首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The last decade was dominated by dissemination of the notion that postnatal "mesenchymal stem cells," found primarily in bone marrow but also in other tissues, can generate multiple skeletal and nonskeletal tissues, and thus can be exploited to regenerate a broad range of tissues and organs. The concept of "mesenchymal stem cells" and its applicative implications represent a significant departure from the solidly proven notion that skeletal stem cells are found in the bone marrow (and not in other tissues). Recent data that sharpen our understanding of the identity, nature, origin, and in vivo function of the archetypal "mesenchymal stem cells" (bone marrow skeletal stem cells) point to their microvascular location, mural cell identity, and function as organizers and regulators of the hematopoietic microenvironment/niche. These advances bring back the original concept from which the notion of "mesenchymal stem cells" evolved, and clarify a great deal of experimental data that accumulated in the past decade. As a novel paradigm emerges that accounts for many facets of the biology of skeletal stem cells, a novel paradigm independently emerges for their applicative/translational use. The two paradigms meet each other back in the future.  相似文献   

2.
Stem cells and tooth tissue engineering   总被引:5,自引:0,他引:5  
The notion that teeth contain stem cells is based on the well-known repairing ability of dentin after injury. Dental stem cells have been isolated according to their anatomical locations, colony-forming ability, expression of stem cell markers, and regeneration of pulp/dentin structures in vivo. These dental-derived stem cells are currently under increasing investigation as sources for tooth regeneration and repair. Further attempts with bone marrow mesenchymal stem cells and embryonic stem cells have demonstrated the possibility of creating teeth from non-dental stem cells by imitating embryonic development mechanisms. Although, as in tissue engineering of other organs, many challenges remain, stem-cell-based tissue engineering of teeth could be a choice for the replacement of missing teeth in the future.  相似文献   

3.
Emerging concept of cancer as a stem cell disorder   总被引:2,自引:0,他引:2  
Evidence has accumulated that malignancy arises from maturation arrest of stem cells — rather than the dedifferentiation of somatic cells. To support this notion, stem cells in contrast to somatic cells are long lived cells and thus may become the subject of accumulating mutations that are crucial for the initiation/progression of cancer. More importantly they may maintain these mutations and pass them to daughter stem cells. Cancer stem cells (CSC) that derive from transformed normal stem cells (NSC) are responsible not only for tumor initiation, but also for its re-growth and metastasis. Accumulating evidence also indicates that adult tissues may contain a population of very small embryonic like (VSEL) stem cells that may give rise to some very immature tumors e.g., pediatric sarcomas. Similar molecular mechanisms operating in NSC and CSC regulate resistance to radio-chemotherapy and promote migration/metastasis. Thus, by studying the biology of NSC we can learn more about cancer.  相似文献   

4.
Mesenchymal stem cells were isolated from the bone marrow of rats and differentiated to provide a functional substitute for slow growing Schwann cells for peripheral nerve regeneration. To assess the properties of the differentiated mesenchymal stem cell, the cells were co-cultured with dorsal root ganglia and the secretion of the neurotrophic factors and the neurite outgrowth was evaluated. The neurite outgrowth of the dorsal root ganglia neurons was enhanced in co-culture with the differentiated stem cells compared to the undifferentiated stem cells. Differentiated stem cells like Schwann cells were responsible for the stimulation of longer and branched neurites. Using enzyme-linked immunosorbant assays and blocking antibodies, we have shown that this effect is due to the release of brain derived neurotrophic factor and nerve growth factor, which were up-regulated in differentiated mesenchymal stem cells following co-culture. The relevance of the tyrosine kinase receptors was confirmed by the selective tyrosine kinase inhibitor, K252a which abolished the neurite outgrowth of the dorsal root ganglia neurons when co-cultured with the differentiated mesenchymal stem cells similar to Schwann cells. The results of the study further support the notion that mesenchymal stem cells can be differentiated and display trophic influences as those of Schwann cells.  相似文献   

5.
6.
Morbidity and mortality from cirrhosis is increasing rapidly in the world. Currently, orthotopic liver transplantation is the only definitive therapeutic option. However, its clinical use is limited, because of poor long‐term graft survival, donor organ shortage and high costs associated with the procedure. Stem cell replacement strategies are therefore being investigated as an attractive alternative approach to liver repair and regeneration. In this review we discuss recent preclinical and clinical investigations that explore the therapeutic potential of stem cells in repair of liver injuries. Several types of stem cells. including embryonic stem cells, haematopoietic stem cells and mesenchymal stem cells, can be induced to differentiate into hepatocyte‐like cells by defined culture conditions in vitro. Stem cell transplantation has been shown to significantly improve liver function and increase animal survival in experimentally‐induced liver‐injury models. Moreover, several pilot clinical studies have reported encouraging therapeutic effects in patients treated with stem cells. Although there remain many unresolved issues, the available data support the notion that stem cell technology may lead to the development of effective clinical modalities for human liver diseases.  相似文献   

7.
The first hemopoietic stem cells to differentiate in Xenopus embryos arise from ventral blood island (VBI) mesoderm. Progeny of these stem cells contribute to larval E, macrophage, thymocyte, and B lymphocyte populations. When small pieces of mesoderm are transplanted to a central location within the VBI, the contribution of this mesoderm is predominantly to erythropoiesis and engraftment of lymphoid populations is minimal. The present experiments examined the influence of position within the VBI on the contribution of single stem cells to lymphoid populations. Pieces of diploid VBI mesoderm, containing an average of one hemopoietic stem cell, were transplanted to either a central or a peripheral location within the defined boundaries of the VBI of triploid, stage matched embryos. The number of animals with donor-derived cells in lymphoid populations was markedly increased when stem cells were grafted to a peripheral position. In three cases, stem cells contributed to lymphoid populations at the exclusion of erythroid populations. These data were consistent with the notion of either a lymphoid stem cell or restricted B and T lymphocyte precursors. These data also suggested that during embryogenesis, stochastic differentiation of hemopoietic stem cells was influenced by regional differences in the VBI microenvironment.  相似文献   

8.
Ber S  Lee C  Voiculescu O  Surani MA 《PloS one》2012,7(1):e30759
Tissue-specific stem cells are considered to have a limited differentiation potential. Recently, this notion was challenged by reports that showed a broader differentiation potential of neural stem cells, in vitro and in vivo, although the molecular mechanisms that regulate plasticity of neural stem cells are unknown. Here, we report that neural stem cells derived from mouse embryonic cortex respond to Lif and serum in vitro and undergo epithelial to mesenchymal transition (EMT)-mediated dedifferentiation process within 48 h, together with transient upregulation of pluripotency markers and, more notably, upregulation of mesendoderm genes, Brachyury (T) and Sox17. These induced putative mesendoderm cells were injected into early gastrulating chick embryos, which revealed that they integrated more efficiently into mesoderm and endoderm lineages compared to non-induced cells. We also found that TGFβ and Jak/Stat pathways are necessary but not sufficient for the induction of mesendodermal phenotype in neural stem cells. These results provide insights into the regulation of plasticity of neural stem cells through EMT. Dissecting the regulatory pathways involved in these processes may help to gain control over cell fate decisions.  相似文献   

9.
Embryonal carcinoma(EC) cells, the undifferentiated stem cells of teratocarcinomas, have many properties in common with pluripotent embryonic cells, and thus provide an excellent system for studying the early events involved in embryonic development and stem cell differentiation. We have isolated three novel mutants with temperature-sensitive(ts) cell growth that were able to differentiate at a non-permissive temperature for cell growth. These mutations affect the progression of the cell cycle, leading to the transient accumulation of cells in a specific phase, the S phase, of the cell cycle, which is likely to be the primary cause of stem cell differentiation of EC cells at non-permissive temperature. Isolation of these mutants strongly supports the notion that there is a close association between the inhibition of DNA synthesis and EC cell differentiation.  相似文献   

10.
Efficient generation of iPS cells from skeletal muscle stem cells   总被引:1,自引:0,他引:1  
Reprogramming of somatic cells into inducible pluripotent stem cells generally occurs at low efficiency, although what limits reprogramming of particular cell types is poorly understood. Recent data suggest that the differentiation status of the cell targeted for reprogramming may influence its susceptibility to reprogramming as well as the differentiation potential of the induced pluripotent stem (iPS) cells that are derived from it. To assess directly the influence of lineage commitment on iPS cell derivation and differentiation, we evaluated reprogramming in adult stem cell and mature cell populations residing in skeletal muscle. Our data using clonal assays and a second-generation inducible reprogramming system indicate that stem cells found in mouse muscle, including resident satellite cells and mesenchymal progenitors, reprogram with significantly greater efficiency than their more differentiated daughters (myoblasts and fibroblasts). However, in contrast to previous reports, we find no evidence of biased differentiation potential among iPS cells derived from myogenically committed cells. These data support the notion that adult stem cells reprogram more efficiently than terminally differentiated cells, and argue against the suggestion that "epigenetic memory" significantly influences the differentiation potential of iPS cells derived from distinct somatic cell lineages in skeletal muscle.  相似文献   

11.
Haemopoietic stem cells   总被引:4,自引:0,他引:4  
  相似文献   

12.
Evidence has accumulated that cancer develops from a population of quiescent tissue committed/pluripotent stem cells (TCSC/PSC) or cells developmentally closely related to them that are distributed in various organs. To support this notion, stem cells (SC) are long lived cells and thus may become the subject of accumulating mutations that are crucial for initiation/progression of cancer. More important, they may maintain these mutations and pass them to the daughter stem cells. Therefore, mutations that occur in normal SC, accumulate during the life of an organism at the clonal level in the stem cell compartment committed to a given tissue/organ. As a consequence, this may lead to the malignant transformation of SC and tumor initiation. Furthermore, many biological features of normal and cancer SC such as the physiological trafficking of normal and metastasis of cancer stem cells involve similar molecular mechanisms, and we discuss these similarities here. Therefore, looking both at the origin and behavioral aspects we can envision cancer SC being normal SC "Jedi" that went over to the "dark side".  相似文献   

13.
Stem cells of various tissues are typically defined as multipotent cells with 'self-renewal' properties. Despite the increasing interest in stem cells, surprisingly little is known about the number of times stem cells can or do divide over a lifetime. Based on telomere-length measurements of hematopoietic cells, we previously proposed that the self-renewal capacity of hematopoietic stem cells is limited by progressive telomere attrition and that such cells divide very rapidly during the first year of life. Recent studies of patients with aplastic anemia resulting from inherited mutations in telomerase genes support the notion that the replicative potential of hematopoietic stem cells is directly related to telomere length, which is indirectly related to telomerase levels. To revisit conclusions about stem cell turnover based on cross-sectional studies of telomere length, we performed a longitudinal study of telomere length in leukocytes from newborn baboons. All four individual animals studied showed a rapid decline in telomere length (approximately 2-3 kb) in granulocytes and lymphocytes in the first year after birth. After 50-70 weeks the telomere length appeared to stabilize in all cell types. These observations suggest that hematopoietic stem cells, after an initial phase of rapid expansion, switch at around 1 year of age to a different functional mode characterized by a markedly decreased turnover rate.  相似文献   

14.
骨髓间质干细胞修复受损心肌研究进展   总被引:3,自引:1,他引:2  
骨髓间充质干细胞是一种多潜能干细胞。在体外培养时,多种诱导因素可使其分化为心肌细胞等。目前进行的动物实验和临床研究表明骨髓间充质干细胞具有促进血管增生以及改善心肌梗死后心脏功能的作用,为受损心肌的治疗提供了广阔前景。但是其修复受损心肌的机制仍具有很大争议。本文就以上内容进行综述。  相似文献   

15.
The notion that integration of cutting-edge technologies in stem cell research would be enhanced by proteomic analyses has emanated from rapid advances in proteome technology. These advances have increased the probability that basic properties of stem cells will be elucidated more effectively, leading to acceleration toward novel stem cell therapies. We have therefore sought to establish a world-wide alliance of proteomics and stem cell researchers, which has resulted in the foundation of an initiative supported by the Human Proteome Organisation (HUPO) and the International Society for Stem Cell Research (ISSCR) called the Proteome Biology of Stem Cells Initiative. Here we report on the rationale and goals of this initiative.  相似文献   

16.
The quest for stem cell properties to distinguish their identity from that of committed daughters has led to a re-investigation of the notion that DNA strands are not equivalent, and 'immortal' DNA strands are retained in stem cells whereas newly replicated DNA strands segregate to the differentiating daughter cell during mitosis. Whether this process occurs only in stem cells, and also in all tissues, remains unclear. That individual chromosomes can be also partitioned non-randomly raises the question if this phenomenon is related to the immortal DNA hypothesis, and it underscores the need for high-resolution techniques to observe these events empirically. Although initially postulated as a mechanism to avoid DNA replication errors, alternative views including epigenetic regulation and sister chromatid silencing may provide insights into this process.  相似文献   

17.
Human adipose-derived stem cell populations express cell surface markers such as CD105, CD73, CD146 and CD140a/PDFGRα. However, it was unclear whether these markers could discriminate subpopulations of undifferentiated cells and whether the expression of these markers is modulated during differentiation. To address this issue, we analysed the immunophenotype of cultured human multipotent adipose derived stem (hMADS) cell populations at different adipocyte differentiation steps. We found that 100% of undifferentiated cells expressed CD73 and CD105. In contrast, CD146 and CD140a/PDFGRα marked two different subpopulations of cells. CD140a/PDGFRα subpopulation was regulated by FGF2, a critical factor of human adipose-derived stem cell self-renewal. During differentiation, CD73 was maintained and marked lipid-laden cells, whereas CD105 expression was inhibited in fully differentiated cells. The percentage of CD146 and CD140a/PDFGRα-positive cells declined as soon as cells had undergone differentiation. Altogether, these data support the notion that expanded adipose-derived stem cells are heterogeneous mixtures of cells and cell surface markers studied can discriminate subpopulations.  相似文献   

18.
Preclinical and clinical trials of stem cell therapy have been carried out for treating a broad spectrum of diseases using several types of adult stem cells. While encouraging therapeutic results have been obtained, much remains to be investigated regarding the best cell type to use, cell dosage, delivery route, long-term safety, clinical feasibility, and ultimately treatment cost. Logistic aspects of stem cell therapeutics remain an area that requires urgent attention from the medical community. Recent cardiovascular trial studies have demonstrated that growth factors and cytokines derived from the injected stem cells and host tissue appear to contribute largely to the observed therapeutic benefits, indicating that trophic actions rather than the multilineage potential (or stemness) of the administered stem cells may provide the underlying tissue healing power. However, the capacity for trophic factor production can be aberrantly downregulated as seen in human heart disease. Skeletal muscle is a dynamic tissue with an impressive ability to continuously respond to environmental stimuli. Indeed, a relation exists between active skeletal muscle and low cardiovascular risk, highlighting the critical link between the skeletal muscle and cardiovascular systems. Adding to this notion are recent studies showing that stem cells injected into skeletal muscle can rescue the failing rodent heart through activation of the muscle trophic factor network and mobilization of bone marrow multilineage progenitor cells. However, aging and disease can adversely affect the host tissue into which stem cells are injected. A better understanding of the host tissue response in stem cell therapy is necessary to advance the field and bridge the gap between preclinical and clinical findings.  相似文献   

19.
Introduction     
Abstrat

In this paper we discuss genetic discourses and practices in stem cell science. We report on how biomedical scientists, in both the UK and the USA, view the scientific literature and their own experimental research in the emerging field of human embryonic stem (hES) cells. We focus on the genetic manipulation of stem cells to make specialized (beta) cells as a potential cure for diabetes. We draw on Gieryn's notion of boundary work as an analytical motif, and suggest this is a productive way to theorize boundary crossings in the shifting landscapes of expectations in the field of new medical technologies. We argue that initial expectations of a revolution in regenerative medicine have been damped down by the difficulties of making insulin producing pancreatic beta cells from stem cells. We contend the consequent shifts in expectations have led to the emergence of other more radical experimental strategies (such as using oncogenes) in the search for potential cures for Type 1 diabetes. In conclusion, we argue that regenerative medicine is a fruitful example of the shaping of contested biomedical landscapes and we contend that embryonic stem cells are a productive case study of the interactions between genetics, science and society.  相似文献   

20.
Mesenchymal stem cells and the treatment of cardiac disease   总被引:32,自引:0,他引:32  
The ischemia-induced death of cardiomyocytes results in scar formation and reduced contractility of the ventricle. Several preclinical and clinical studies have supported the notion that cell therapy may be used for cardiac regeneration. Most attempts for cardiomyoplasty have considered the bone marrow as the source of the "repair stem cell(s)," assuming that the hematopoietic stem cell can do the work. However, bone marrow is also the residence of other progenitor cells, including mesenchymal stem cells (MSCs). Since 1995 it has been known that under in vitro conditions, MSCs differentiate into cells exhibiting features of cardiomyocytes. This pioneer work was followed by many preclinical studies that revealed that ex vivo expanded, bone marrow-derived MSCs may represent another option for cardiac regeneration. In this work, we review evidence and new prospects that support the use of MSCs in cardiomyoplasty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号