首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study characterized the gastrointestinal microbiome of nine juvenile farmed pikeperch Sander lucioperca using a metagenomics approach based on bacterial 16S rRNA gene sequencing. Potential changes in the gut microbiota during 2 months of S. lucioperca juvenile life were investigated. Results revealed that gut microbiota was dominated by Proteobacteria (95–92%), while other phyla Firmicutes (1–1·5%) and Actinobacteria (0·9–1·5%) were less abundant. At the family level, fish‐gut microbiota were dominated by Enterobacteriaceae, which constituted c. 83% of all DNA sequence reads. Such a situation was present in all of the examined fish except one, which showed a different proportion of particular microbial taxa than the other fish. In this fish, a higher relative abundance (%) of Fusobacteria (21·0%), Bacteroidetes (9·5%) and Firmicutes (7·5%) was observed. There were no significant differences in the gut microbiome structure at different stages of development in the examined fish. This may indicate that Proteobacteria inhabiting the gut microbiota at an early stage of life are a necessary component of the pikeperch microbiome that may support proper nutrition of the fish. The information obtained on the gut microbiome could be useful in determining juvenile S. lucioperca health and improving rearing conditions by welfare monitoring in aquaculture.  相似文献   

2.
采用16S rRNA高通量测序,系统研究了光唇鱼(Acrossocheilus fasciatus)仔鱼、稚鱼和幼鱼肠道菌群组成及与同时期养殖水体细菌群落的相关性。研究结果表明,光唇鱼仔鱼、稚鱼和幼鱼的肠道菌群中Chao1指数和Shannon指数均没有显著变化(P>0.05);而随着光唇鱼幼体的发育,养殖水体中Chao1指数和Shannon指数呈现显著下降趋势(P<0.05)。光唇鱼仔鱼和稚鱼肠道菌群中的优势菌门由变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)组成,而同时期养殖水体中优势菌门为变形菌门;光唇鱼幼鱼肠道菌群中的优势菌门为梭杆菌门(Fusobacteria)和变形菌门,同时期养殖水体中优势菌门由变形菌门、拟杆菌门和梭杆菌门组成。线性回归分析结果显示,随光唇鱼幼体发育,在光唇鱼肠道菌群中变形菌门、厚壁菌门和梭杆菌门相对丰度的时序变化趋势与其在养殖水体中相同。在属水平上,光唇鱼仔鱼、稚鱼肠道菌群中优势菌属均为醋酸杆菌属(Acetobacter),而幼鱼肠道菌群中优势菌属为鲸杆菌属(Cetobacte...  相似文献   

3.
口腔微生物群落结构是维持机体健康的重要因素,了解动物口腔微生物多样性有助于认识和理解动物的生态学适应。本研究以栖息于安徽黄山的短尾猴为研究对象,采用非损伤性取样法收集了鱼鳞坑YA1群体中19个短尾猴口腔样本,采用改进高盐提取法提取微生物DNA,利用Illumina Miseq测序平台对微生物16S rDNA V3-V4区扩增产物进行双端测序,分析微生物群落结构多样性。研究共获得206 533条优质序列,发现4 685个OTU,归属20个门、310个属。结果表明:短尾猴口腔微生物物种丰富,以变形菌门(Proteobacteria,占总条带44.58%)、厚壁菌门(Firmicutes, 30.28%)、拟杆菌门(Bacteroidetes, 12.27%)、梭杆菌门(Fusobacteria, 7.72%) 和放线菌门(Actinobacteria,3.70%)为主;24个微生物属在所有样本中均有分布,为其核心微生物属;短尾猴口腔中存在大量与口腔疾病相关的微生物和多种低丰富度的潜在病原菌。本研究为进一步研究短尾猴口腔微生物群落结构形成与适应性提供了基础资料,也提示在保护和管理野生猴群中需要应对人畜共患病传播的潜在风险。  相似文献   

4.
Radiotherapy is the primary treatment modality used for patients with head-and-neck cancers, but inevitably causes microorganism-related oral complications. This study aims to explore the dynamic core microbiome of oral microbiota in supragingival plaque during the course of head-and-neck radiotherapy. Eight subjects aged 26 to 70 were recruited. Dental plaque samples were collected (over seven sampling time points for each patient) before and during radiotherapy. The V1–V3 hypervariable regions of bacterial 16S rRNA genes were amplified, and the high-throughput pyrosequencing was performed. A total of 140 genera belonging to 13 phyla were found. Four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) and 11 genera (Streptococcus, Actinomyces, Veillonella, Capnocytophaga, Derxia, Neisseria, Rothia, Prevotella, Granulicatella, Luteococcus, and Gemella) were found in all subjects, supporting the concept of a core microbiome. Temporal variation of these major cores in relative abundance were observed, as well as a negative correlation between the number of OTUs and radiation dose. Moreover, an optimized conceptual framework was proposed for defining a dynamic core microbiome in extreme conditions such as radiotherapy. This study presents a theoretical foundation for exploring a core microbiome of communities from time series data, and may help predict community responses to perturbation as caused by exposure to ionizing radiation.  相似文献   

5.
The intestinal tract houses one of the richest and most complex microbial populations on the planet, and plays a critical role in health and a wide range of diseases. Limited studies using new sequencing technologies in horses are available. The objective of this study was to characterize the fecal microbiome of healthy horses and to compare the fecal microbiome of healthy horses to that of horses with undifferentiated colitis. A total of 195,748 sequences obtained from 6 healthy horses and 10 horses affected by undifferentiated colitis were analyzed. Firmicutes predominated (68%) among healthy horses followed by Bacteroidetes (14%) and Proteobacteria (10%). In contrast, Bacteroidetes (40%) was the most abundant phylum among horses with colitis, followed by Firmicutes (30%) and Proteobacteria (18%). Healthy horses had a significantly higher relative abundance of Actinobacteria and Spirochaetes while horses with colitis had significantly more Fusobacteria. Members of the Clostridia class were more abundant in healthy horses. Members of the Lachnospiraceae family were the most frequently shared among healthy individuals. The species richness reported here indicates the complexity of the equine intestinal microbiome. The predominance of Clostridia demonstrates the importance of this group of bacteria in healthy horses. The marked differences in the microbiome between healthy horses and horses with colitis indicate that colitis may be a disease of gut dysbiosis, rather than one that occurs simply through overgrowth of an individual pathogen.  相似文献   

6.
The gut microbiota plays important roles in animal nutrition and health. This relationship is particularly dynamic in hibernating mammals where fasting drives the gut community to rely on host‐derived nutrients instead of exogenous substrates. We used 16S rRNA pyrosequencing and caecal tissue protein analysis to investigate the effects of hibernation on the mucosa‐associated bacterial microbiota and host responses in 13‐lined ground squirrels. The mucosal microbiota was less diverse in winter hibernators than in actively feeding spring and summer squirrels. UniFrac analysis revealed distinct summer and late winter microbiota clusters, while spring and early winter clusters overlapped slightly, consistent with their transitional structures. Communities in all seasons were dominated by Firmicutes and Bacteroidetes, with lesser contributions from Proteobacteria, Verrucomicrobia, Tenericutes and Actinobacteria. Hibernators had lower relative abundances of Firmicutes, which include genera that prefer plant polysaccharides, and higher abundances of Bacteroidetes and Verrucomicrobia, some of which can survive solely on host‐derived mucins. A core mucosal assemblage of nine operational taxonomic units shared among all individuals was identified with an average total sequence abundance of 60.2%. This core community, together with moderate shifts in specific taxa, indicates that the mucosal microbiota remains relatively stable over the annual cycle yet responds to substrate changes while potentially serving as a pool for ‘seeding’ the microbiota once exogenous substrates return in spring. Relative to summer, hibernation reduced caecal crypt length and increased MUC2 expression in early winter and spring. Hibernation also decreased caecal TLR4 and increased TLR5 expression, suggesting a protective response that minimizes inflammation.  相似文献   

7.
Bacterial clone libraries of the gut microbiota of nurtured and starved Cylindroiulus fulviceps specimens displayed the predominance of the phyla Bacteroidetes (55 and 37 %, respectively) and Proteobacteria (40 and 35 %, respectively) and a high similarity to bacteria previously detected in the intestinal tract of termites and beetles, which are known to harbor symbiotic bacteria essential for digestive activity. Bacterial isolates were dominated by Proteobacteria (74 %), followed by members of the phyla Actinobacteria, Firmicutes and Bacteroidetes. PCR-DGGE fingerprints of the gut samples showed that intestinal bacteria were affected by starvation, although the change was not significant.  相似文献   

8.
One of the fascinating functions of mammalian intestinal microbiota is fermentation of plant cell wall components. Eight-week continuous culture enrichments of pig feces with cellulose and xylan/pectin were used to isolate bacteria from this community. A total of 575 bacterial isolates were classified phylogenetically using 16S rRNA gene sequencing. Six phyla were represented in the bacterial isolates: Firmicutes (242), Bacteroidetes (185), Proteobacteria (65), Fusobacteria (55), Actinobacteria (23), and Synergistetes (5). The majority of the bacterial isolates had ≥97 % similarity to cultured bacteria with sequences in the RDP, but 179 isolates represent new species and/or genera. Within the Firmicutes isolates, most were classified in the families of Lachnospiraceae, Enterococcaceae, Staphylococcaceae, and Clostridiaceae I. The majority of the Bacteroidetes were most closely related to Bacteroides thetaiotaomicron, Bacteroides ovatus, and B. xylanisolvens. Many of the Firmicutes and Bacteroidetes isolates were identified as species that possess enzymes that ferment plant cell wall components, and the rest likely support these bacteria. The microbial communities that arose in these enrichment cultures had broad bacterial diversity. With over 30 % of the isolates not represented in culture, there are new opportunities to study genomic and metabolic capacities of these members of the complex intestinal microbiota.  相似文献   

9.
目的探讨轻度支气管哮喘儿童的诱导痰菌群特征及临床意义。方法纳入年龄为6~12周岁于2018年11月至2019年1月在深圳市儿童医院呼吸科门诊定期复诊的轻度支气管哮喘患儿51例(哮喘组),留取诱导痰,匹配同年龄段97例健康无过敏儿童的口咽拭子作为对照。诱导痰及口咽拭子提取总DNA并扩增,对16S rRNA基因进行高通量测序并对测序结果进行生物信息学分析。结果NMDS分析结果显示哮喘组与健康对照组研究对象菌群结构存在差异;哮喘组的诱导痰菌群多样性指数(Shannon index)高于健康对照组(2.34±0.53 vs 1.87±0.50,P<0.05)。门水平分析显示,哮喘组与健康对照组的菌群均主要为厚壁菌门(38.34%vs 44.74%,P<0.05)、变形杆菌门(31.14%vs 19.78%,P<0.05)、拟杆菌门(14.59%vs 20.52%,P<0.05)、放线菌门(10.41%vs 7.85%,P<0.05)和梭杆菌门(2.82%vs 6.67%,P<0.05),但两组之间的构成比有明显差异。与健康对照组相比,在属水平上哮喘组韦荣球菌属(5.27%vs 8.96%)、普雷沃菌属(8.38%vs 17.35%)、罗斯菌属(1.50%vs 5.46%)、纤毛菌属(1.37%vs 4.39%)等非条件致病菌属比例明显下降(均P<0.05),而嗜血杆菌属(9.83%vs 6.17%)、卟啉单胞菌属(2.48%vs 1.41%)、莫拉菌属(5.66%vs 0.42%)、诺卡菌属(3.40%vs 0.00%)等条件致病菌属比例明显上升(均P<0.05)。结论尽管轻度支气管哮喘患儿已临床控制,但诱导痰内菌群仍存在结构紊乱。气道菌群紊乱可能是儿童支气管哮喘的发病机制之一。除了致病菌属外,非致病菌菌属的构成变化可能也是儿童哮喘的一个发生机制。  相似文献   

10.

Objectives

The present study was designed to investigate the microbial profiles of teeth in different locations in mixed-dentition-stage children, and to compare the microbiomes of permanent and deciduous teeth in the same healthy oral cavity.

Methods

Supragingival plaque samples of teeth in various locations—the first permanent molars, deciduous molars, deciduous canines and incisors and permanent incisors—were collected from 20 healthy mixed-dentition-stage children with 10–12 permanent teeth erupted. Plaque DNA was extracted, and the V3–V4 hypervariable region of the bacterial 16S rRNA gene was amplified and subjected to sequencing.

Results

On average, 18,051 high-quality sequences per sample were generated. Permanent tooth sites tended to host more diverse bacterial communities than those of deciduous tooth sites. A total of 12 phyla, 21 classes, 38 orders, 66 families, 74 genera were detected ultimately. Five predominant phyla (Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria and Actinobacteria) were highly variable among sites. Of 26 genera with a mean relative abundance of >0.1%, 16 showed significant differences in relative abundance among the groups. More than 20% of the total operational taxonomical units were detected only in permanent or deciduous teeth. The variation in the microbial community composition was due mainly to permanent teeth being enriched in Actinomyces and deciduous teeth in Treponema. The core microbiome of supragingival plaque in mixed dentition comprised 19 genera with complex correlationships.

Conclusion

Our results suggest differences in microbial diversity and composition between permanent and deciduous teeth sites in mixed dentition. Moreover, the core microbiome of these sites was determined. These findings enhance our understanding of the development of the native oral microbiota with age.  相似文献   

11.
This study aimed to identify the effects of host species on the gut microbial flora in three species (Hemitragus jemlahicus, Pseudois nayaur, and Ovis orientalis) from the subfamily Caprinae, by excluding the impact of environment factors. We investigated the differences in intestinal flora of three species belonging to Caprinae, which were raised in identical conditions. Fecal samples were collected from tahr, mouflon, and bharal, and the V3–V4 region of the 16S ribosomal RNA gene was analyzed by high‐throughput sequencing. The analysis of 16S rRNA gene sequences reveals that fecal samples were mainly composed of four phyla: Firmicutes, Bacteroidetes, Spirochaetes, and Proteobacteria. The most abundant phyla included Firmicutes and Bacteroidetes accounting for >90% of the bacteria, and a higher Firmicutes/Bacteroidetes ratio was observed in tahrs. Moreover, significant differences existed at multiple levels of classifications in the relative abundance of intestinal flora, differing greatly between species. Phylogenetic analyses based on 16S rRNA gene indicated that mouflon is closely related to bharal, and it is inconsistent with previous reports in the species evolutionary relationships. In this study, we demonstrated that the gut microbiota in tahr had a stronger ability to absorb and store energy from the diet compared with mouflon and bharal, and the characteristics of host–microbiome interactions were not significant.  相似文献   

12.
This study is the first to use a metagenomics approach to characterize the phylogeny and functional capacity of the canine gastrointestinal microbiome. Six healthy adult dogs were used in a crossover design and fed a low-fiber control diet (K9C) or one containing 7.5% beet pulp (K9BP). Pooled fecal DNA samples from each treatment were subjected to 454 pyrosequencing, generating 503 280 (K9C) and 505 061 (K9BP) sequences. Dominant bacterial phyla included the Bacteroidetes/Chlorobi group and Firmicutes, both of which comprised ∼35% of all sequences, followed by Proteobacteria (13–15%) and Fusobacteria (7–8%). K9C had a greater percentage of Bacteroidetes, Fusobacteria and Proteobacteria, whereas K9BP had greater proportions of the Bacteroidetes/Chlorobi group and Firmicutes. Archaea were not altered by diet and represented ∼1% of all sequences. All archaea were members of Crenarchaeota and Euryarchaeota, with methanogens being the most abundant and diverse. Three fungi phylotypes were present in K9C, but none in K9BP. Less than 0.4% of sequences were of viral origin, with >99% of them associated with bacteriophages. Primary functional categories were not significantly affected by diet and were associated with carbohydrates; protein metabolism; DNA metabolism; cofactors, vitamins, prosthetic groups and pigments; amino acids and derivatives; cell wall and capsule; and virulence. Hierarchical clustering of several gastrointestinal metagenomes demonstrated phylogenetic and metabolic similarity between dogs, humans and mice. More research is required to provide deeper coverage of the canine microbiome, evaluate effects of age, genetics or environment on its composition and activity, and identify its role in gastrointestinal disease.  相似文献   

13.
《Genomics》2020,112(6):4760-4768
The plant microbiome influence plant health, yield and vigor and has attained a considerable attention in the present era. In the current study, native bacterial community composition and diversity colonizing Triticum aestivum L. rhizosphere at two distant geographical locations including Mirpur Azad Kashmir and Islamabad was elucidated. Based on IonS5™XL platform sequencing of respective samples targeting 16S rRNA gene that harbor V3-V4 conserved region revealed 1364 and 1254 microbial operational taxonomic units (OTUs) at ≥97% similarity and were classified into 23, 20 phyla; 70, 65 classes; 101, 87 orders; 189,180 families; 275, 271 genera and 94, 95 species. Respective predominant phyla accounting for 97.90% and 98.60% of bacterial community were Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Firmicutes, Chloroflexi and Gemmatimonadetes. Diversity indices revealed variations in relative abundance of bacterial taxa owing to distant geographical locations however predominant bacterial taxa at both locations were similar. These findings paved a way to dissect consequence of associated microbiota on future wheat production system.  相似文献   

14.
Bacterial contribution to oral disease has been studied in young children, but there is a lack of data addressing the developmental perspective in edentulous infants. Our primary objectives were to use pyrosequencing to phylogenetically characterize the salivary bacterial microbiome of edentulous infants and to make comparisons against their mothers. Saliva samples were collected from 5 edentulous infants (mean age?=?4.6±1.2 mo old) and their mothers or primary care givers (mean age?=?30.8±9.5 y old). Salivary DNA was extracted, used to generate DNA amplicons of the V4-V6 hypervariable region of the bacterial 16S rDNA gene, and subjected to 454-pyrosequencing. On average, over 80,000 sequences per sample were generated. High bacterial diversity was noted in the saliva of adults [1012 operational taxonomical units (OTU) at 3% divergence] and infants (578 OTU at 3% divergence). Firmicutes, Proteobacteria, Actinobacteria, and Fusobacteria were predominant bacterial phyla present in all samples. A total of 397 bacterial genera were present in our dataset. Of the 28 genera different (P<0.05) between infants and adults, 27 had a greater prevalence in adults. The exception was Streptococcus, which was the predominant genera in infant saliva (62.2% in infants vs. 20.4% in adults; P<0.05). Veillonella, Neisseria, Rothia, Haemophilus, Gemella, Granulicatella, Leptotrichia, and Fusobacterium were also predominant genera in infant samples, while Haemophilus, Neisseria, Veillonella, Fusobacterium, Oribacterium, Rothia, Treponema, and Actinomyces were predominant in adults. Our data demonstrate that although the adult saliva bacterial microbiome had a greater OTU count than infants, a rich bacterial community exists in the infant oral cavity prior to tooth eruption. Streptococcus, Veillonella, and Neisseria are the predominant bacterial genera present in infants. Further research is required to characterize the development of oral microbiota early in life and identify environmental factors that impact colonization and oral and gastrointestinal disease risk.  相似文献   

15.
本研究旨在解析林麝未成年组(n=10)和成年组(n=10)之间的菌群差异。收集林麝新鲜粪便,提取总DNA,利用带标签的通用引物扩增16S rRNA V3-V4区,使用Illumina Miseq 300PE测序平台对扩增产物进行Miseq双端测序,通过计算ACE和Shannon等多样性指数,以及微生物组成成分和距离聚类分析,揭示组成结构与差异。α多样性分析表明成年组微生物的多样性丰富度略高于未成年组,但不存在显著差异性(P>0.05)。未成年组和成年组均是厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)和变形菌门(Proteobacteria)所占的比例较高。成年组Proteobacteria比例明显高,而Firmicutes比例较低。LEfSe分析表明有12个显著差异的细菌分类。两组在Firmicutes门存在显著差异的细菌较少,而在Proteobacteria上存在显著差异的细菌较多。本研究证明在不同年龄阶段,微生物的丰富度和多样性不存在显著差异,细菌的组成成分也相同。但是在组成比例上存在差异性,间接反映了不同年龄阶段营养吸收的不同需求。  相似文献   

16.
目的 探讨不同分娩方式对晚期早产儿肠道菌群定植的影响。方法 以胎龄(周)为34~(0/7)~36~(6/7)的15例晚期早产儿为研究对象,根据分娩方式分为自然分娩组(n=8)和剖宫产组(n=7)。收集早产儿出生后3 d、7 d、14 d的粪便标本,应用高通量测序技术对细菌16S rRNA可变区中的V4区进行测序,分析肠道菌群多样性及组成结构。结果 (1)自然分娩组晚期早产儿粪便标本菌群多样性指数逐渐上升,剖宫产组的多样性指数较平稳,两组相比差异无统计学意义;(2)45份粪便标本中共检测出10个菌门,均以变形菌门、厚壁菌门、放线菌门和拟杆菌门为优势菌门,两组晚期早产儿生后变形菌门、拟杆菌门所占比例逐渐降低,厚壁菌门、放线菌门呈增多趋势。两组相比,剖宫产组7 d、14 d时拟杆菌门的相对丰度显著低于自然分娩组(Z=-2.896,P=0.004;Z=-2.120,P=0.040),变形菌门相对丰度仅在7 d时显著高于自然分娩组(Z=-2.190,P=0.030);(3)两组研究对象中,除自然分娩组14 d时以双歧杆菌属为优势菌属外,余下均以肠杆菌属为优势菌属。相比于自然分娩组,在7 d时剖宫产组拟杆菌属所占比例显著降低(Z=-2.806,P=0.005),肠杆菌属所占比例显著升高(Z=-2.199,P=0.030)。结论 剖宫产能显著影响婴儿早期肠道菌群的定植,降低肠道中早期拟杆菌的水平。  相似文献   

17.
In this work, variation in microbiota in the lower respiratory tract (LRT) among asthmatic and non-asthmatic subjects is identified. All participants (27 asthmatic patients and 27 non-asthmatic subjects) were asked to expectorate a sputum sample in special sterile tubes after rinsing the mouth with a sterilizing solution. The expectorated sputum specimen was immediately homogenized and stored in the deep freezer for DNA extraction for microbial gene sequencing and sequence analyses. For sequencing the V4 region of the 16S rRNA gene was sequenced using Illumina MiSeq, followed by an analysis of alpha and beta diversity. It was found that asthmatic patients had greater bacterial diversity than non-asthmatic subjects. Bacteria associated to the phyla (Bacteroidetes, Proteobacteria, and Firmicutes) accounted for 90 % of all sequences. The relative abundance of Proteobacteria in the asthmatic patients was higher than that of non-asthmatic (30 % vs 17 %; P-value = 0.044), along with a high abundance of the pathogen Haemophilus influenza. In contrast, Firmicutes (41 %) and Bacteroidetes (31 %) showed higher relative abundances in the non-asthmatic subjects. No significant link was found between the type of asthma drug or the method of drug usage (orally or via inhalation) and the respiratory microbiota. Therefore, the variations in LRS microbiota are not caused by the drugs taken by the asthmatic patients, rather they might be connected to the etiology of asthma. Since the asthmatic patients had higher proportions of Haemophilus influenzae, these organisms could be a causative factor in the pathophysiology of asthma.  相似文献   

18.
为比较青藏高原柴达木马亚成体腹泻与健康个体粪便微生物群落多样性和结构组成的差异, 我们利用16S rRNA测序技术对采集的腹泻 (n = 3) 和健康 (n = 13) 个体粪便样本细菌的组成与分布进行分析比较,并利用实时荧光定量PCR测定相关菌属的含量。结果显示,无论健康还是腹泻,厚壁菌门、拟杆菌门、疣微菌门、变形杆菌门和螺旋体门是柴达木马亚成体粪便中的优势菌门。相比健康组,腹泻组粪便微生物的Alpha多样性显著下降 (P < 0.05),厚壁菌门相对丰度下降而变形杆菌门的相对丰度显著增加 (P < 0.05),推断这两个门中的梭菌属、普雷沃菌属、纤杆菌属等丰度的失衡可能是导致柴达木马腹泻的原因之一。此外,通过机器学习的随机森林算法筛选出12个对健康和腹泻柴达木马亚成体粪便微生物差异具有较大影响的特征菌属,包括甲烷短杆菌属、纤杆菌属、Paludibacter、肉食杆菌属和迷踪菌属等。研究揭示了健康和腹泻柴达木马亚成体粪便微生物组的变化,为进一步研究青藏高原地区家畜腹泻提供一定的数据支持。  相似文献   

19.
The gut microbiome, or the community of microorganisms inhabiting the digestive tract, is often unique to its symbiont and, in many animal taxa, is highly influenced by host phylogeny and diet. In this study, we characterized the gut microbiome of the African savanna elephant (Loxodonta africana) and the African forest elephant (Loxodonta cyclotis), sister taxa separated by 2.6–5.6 million years of independent evolution. We examined the effect of host phylogeny on microbiome composition. Additionally, we examined the influence of habitat types (forest versus savanna) and diet types (crop‐raiding versus noncrop‐raiding) on the microbiome within L. africana. We found 58 bacterial orders, representing 16 phyla, across all African elephant samples. The most common phyla were Firmicutes, Proteobacteria, and Bacteroidetes. The microbiome of L. africana was dominated by Firmicutes, similar to other hindgut fermenters, while the microbiome of L. cyclotis was dominated by Proteobacteria, similar to more frugivorous species. Alpha diversity did not differ across species, habitat type, or diet, but beta diversity indicated that microbial communities differed significantly among species, diet types, and habitat types. Based on predicted KEGG metabolic pathways, we also found significant differences between species, but not habitat or diet, in amino acid metabolism, energy metabolism, and metabolism of terpenoids and polyketides. Understanding the digestive capabilities of these elephant species could aid in their captive management and ultimately their conservation.  相似文献   

20.
野生动物的肠道微生物组成受食物资源和遗传属性的影响较大, 为了解北京地区小型猫科动物肠道菌群组成特点及其影响因素, 本研究通过扩增细菌16S rRNA的V3‒V4高变区进行高通量测序, 对云蒙山、云峰山、松山、百花山4个区域的豹猫(Prionailurus bengalensis)亚种群进行肠道菌群组成分析。结果表明, 在门水平上, 豹猫的肠道优势菌群主要由厚壁菌门(相对多度52.40%)、变形菌门(25.18%)、放线菌门(9.07%)、拟杆菌门(8.17%)和梭杆菌门(4.74%)组成。在属水平上, 相对多度最高的前5个属为假单胞菌属(Pseudomonas, 13.37%)、布劳特氏菌属(Blautia, 11.20%)、梭菌属(Clostridium_sensu_stricto_1, 9.10%)、消化梭菌属(Peptoclostridium, 8.62%)、乳杆菌属(Lactobacillus, 6.08%), 共约占总多度的50%。各区域豹猫亚种群的肠道菌群β多样性不存在显著差异, 松山区域的ACE指数和Chao 1指数与云蒙山和云峰山存在显著差异。鉴于松山亚种群的遗传结构与其他区域有所不同, 而4个区域的气候类型和豹猫食物构成相似性高, 推测该亚种群的肠道菌群主要受遗传结构分化的影响, 对此还需进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号