首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transport rates for taurine from plasma to liver, kidney, heart, spleen and femoral muscle were evaluated in adult and 7-day-old mice in vivo. The mice were injected with [35S]taurine and the specific radioactivity of taurine was determined in the above tissues at varying intervals from 10 min up to 48 hr after the injection. A multicompartment model was fitted to the data and the transport rates with their confidence limits were estimated using a digital computer. The tissue-plasma exchange rate was generally faster in adult mice than in 7-day-old mice. The transport rates between the plasma and the brain or muscle were low, while taurine penetrated into the liver and kidneys very rapidly. There was no distinct correlation between the calculated transport rates and the tissue taurine concentrations. The metabolic breakdown of taurine in the tissues was slow, since only negligible amounts of radioactivity were recovered in the metabolites of taurine, isethionic acid and inorganic sulphate. It seems unlikely that either the magnitudes of the transport rates between the plasma and the tissues or taurine breakdown rates in situ act as the primary factor determining the taurine levels in tissues.  相似文献   

2.
Although the neurotoxic tryptophan-kynurenine pathway metabolite quinolinic acid originates in brain by both local de novo synthesis and entry from blood, its concentrations in brain parenchyma, extracellular fluid, and CSF are normally below blood values. In the present study, an intraperitoneal injection of probenecid (400 mg/kg), an established inhibitor of acid metabolite transport in brain, into gerbils, increased quinolinic acid concentrations in striatal homogenates, CSF, serum, and homogenates of kidney and liver. Direct administration of probenecid (10 mM) into the brain compartment via an in vivo microdialysis probe implanted into the striatum also caused a progressive elevation in both quinolinic acid and homovanillic acid concentrations in the extracellular fluid compartment but was without effect on serum quinolinic acid levels. A model of microdialysis transport showed that the elevations in extracellular fluid quinolinic acid and homovanillic acid levels following intrastriatal application are consistent with probenecid block of a microvascular acid transport mechanism. We conclude that quinolinic acid in brain is maintained at concentrations below blood levels largely by active extrusion via a probenecid-sensitive carrier system.  相似文献   

3.
The effect of the phosphonic acid derivatives Ethephon and Trichlorphon on the incorporation of 14C-labelled acetate into lipids especially cholesterol was investigated. Adult Wistar rats were fed for 7 days diets containing 50 and 500 ppm, respectively, of the phosphonic acid derivatives. Both compounds caused a significant increase of the 14C-activity in lipids of serum, liver, heart, and brain. The effect of Ethephon was significantly more intense than that of Trichlorphon. The important finding was the Ethephon-induced increase of the [14C]-acetate incorporation into cholesterol which continued across all the tissues studied.  相似文献   

4.
In order to characterize the system of L-tryptophan (TRP) transport into liver during the growing period of 10 to 42 days, the changes of tryptophan 2,3-dioxygenase (TDO) activity, levels of serum, liver, brain, and muscle TRP, and the rate and mode of TRP uptake into isolated hepatocytes were examined in male Wistar rats. Liver TDO activity increased rapidly at 16 days of age. A marked and rapid decrease in free serum TRP level occurred before weanling, while a small decrease in total serum TRP level was found after weanling. The change of liver TRP level was similar to that of free serum TRP level and correlated well. There was a significant inverse correlation between liver TDO activity and either free serum TRP level or liver TRP level. A rapid change in TRP level did not occur in brain and muscle during the growing period. The concentrations of brain and muscle TRP correlated better with those of total serum TRP than with those of free serum TRP. The rate of TRP uptake into hepatocytes isolated from rats aged 10 days was lower than that from rats aged 21 and 42 days. The former hepatocytes were lacking in a high-affinity saturable transport component for TRP uptake which was present in the latter ones. The present results indicate that a great change in the system of TRP transport into liver occurs in growing rats, and that in suckling rats a high level of free serum TRP contributes to the efficient transport of the amino acid into the liver.  相似文献   

5.
Characterization and metabolism of ovine foetal lipids   总被引:6,自引:4,他引:2  
1. Total phospholipid concentrations in liver, kidney and brain of the 140-day ovine foetus were only half of those in comparable maternal tissues. 2. Phosphatidylcholine was the predominant phospholipid in all foetal tissues examined. The most striking difference between foetal and maternal tissues in individual phospholipids was in the heart; foetal heart contained more ethanolamine plasmalogen than choline plasmalogen, whereas in adult tissue the concentration of these was reversed. Sphingomyelin content of foetal brain was only one-sixth of that of maternal brain tissue. 3. Oleic acid (18:1) was the predominant acid in the phospholipid extracted from foetal tissues, except in brain where palmitic acid (16:0) was slightly higher. In phospholipids from adult tissues there was a higher proportion of unsaturated fatty acids (linoleic acid, 18:2, and linolenic acid, 18:3) and a correspondingly lower proportion of oleic acid (18:1). The distribution of fatty acids in the neutral lipid fraction of foetal and maternal tissues was very similar; oleic acid (18:1) was generally the principal component. 4. (14)C derived from [U-(14)C]-glucose and [U-(14)C]fructose infused into the foetal circulation in utero was incorporated into the neutral lipids and phospholipids of heart, liver, kidney, brain and adipose tissue. 5. Phospholipid analysis revealed that the specific activity of phosphatidic acid was higher in liver than in other tissues. The specific activity of phosphatidylethanolamine was less than that of phosphatidylcholine in heart, but in other tissues they were about the same. The specific activities of phosphatidylinositol and phosphatidic acid in brain were very similar and were higher than the other components. The specific activity of phosphatidylserine was highest in liver and brown fat. 6. The pattern of incorporation of (14)C derived from [(14)C]glucose and [(14)C]fructose into foetal neutral lipids was similar. Diglyceride accounted for most of the radioactivity in brain, whereas triglyceride had more label in heart, liver, kidney and fat.  相似文献   

6.
Threonine content of brain decreases in young rats fed a threonine-limiting, low protein diet containing a supplement of small neutral amino acids (serine, glycine and alanine), which are competitors of threonine transport in other systems (Tews et al., 1977). Threonine transport by brain slices was inhibited more by a complex amino acid mixture resembling plasma from rats fed the small neutral amino acid supplement than by mixtures resembling plasma from control rats or from rats fed a supplement of large neutral amino acids. Greater inhibition was seen with mixtures containing only the small neutral amino acids than with mixtures containing only large neutral amino acids. On an equimolar basis, serine and alanine were the most inhibitory; large neutrals were moderately so; and glycine and lysine were without effect. Threonine transport was also strongly inhibited by α-amino-n-butyric acid and homoserine, less so by α-aminoisobutyric acid, and not at all by GABA. The complex amino acid mixtures strongly inhibited α-aminoisobutyric acid transport by brain or liver slices but, in contrast to effects in brain, the extent of the inhibition in liver was not much affected by altering the composition of the mixture. Tryptophan accumulation by brain slices was effectively inhibited by other large neutral amino acids in physiologically occurring concentrations. Threonine, or a mixture of serine, glycine and alanine only slightly inhibited tryptophan uptake; basic amino acids were without effect and histidine stimulated tryptophan transport slightly. These results support the conclusion that a diet-induced decrease in the concentration in brain of a specific amino acid may be related to increased inhibition of its transport into brain by increases in the concentrations of transport-related, plasma amino acids.  相似文献   

7.
Studies were done to analyze the fatty acid composition and sensitivity to lipid peroxidation (LP) of mitochondria and microsomes from duck liver, heart and brain. The fatty acid composition of mitochondria and microsomes was tissue-dependent. In particular, arachidonic acid comprised 17.39+/-2.32, 11.75+/-3.25 and 9.70+/-0.40% of the total fatty acids in heart, liver and brain mitochondria respectively but only 13.39+/-1.31, 8.22+/-2.43 and 6.44+/-0.22% of the total fatty acids in heart, liver and brain microsomes, respectively. Docosahexahenoic acid comprised 17.02+/-0.78, 4.47+/-1.02 and 0.89+/-0.07% of the total fatty acids in brain, liver and heart mitochondria respectively but only 7.76+/-0.53, 3.27+/-0.73 and 1.97+/-0.38% of the total fatty acids in brain, liver and heart microsomes. Incubation of organelles with ascorbate-Fe(2+) at 37 degrees C caused a stimulation of LP as indicated by the increase in light emission: chemiluminescence (CL) and the decrease of arachidonic acid to: 5.17+/-1.34, 8.86+/-0.71 and 5.86+/-0.68% of the total fatty acids in heart, liver and brain mitochondria, respectively, and to 4.10+/-0.61 in liver microsomes. After LP docosahexahenoic acid decrease to 7.29+/-1.47, 1.36+/-0.18 and 0.30+/-0.11% of the total fatty acids in brain, liver and heart mitochondria. Statistically significant differences in the percent of both peroxidable fatty acids (arachidonic and docosahexaenoic acid) were not observed in heart and brain microsomes and this was coincident with absence of stimulation of LP. The results indicate a close relationship between tissue sensitivity to LP in vitro and long chain polyunsaturated fatty acid concentration. Nevertheless, any oxidative stress in vitro caused by ascorbate-Fe(2+) at 37 degrees C seems to avoid degradation of arachidonic and docosahexaenoic acids in duck liver and brain microsomes. It is possible that because of the important physiological functions of arachidonic and docosahexaenoic acids in these tissues, they are protected to maintain membrane content during oxidative stress.  相似文献   

8.
Radioactive myo-inositol was injected intraperitoneally into nephrectomized rats. The radioactive material present in liver, spleen, brain, heart, diaphragm, seminal vesicle, coagulating gland, prostate, epididymis, vas deferens and testis was shown to consist exclusively of myo-inositol and its derivatives, as shown by paper chromatography of hydrolysates and trichloroacetic acid extracts of these tissues. Radioactive myo-inositol was accumulated rapidly within 1 h by the thyroid, coagulating gland and seminal vesicle. Other tissues, such as the pituitary, prostate gland, liver and spleen, concentrated myo-inositol less actively. The muscle tissues studied (diaphragm and heart) concentrated little inositol, whereas brain, testis, and epididymal fat-pad did not concentrate it at all. The lipid fraction of liver contained most of the radio-labelled myo-inositol. In the other organs most of the radioactivity was found in the aqueous trichloroacetic acid extract, largely as free myo-inositol.  相似文献   

9.
Chronic exposure to carbofuran, a carbamate pesticide, via oral administration has been reported to generate reactive oxygen species (ROS) in rat brain. However, information regarding the effect of short-term intraperitoneal (i.p.) carbofuran intoxication on oxidative stress is lacking. In the present study, the effect of carbofuran on oxidative indices in brain of Wistar rats has been determined by exposing the animals to three subacute concentrations (0.2, 0.4 and 0.8 mg/kg body weight) equivalent to 10, 20, and 40%, respectively, of its LD50 (i.p.) for 24 h. Rat liver has been used as a positive control. The results demonstrated that carbofuran treatment at the 3 concentrations tested caused significant increase in lipid peroxidation (LPO) by 12.50, 34.38, and 59.38%, respectively. The increased oxidative stress at same pesticide concentrations significantly induced activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase in rat brain; the impact on catalase being more marked only at high-pesticide doses (0.4 and 0.8 mg/kg body weight). Carbofuran also caused reduction in protein content of rat tissues tested. Rat brain was more severely affected by carbofuran than liver. The results clearly demonstrated that i.p. administration of carbofuran accelerated oxidative stress in rat brain in a dose-dependent manner.  相似文献   

10.
Dehydroascorbic acid, the oxidized form of ascorbic acid, is rapidly reduced to ascorbate in living organs (ascorbate recycling). We examined the GSH-dependent dehydroascorbate reductase activity in several tissues of the chicken. The activity was highest in the liver, and second highest in the brain. The activity was localized in the cytosol fraction of the liver. We subsequently examined the dehydroascorbate reduction in separated chiken hepatocytes. The cellular ascorbate concentration was elevated in dehydroascorbate-treated cells. It is thought that hepatocytes incorporated external dehydroascorbate and converted it into ascorbate. These findings suggest that the liver plays an important role in ascorbate recycling by the chicken.  相似文献   

11.
Dehydroascorbic acid, the oxidized form of ascorbic acid, is rapidly reduced to ascorbate in living organs (ascorbate recycling). We examined the GSH-dependent dehydroascorbate reductase activity in several tissues of the chicken. The activity was highest in the liver, and second highest in the brain. The activity was localized in the cytosol fraction of the liver. We subsequently examined the dehydroascorbate reduction in separated chicken hepatocytes. The cellular ascorbate concentration was elevated in dehydroascorbate-treated cells. It is thought that hepatocytes incorporated external dehydroascorbate and converted it into ascorbate. These findings suggest that the liver plays an important role in ascorbate recycling by the chicken.  相似文献   

12.
Carbofuran is known to inhibit neurotransmission system of insects. The present study was undertaken to evaluate the possible ameliorative effect of curcumin on carbofuran induced alterations in energy metabolism in brain and liver of rats. The results demonstrate that carbofuran caused a significant inhibition of lactate dehydrogenase (LDH) activity in rat liver but an increase in LDH activity in the brain. Increased LDH activity was also observed in the serum indicating organ damage in treated animals. Carbofuran caused an increase in level of pyruvic acid in rat liver but a decrease in the brain. A decrease in the level of soluble protein was also observed in the tissues studied. Pretreatment of animals with curcumin resulted in significant amelioration of the altered indices. These results indicate that carbofuran at sub lethal concentrations may adversely alter energy metabolism in brain and liver of non-target mammalian systems. Pretreatment of animals with curcumin may exhibit a potential to mitigate the carbofuran induced toxicity.  相似文献   

13.
Removal of cholesterol from extrahepatic sources by oxidative mechanisms.   总被引:5,自引:0,他引:5  
Sterol 27-hydroxylase is an evolutionarily old cytochrome P450 species that is critical for oxidation of the side chain of cholesterol in connection with bile acid biosynthesis in the liver. The wide tissue and organ distribution of the enzyme suggests that it may also have other functions. It was recently shown that some cells (e.g. macrophages) have a high capacity to convert cholesterol into both 27-hydroxycholesterol and cholestenoic acid and that there is a significant flux of these steroids from extrahepatic sources to the liver where they are further oxidized into bile acids. The magnitude of this flux is such that it may be of importance for overall homeostasis of cholesterol. Very recently it was shown that the brain utilizes a similar mechanism for removal of cholesterol. A unique brain-specific 24S-hydroxylase converts cholesterol into 24S-hydroxycholesterol that is transported over the blood-brain barrier much more rapidly than unmetabolized cholestero. When 24S-hydroxycholesterol has reached the circulation it is taken up by the liver and further metabolized, most probably into bile acids. This flux is likely to be of importance for cholesterol homeostasis in the brain. This review summarizes our current knowledge regarding oxidative mechanisms for removal of extrahepatic cholesterol. It is evident that some cells utilize these mechanisms as alternatives or complements to the classical HDL-dependent reverse cholesterol transport.  相似文献   

14.
The effects of oxygen on ascorbic acid concentration and transport were studied in chick embryo (Gallus gallus domesticus). During normoxic incubations, plasma ascorbic acid concentration peaked on fetal day 12 and then fell, before increasing again on day 20 when pulmonary respiration began. In contrast, cerebral ascorbic acid concentration rose after day 6, was maintained at a relatively high level during days 8–18, and then fell significantly by day 20. Exposure of day 16 embryos for 48 h to 42% ambient O2 concentration decreased ascorbic acid concentration by four-fifths in plasma and by one-half in brain, compared to values in normoxic (21% O2) or hypoxic (15% O2) controls. Hyperoxic preincubation of embryos also inhibited ascorbic acid transport, as evidenced by decreased initial rates of saturable and Na+-dependent [14C]ascorbic acid uptake into isolated brain cells. It may be concluded that changes in ascorbic acid concentration occur in response to oxidative stress, consistent with a role for the vitamin in the detoxification of oxygen radicals in fetal tissues. However, changing O2 levels have less effect on ascorbic acid concentration in brain than in plasma, indicating regulation of the vitamin by brain cells. Furthermore, the effect of hyperoxia on cerebral vitamin C may result, in part, from inhibition of cellular ascorbic acid transport.  相似文献   

15.
The effect of various inhibitors of fatty acid transport and of respiratory chain on palmitate oxidation was investigated in homogenates and mitochondria of rat muscle and homogenates of rat liver and human muscle. Inhibition of fatty acid transport by carnitine omission, malonyl-CoA, tetradecylglycidic acid and mersalyl decreased oxidation more with muscle than with rat liver. Antimycin and KCN decreased markedly palmitate oxidation and caused a larger accumulation of peroxisomal oxidation products. Inhibition of mitochondrial long-chain fatty acid transport decreased accumulation of peroxisomal products in comparison to the control. The effect of malonyl-CoA was dependent on the nutritional state, the pH and the palmitate-albumin ratio with liver homogenates, and only on the latter parameter with muscle homogenates. Effects observed were comparable for rat and human muscle homogenates.  相似文献   

16.
In this paper we show the protective effect of folic acid on oxidative stress in offspring caused by chronic maternal ethanol consumption during pregnancy and the lactation period. Glutathione reductase (GR) specific activity was assayed in liver and pancreas of offspring and mothers. In the offspring, these tissues were also assayed for markers of oxidative damage to lipids and proteins. The results show that ethanol exposure during pregnancy and lactation increased the specific activity of GR in tissues of the mothers (32-34% increase) as well as in the liver of their progeny (24%). Thiobarbituric acid reactive substances (TBARS) were also increased in the liver and pancreas of 21-day-old rats (37- and 54%, respectively). Alcohol also increased the amount of carbonyl groups in proteins in both tissues. These measures of ethanol-mediated oxidative stress were mitigated when pregnant rats were treated with folic acid concomitantly to ethanol administration. The antioxidant capacity of folic acid seems to be involved in its protective effect. The results obtained in the present work suggest that folic acid may be useful in the prevention of damage and promotion of health of the progeny of ethanol-treated rats.  相似文献   

17.
J Fishman  E F Hahn  B I Norton 《Life sciences》1975,17(7):1119-1125
Rats were injected with mixtures of morphine-14C and naloxone-3H and and the entry of the isotopes into the brain and various tissues was measured via combustion in a tissue oxidizer. Naloxone crossed the blood brain barrier 8–10 times faster than morphine. Increasing the dose of morphine from very low to pharmacological levels had little effect on the relative tissue distribution. Administration of naloxone at intervals after a morphine dose indicated that naloxone still enters the brain more rapidly, with most of it entering during the first fifteen minutes. Similar studies using naloxone-14C and naltrexone-3H showed that naloxone enters the brain more effectively than naltrexone. This situation is reversed in the liver, since this organ disproportionately retains naltrexone.  相似文献   

18.
Aluminium uptake from blood into tissues of control and homozygous hypotransferrinaemic (hpx/hpx) mice, following continuous intravenous infusion of Al and Ga, has been compared with that of gallium, a proposed tracer for aluminium. Al uptake into tissues of control (hpx/+ and +/+) mice occurred in the order (expressed as a space): bone 464.7ml 100g; renal cortex 102.9ml 100g; liver 13.0ml 100g; spleen 8.4ml 100g and brain 0.8ml 100g. Ga uptakes were similar in liver, spleen and brain, but smaller in the renal cortex and bone, at one-third and one-fifth of the values for Al, respectively. In the hypotransferrinaemic mice, uptake of Ga into all tissues was increased, especially in renal cortex (ninefold) and bone (twentyfold) as compared with the controls. Increases in Ga uptakes into cerebral hemisphere, cerebellum and brain stem of the hypotransferrinaemic mice were 3.8, 4.2 and 2.8 fold, respectively. Al uptake into tissues of the hypotransferrinaemic mice was similar to control values except in bone where it was three times greater. Pre-treatment of control animals with the anti-transferrin receptor antibody, RI7 208, enhanced Ga uptake in all tissues, the effect being greatest in renal cortex (tenfold) and bone (ninefold). Ga uptakes into cerebral hemisphere, cerebellum and brain stem in the mice pre-treated with RI7 208 were 6.4, 6 and 10 times greater than in untreated mice, respectively. No influence of antibody on Al uptake into mouse tissues was observed except in spleen where it was three times greater than in untreated mice. Hence, transport of aluminium and gallium into mouse tissues is not similar under all conditions. Non-transferrin mediated transport of each metal can occur into all tissues, especially in renal cortex and bone, where gallium may be a suitable marker for aluminium.  相似文献   

19.
The concentrations of free and total (free plus albumin bound) tryptophan were measured in plasma of blood taken from the portal vein, hepatic vein and abdominal aorta of male rats, fed, and starved for one and three days. Liver and brain tryptophan concentrations were measured in similar groups of rats.On starvation, there was an increase in arterial plasma free tryptophan concentration which took place peripherally and was paralleled by an increase in brain tryptophan. In both the fed and starved rats, the portal vein concentrations of free tryptophan were high and as the blood flowed through the liver they were reduced to relatively low levels not directly related to the arterial values. All these changes were due to alterations in degree of binding of tryptophan to plasma albumin.The measurements of plasma total tryptophan concentrations showed that postabsorptively and during starvation there was a net uptake of tryptophan by the peripheral tissues (which included brain), but no overall fall in plasma concentration. At the same time, there was a net release from the liver, and to a lesser extent from the portal-drained tissues. The released tryptophan largely entered the albumin bound plasma pool. Accompanying the hepatic output was a fall in tryptophan concentration in the liver which was apparently caused by altered cell membrane transport.The results suggest (1) that the liver protects the brain from the high free tryptophan level in portal blood, (2) that the availability of tryptophan to the brain is maintained postabsorptively and during starvation by hepatic output into the albumin bound pool and (3) that this release of tryptophan from the liver and the fall in intracellular tryptophan concentration are initiated by altered membrane transport. The pattern of changes is consistent with a role for tryptophan in the mediation of changes in liver protein synthesis and gluconeogenesis and cerebral serotonin turnover on starvation.  相似文献   

20.
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was injected into chicken eggs prior to incubation to study possible mechanisms of toxicity and teratogenicity. One of the suggested mechanisms of teratogenicity is oxidative stress. Eggs were injected simultaneously with TCDD and cotreatment compounds in an attempt to prevent oxidative stress or to block cytochrome P450 activity. Indicators of oxidative stress were assessed in livers and brains of hatchling chicks. In ovo, exposure to TCDD caused significant effects on indicators of oxidative stress in liver, but not in the brain of the hatchling chicks. TCDD did not significantly affect superoxide production. In liver, TCDD treatment caused a decrease in glutathione content and glutathione peroxidase activity and an increase in the ratio of oxidized to reduced glutathione. TCDD increased the susceptibility to lipid peroxidation and oxidative DNA damage in liver. Administration of the antioxidants vitamin E and vitamin A provided partial protection against TCDD-induced oxidative stress in liver. The lack of effect of TCDD in chicken brain could be due to the low cytochrome P4501A activity in this tissue and little accumulation of TCDD in brain compared to liver. Phenytoin, a known inducer of oxidative stress, caused a decrease in glutathione content and an increase in susceptibility to lipid peroxidation in both liver and brain and increased oxidative DNA damage in brain. Responsiveness varied among individual animals, but measures of the oxidative stress were correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号