as well as from modeling the structure of a high-dimensional covariance matrix. In this article, we develop a statistical model for functional mapping of quantitative trait loci (QTL) that govern the developmental process of a quantitative trait on the basis of wavelet dimension reduction. By breaking an original signal down into a spectrum by taking its averages (smooth coefficients) and differences (detail coefficients), we used the discrete Haar wavelet shrinkage technique to transform an inherently high-dimensional biological problem into its tractable low-dimensional representation within the framework of functional mapping constructed by a Gaussian mixture model. Unlike conventional nonparametric modeling of wavelet shrinkage, we incorporate mathematical aspects of developmental trajectories into the smooth coefficients used for QTL mapping, thus preserving the biological relevance of functional mapping in formulating a number of hypothesis tests at the interplay between gene actions/interactions and developmental patterns for complex phenotypes. This wavelet-based parametric functional mapping has been statistically examined and compared with full-dimensional functional mapping through simulation studies. It holds great promise as a powerful statistical tool to unravel the genetic machinery of developmental trajectories with large-scale high-dimensional data.  相似文献   

4.
Gaussian processes for machine learning   总被引:13,自引:0,他引:13  
Gaussian processes (GPs) are natural generalisations of multivariate Gaussian random variables to infinite (countably or continuous) index sets. GPs have been applied in a large number of fields to a diverse range of ends, and very many deep theoretical analyses of various properties are available. This paper gives an introduction to Gaussian processes on a fairly elementary level with special emphasis on characteristics relevant in machine learning. It draws explicit connections to branches such as spline smoothing models and support vector machines in which similar ideas have been investigated. Gaussian process models are routinely used to solve hard machine learning problems. They are attractive because of their flexible non-parametric nature and computational simplicity. Treated within a Bayesian framework, very powerful statistical methods can be implemented which offer valid estimates of uncertainties in our predictions and generic model selection procedures cast as nonlinear optimization problems. Their main drawback of heavy computational scaling has recently been alleviated by the introduction of generic sparse approximations.13,78,31 The mathematical literature on GPs is large and often uses deep concepts which are not required to fully understand most machine learning applications. In this tutorial paper, we aim to present characteristics of GPs relevant to machine learning and to show up precise connections to other "kernel machines" popular in the community. Our focus is on a simple presentation, but references to more detailed sources are provided.  相似文献   

5.
6.
Machine-learning models that learn from data to predict how protein sequence encodes function are emerging as a useful protein engineering tool. However, when using these models to suggest new protein designs, one must deal with the vast combinatorial complexity of protein sequences. Here, we review how to use a sequence-to-function machine-learning surrogate model to select sequences for experimental measurement. First, we discuss how to select sequences through a single round of machine-learning optimization. Then, we discuss sequential optimization, where the goal is to discover optimized sequences and improve the model across multiple rounds of training, optimization, and experimental measurement.  相似文献   

7.
The goal of this work is to develop a humanoid robot's perceptual mechanisms through the use of learning aids. We describe methods to enable learning on a humanoid robot using learning aids such as books, drawing materials, boards, educational videos or other children toys. Visual properties of objects are learned and inserted into a recognition scheme, which is then applied to acquire new object representations - we propose learning through developmental stages. Inspired in infant development, we will also boost the robot's perceptual capabilities by having a human caregiver performing educational and play activities with the robot (such as drawing, painting or playing with a toy train on a railway). We describe original algorithms to extract meaningful percepts from such learning experiments. Experimental evaluation of the algorithms corroborates the theoretical framework.  相似文献   

8.
9.
10.
Building an accurate disease risk prediction model is an essential step in the modern quest for precision medicine. While high-dimensional genomic data provides valuable data resources for the investigations of disease risk, their huge amount of noise and complex relationships between predictors and outcomes have brought tremendous analytical challenges. Deep learning model is the state-of-the-art methods for many prediction tasks, and it is a promising framework for the analysis of genomic data. However, deep learning models generally suffer from the curse of dimensionality and the lack of biological interpretability, both of which have greatly limited their applications. In this work, we have developed a deep neural network (DNN) based prediction modeling framework. We first proposed a group-wise feature importance score for feature selection, where genes harboring genetic variants with both linear and non-linear effects are efficiently detected. We then designed an explainable transfer-learning based DNN method, which can directly incorporate information from feature selection and accurately capture complex predictive effects. The proposed DNN-framework is biologically interpretable, as it is built based on the selected predictive genes. It is also computationally efficient and can be applied to genome-wide data. Through extensive simulations and real data analyses, we have demonstrated that our proposed method can not only efficiently detect predictive features, but also accurately predict disease risk, as compared to many existing methods.  相似文献   

11.
DNA-binding proteins (DNA-BPs) play a pivotal role in various intra- and extra-cellular activities ranging from DNA replication to gene expression control. Attempts have been made to identify DNA-BPs based on their sequence and structural information with moderate accuracy. Here we develop a machine learning protocol for the prediction of DNA-BPs where the classifier is Support Vector Machines (SVMs). Information used for classification is derived from characteristics that include surface and overall composition, overall charge and positive potential patches on the protein surface. In total 121 DNA-BPs and 238 non-binding proteins are used to build and evaluate the protocol. In self-consistency, accuracy value of 100% has been achieved. For cross-validation (CV) optimization over entire dataset, we report an accuracy of 90%. Using leave 1-pair holdout evaluation, the accuracy of 86.3% has been achieved. When we restrict the dataset to less than 20% sequence identity amongst the proteins, the holdout accuracy is achieved at 85.8%. Furthermore, seven DNA-BPs with unbounded structures are all correctly predicted. The current performances are better than results published previously. The higher accuracy value achieved here originates from two factors: the ability of the SVM to handle features that demonstrate a wide range of discriminatory power and, a different definition of the positive patch. Since our protocol does not lean on sequence or structural homology, it can be used to identify or predict proteins with DNA-binding function(s) regardless of their homology to the known ones.  相似文献   

12.
《Trends in biotechnology》2023,41(4):476-479
Hydrogel drug delivery system development is complex and laborious, and machine learning (ML) techniques hold great promise in accelerating the process. We highlight recent advances and strategies for data collection and ML, and we discuss the potential for and barriers to the broader use of ML for hydrogel drug delivery systems.  相似文献   

13.
蛋白质是有机生命体内不可或缺的化合物,在生命活动中发挥着多种重要作用,了解蛋白质的功能有助于医学和药物研发等领域的研究。此外,酶在绿色合成中的应用一直备受人们关注,但是由于酶的种类和功能多种多样,获取特定功能酶的成本高昂,限制了其进一步的应用。目前,蛋白质的具体功能主要通过实验表征确定,该方法实验工作繁琐且耗时耗力,同时,随着生物信息学和测序技术的高速发展,已测序得到的蛋白质序列数量远大于功能获得注释的序列数量,高效预测蛋白质功能变得至关重要。随着计算机技术的蓬勃发展,由数据驱动的机器学习方法已成为应对这些挑战的有效解决方案。本文对蛋白质功能及其注释方法以及机器学习的发展历程和操作流程进行了概述,聚焦于机器学习在酶功能预测领域的应用,对未来人工智能辅助蛋白质功能高效研究的发展方向提出了展望。  相似文献   

14.
Abstract

Molecular dynamics (MD) simulations are critical to understanding the movements of proteins in time. Yet, MD simulations are limited due to the availability of high-resolution protein structures, accuracy of the underlying force-field, computational expense, and difficulty in analysing big data-sets. Machine learning algorithms are now routinely used to circumvent many of these limitations and computational biophysicists are continuously making progress in developing novel applications. Here, we discuss some of these methods, varying from traditional dimensionality reduction approaches to more recent abstractions such as transfer learning and reinforcement learning, and how they have been used to deal with the challenges in MD. We conclude with the prospective issues in the application of machine learning methods in MD, to increase accuracy and efficiency of protein dynamics studies in general.  相似文献   

15.
环境微生物研究中机器学习算法及应用   总被引:1,自引:0,他引:1  
陈鹤  陶晔  毛振镀  邢鹏 《微生物学报》2022,62(12):4646-4662
微生物在环境中无处不在,它们不仅是生物地球化学循环和环境演化的关键参与者,也在环境监测、生态治理和保护中发挥着重要作用。随着高通量技术的发展,大量微生物数据产生,运用机器学习对环境微生物大数据进行建模和分析,在微生物标志物识别、污染物预测和环境质量预测等领域的科学研究和社会应用方面均具有重要意义。机器学习可分为监督学习和无监督学习2大类。在微生物组学研究当中,无监督学习通过聚类、降维等方法高效地学习输入数据的特征,进而对微生物数据进行整合和归类。监督学习运用有特征和标记的微生物数据集训练模型,在面对只有特征没有标记的数据时可以判断出标记,从而实现对新数据的分类、识别和预测。然而,复杂的机器学习算法通常以牺牲可解释性为代价来重点关注模型预测的准确性。机器学习模型通常可以看作预测特定结果的“黑匣子”,即对模型如何得出预测所知甚少。为了将机器学习更多地运用于微生物组学研究、提高我们提取有价值的微生物信息的能力,深入了解机器学习算法、提高模型的可解释性尤为重要。本文主要介绍在环境微生物领域常用的机器学习算法和基于微生物组数据的机器学习模型的构建步骤,包括特征选择、算法选择、模型构建和评估等,并对各种机器学习模型在环境微生物领域的应用进行综述,深入探究微生物组与周围环境之间的关联,探讨提高模型可解释性的方法,并为未来环境监测、环境健康预测提供科学参考。  相似文献   

16.
17.
Incremental learning concepts are reviewed in machine learning and neurobiology. They are identified in evolution, neurodevelopment and learning. A timeline of qualitative axon, neuron and synapse development summarizes the review on neurodevelopment. A discussion of experimental results on data incremental learning with recurrent artificial neural networks reveals that incremental learning often seems to be more efficient or powerful than standard learning but can produce unexpected side effects. A characterization of incremental learning is proposed which takes the elaborated biological and machine learning concepts into account.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号