共查询到20条相似文献,搜索用时 15 毫秒
1.
The msh-related homeobox genes, Msx1 and Msx2, have a variety functions during murine organogenesis, Msx1 in the development of the palate and teeth, Msx2 in the skull, teeth, and skin. Msx1 mutants die perinatally. Compound Msx1-2 mutants do not survive past late gestation. The multiplicity of functions of Msx1 and 2, as well as the lethality of Msx1 and Msx1-2 mutants limits the utility of the conventional knockouts. We therefore produced conditional alleles of Msx1 and Msx2. We constructed targeting vectors with LoxP sites flanking the homeodomain-encoding second exons and Frt sites flanking a neo gene. These vectors were used to produce targeted ES cells and mice with floxed alleles. The functionality of the LoxP sites in the floxed alleles was established by crosses with K14-Cre mice (epidermis-specific), and with an Msx2-Cre line that produces a germline deletion. Analysis of progeny by PCR revealed correct Cre-mediated recombination, as well as expected phenotypes. 相似文献
2.
3.
The Msx and Dlx families of homeobox proteins are important regulators for embryogenesis. Loss of Msx1 in mice results in multiple developmental defects including craniofacial malformations. Although Dlx5 is widely expressed during embryonic development, targeted null mutation of Dlx5 mainly affects the development of craniofacial bones. Msx1 and Dlx5 show overlapping expression patterns during frontal bone development. To investigate the functional significance of Msx1/Dlx5 interaction in regulating frontal bone development, we generated Msx1 and Dlx5 double null mutant mice. In Msx1?/?;Dlx5?/? mice, the frontal bones defect was more severe than that of either Msx1?/? or Dlx5?/? mice. This aggravated frontal bone defect suggests that Msx1 and Dlx5 function synergistically to regulate osteogenesis. This synergistic effect of Msx1 and Dlx5 on the frontal bone represents a tissue specific mode of interaction of the Msx and Dlx genes. Furthermore, Dlx5 requires Msx1 for its expression in the context of frontal bone development. Our study shows that Msx1/Dlx5 interaction is crucial for osteogenic induction during frontal bone development. genesis 48:645–655, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
4.
5.
6.
7.
8.
Msx homeobox gene family and craniofacial development 总被引:9,自引:0,他引:9
Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice. 相似文献
9.
10.
11.
12.
13.
Katerji S Vanmuylder N Svoboda M Rooze M Louryan S 《Genetics and molecular biology》2009,32(2):399-404
The Dumbo rat possesses some characteristics that evoke several human syndromes, such as Treacher-Collins: shortness of the maxillary, zygomatic and mandibular bones, and low position of the ears. Knowing that many homeobox genes are candidates in craniofacial development, we investigated the involvement of the Msx1 and Dlx1 genes in the Dumbo phenotype with the aim of understanding their possible role in abnormal craniofacial morphogenesis and examining the possibility of using Dumbo rat as an experimental model for understanding abnormal craniofacial development. We studied the expression of these genes during craniofacial morphogenesis by RT-PCR method. We used Dumbo embryos at E12 and E14 and included the Wistar strain as a control. Semi-quantitative PCR analysis demonstrated that Msx1 and Dlx1 are expressed differently between Dumbo and Wistar rats, indicating that their low expression may underly the Dumbo phenotype. 相似文献
14.
在组织工程研究领域中,利用干细胞进行牙齿再生是一种途径。目前,研究认为牙齿的发育过程是上皮与间充质相互诱导的结果,利用干细胞进行再生牙齿时也需要有上皮源性和间充质源性干细胞的参与。牙髓干细胞是牙齿自体的干细胞,具有多向分化潜能,在牙齿再生中是一种理想的间充质源性干细胞。该研究通过慢病毒介导在牙髓干细胞中分别过表达人Msx1、Pax9和Bmp4基因,研究其对牙向分化的诱导潜能。过表达这三个基因均能显著提高牙髓干细胞碱性磷酸酶的水平,并且促使牙髓干细胞表达成牙本质细胞标志蛋白——牙本质涎磷蛋白、骨钙素、骨桥素和形成钙化组织。但在诱导牙向分化的能力上,三个基因有一定的区别。过表达Msx1基因对牙髓干细胞体外诱导牙向分化能力最为明显,其次是Bmp4基因,过表达Pax9在促进牙髓干细胞表达骨桥素和钙质形成上不是很显著。 相似文献
15.
16.
17.
18.
Congxing Lin Yan Yin Hong Chen Alexander V. Fisher Feng Chen Michael Rauchman Liang Ma 《Genesis (New York, N.Y. : 2000)》2009,47(5):352-359
Homeobox gene Msx2 is widely expressed during both embryogenesis and postnatal development and plays important roles during organogenesis. We developed an Msx2‐rtTA BAC transgenic line which can activate TetO‐Cre expression in Msx2‐expressing cells upon doxycycline (Dox) treatment. Using the Rosa26‐LacZ (R26R) reporter line, we show that rtTA is activated in Msx2‐expressing organs including the limb, heart, external genitalia, urogenital system, hair follicles and craniofacial regions. Moreover, we show that in body appendages, the transgene can be activated in different domains depending on the timing of Dox treatment. In addition, the transgene can also be effectively activated in adult tissues such as the hair follicle and the urogenital system. Taken together, this Msx2‐rtTA;TetO‐Cre system is a valuable tool for studying gene function in the development of the aforementioned organs in a temporal and spatially‐restricted manner, as well as for tissue lineage tracing of Msx2‐expressing cells. When induced postnatally, this system can also be used to study gene function in adult tissues without compromising normal development and patterning. genesis 47:352–359, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
19.