首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Visual perception can be modulated by sounds. A drastic example of this is the sound-induced flash illusion: when a single flash is accompanied by two bleeps, it is sometimes perceived in an illusory fashion as two consecutive flashes. However, there are strong individual differences in proneness to this illusion. Some participants experience the illusion on almost every trial, whereas others almost never do. We investigated whether such individual differences in proneness to the sound-induced flash illusion were reflected in structural differences in brain regions whose activity is modulated by the illusion. We found that individual differences in proneness to the illusion were strongly and significantly correlated with local grey matter volume in early retinotopic visual cortex. Participants with smaller early visual cortices were more prone to the illusion. We propose that strength of auditory influences on visual perception is determined by individual differences in recurrent connections, cross-modal attention and/or optimal weighting of sensory channels.  相似文献   

2.
Petkov CI  O'Connor KN  Sutter ML 《Neuron》2007,54(1):153-165
When interfering objects occlude a scene, the visual system restores the occluded information. Similarly, when a sound of interest (a "foreground" sound) is interrupted (occluded) by loud noise, the auditory system restores the occluded information. This process, called auditory induction, can be exploited to create a continuity illusion. When a segment of a foreground sound is deleted and loud noise fills the missing portion, listeners incorrectly report hearing the foreground continuing through the noise. Here we reveal the neurophysiological underpinnings of illusory continuity in single-neuron responses from awake macaque monkeys' primary auditory cortex (A1). A1 neurons represented the missing segment of occluded tonal foregrounds by responding to discontinuous foregrounds interrupted by intense noise as if they were responding to the complete foregrounds. By comparison, simulated peripheral responses represented only the noise and not the occluded foreground. The results reveal that many A1 single-neuron responses closely follow the illusory percept.  相似文献   

3.
We used functional magnetic resonance imaging (fMRI) to study neural correlates of a robust somatosensory illusion that can dissociate tactile perception from physical stimulation. Repeated rapid stimulation at the wrist, then near the elbow, can create the illusion of touches at intervening locations along the arm, as if a rabbit hopped along it. We examined brain activity in humans using fMRI, with improved spatial resolution, during this version of the classic cutaneous rabbit illusion. As compared with control stimulation at the same skin sites (but in a different order that did not induce the illusion), illusory sequences activated contralateral primary somatosensory cortex, at a somatotopic location corresponding to the filled-in illusory perception on the forearm. Moreover, the amplitude of this somatosensory activation was comparable to that for veridical stimulation including the intervening position on the arm. The illusion additionally activated areas of premotor and prefrontal cortex. These results provide direct evidence that illusory somatosensory percepts can affect primary somatosensory cortex in a manner that corresponds somatotopically to the illusory percept.  相似文献   

4.
The question of whether perceptual illusions influence eye movements is critical for the long-standing debate regarding the separation between action and perception. To test the role of auditory context on a visual illusion and on eye movements, we took advantage of the fact that the presence of an auditory cue can successfully modulate illusory motion perception of an otherwise static flickering object (sound-induced visual motion effect). We found that illusory motion perception modulated by an auditory context consistently affected saccadic eye movements. Specifically, the landing positions of saccades performed towards flickering static bars in the periphery were biased in the direction of illusory motion. Moreover, the magnitude of this bias was strongly correlated with the effect size of the perceptual illusion. These results show that both an audio-visual and a purely visual illusion can significantly affect visuo-motor behavior. Our findings are consistent with arguments for a tight link between perception and action in localization tasks.  相似文献   

5.
Auditory cues can create the illusion of self-motion (vection) in the absence of visual or physical stimulation. The present study aimed to determine whether auditory cues alone can also elicit motion sickness and how auditory cues contribute to motion sickness when added to visual motion stimuli. Twenty participants were seated in front of a curved projection display and were exposed to a virtual scene that constantly rotated around the participant''s vertical axis. The virtual scene contained either visual-only, auditory-only, or a combination of corresponding visual and auditory cues. All participants performed all three conditions in a counterbalanced order. Participants tilted their heads alternately towards the right or left shoulder in all conditions during stimulus exposure in order to create pseudo-Coriolis effects and to maximize the likelihood for motion sickness. Measurements of motion sickness (onset, severity), vection (latency, strength, duration), and postural steadiness (center of pressure) were recorded. Results showed that adding auditory cues to the visual stimuli did not, on average, affect motion sickness and postural steadiness, but it did reduce vection onset times and increased vection strength compared to pure visual or pure auditory stimulation. Eighteen of the 20 participants reported at least slight motion sickness in the two conditions including visual stimuli. More interestingly, six participants also reported slight motion sickness during pure auditory stimulation and two of the six participants stopped the pure auditory test session due to motion sickness. The present study is the first to demonstrate that motion sickness may be caused by pure auditory stimulation, which we refer to as “auditorily induced motion sickness”.  相似文献   

6.
When observers view a grid of mid-gray lines superimposed on a black background, they report seeing illusory dark gray smudges at the grid intersections, an effect known as the Hermann grid illusion. The strength of the illusion is often measured using the cancellation technique: A white disk is placed over one of these intersections and the luminance of the disk is reduced until the disk disappears. Its luminance at this point, i.e., the disk's detection threshold, is taken to be a measure of the strength of the illusion. Our experiments showed that some distortions of the Hermann grid, which were sufficient to completely disrupt the illusion, did not reduce the disk's detection threshold. This showed that the cancellation technique is not a valid method for measuring the strength of the Hermann grid illusion. Those studies that attempted to use this technique inadvertently studied a different effect known as the blanking phenomenon. We conclude by presenting an explanation for the latter effect.  相似文献   

7.
Two phenomena can be observed in the watercolor illusion: illusory color spreading and figure-ground organization. We performed experiments to determine whether the figure-ground effect is a consequence of the color illusion or due to an independent mechanism. Subjects were tested with displays consisting of six adjacent compartments--three that generated the illusion alternating with three that served for comparison. In a first set of experiments, the illusory color was measured by finding the matching physical color in the alternate compartments. Figureness (probability of 'figure' responses, 2AFC) of the watercolor compartments was then determined with and without the matching color in the alternate compartments. The color match reduced figureness, but did not abolish it. There was a range of colors in which the watercolor compartments dominated as figures over the alternate compartments although the latter appeared more saturated in color. In another experiment, the effect of tinting alternate compartments was measured in displays without watercolor illusion. Figureness increased with color contrast, but its value at the equivalent contrast fell short of the figureness value obtained for the watercolor pattern. Thus, in both experiments, figureness produced by the watercolor pattern was stronger than expected from the color effect, suggesting independent mechanisms. Considering the neurophysiology, we propose that the color illusion follows from the principles of representation of surface color in the visual cortex, while the figure-ground effect results from two mechanisms of border ownership assignment, one that is sensitive to asymmetric shape of edge profile, the other to consistency of color borders.  相似文献   

8.
It is well known that kinesthetic illusions can be induced by stimulation of several sensory systems (proprioception, touch, vision…). In this study we investigated the cerebral network underlying a kinesthetic illusion induced by visual stimulation by using functional magnetic resonance imaging (fMRI) in humans. Participants were instructed to keep their hand still while watching the video of their own moving hand (Self Hand) or that of someone else''s moving hand (Other Hand). In the Self Hand condition they experienced an illusory sensation that their hand was moving whereas the Other Hand condition did not induce any kinesthetic illusion. The contrast between the Self Hand and Other Hand conditions showed significant activation in the left dorsal and ventral premotor cortices, in the left Superior and Inferior Parietal lobules, at the right Occipito-Temporal junction as well as in bilateral Insula and Putamen. Most strikingly, there was no activation in the primary motor and somatosensory cortices, whilst previous studies have reported significant activation in these regions for vibration-induced kinesthetic illusions. To our knowledge, this is the first study that indicates that humans can experience kinesthetic perception without activation in the primary motor and somatosensory areas. We conclude that under some conditions watching a video of one''s own moving hand could lead to activation of a network that is usually involved in processing copies of efference, thus leading to the illusory perception that the real hand is indeed moving.  相似文献   

9.
Several illusory phenomena in auditory perception are accounted for by using the event construction model presented by Nakajima et al. (2000) in order to explain the gap transfer illusion. This model assumes that onsets and offsets of sounds are detected perceptually as if they were independent auditory elements. They are connected to one another according to the proximity principle to constitute auditory events. This model seems to contribute to a general cross-modal theory of perception where the idea of edge integration plays an important role. Potential directions in which we can connect the present paradigm with speech perception are indicated, and possibilities to improve artificial auditory environments are suggested.  相似文献   

10.
Manipulation of hand posture, such as crossing the hands, has been frequently used to study how the body and its immediately surrounding space are represented in the brain. Abundant data show that crossed arms posture impairs remapping of tactile stimuli from somatotopic to external space reference frame and deteriorates performance on several tactile processing tasks. Here we investigated how impaired tactile remapping affects the illusory self-touch, induced by the non-visual variant of the rubber hand illusion (RHI) paradigm. In this paradigm blindfolded participants (Experiment 1) had their hands either uncrossed or crossed over the body midline. The strength of illusory self-touch was measured with questionnaire ratings and proprioceptive drift. Our results showed that, during synchronous tactile stimulation, the strength of illusory self-touch increased when hands were crossed compared to the uncrossed posture. Follow-up experiments showed that the increase in illusion strength was not related to unfamiliar hand position (Experiment 2) and that it was equally strengthened regardless of where in the peripersonal space the hands were crossed (Experiment 3). However, while the boosting effect of crossing the hands was evident from subjective ratings, the proprioceptive drift was not modulated by crossed posture. Finally, in contrast to the illusion increase in the non-visual RHI, the crossed hand postures did not alter illusory ownership or proprioceptive drift in the classical, visuo-tactile version of RHI (Experiment 4). We argue that the increase in illusory self-touch is related to misalignment of somatotopic and external reference frames and consequently inadequate tactile-proprioceptive integration, leading to re-weighting of the tactile and proprioceptive signals.The present study not only shows that illusory self-touch can be induced by crossing the hands, but importantly, that this posture is associated with a stronger illusion.  相似文献   

11.
Neurophysiological, brain imaging, and perceptual studies in animals and humans suggest that illusory (occluding) contours are represented at an early level of visual cortical processing. Comparatively little is known about the mechanisms defining the depth order and the brightness illusion associated with such contours. Baumann et al. (1997) found neurons in area V2 of the alert monkey that signaled not only illusory contours but also the figure-ground direction that human observers perceive at such contours. The majority of these neurons showed this property independent stimulus contrast; a small minority preferred a certain combination of figure-ground direction and contrast polarity at these contours. In this article, we simulate the responses of these neurons by means of a grouping mechanism that uses occlusion cues (line-ends, corners) to define figure-ground direction and contrast polarity at such contours.  相似文献   

12.
Sasaki Y  Murakami I  Cavanagh P  Tootell RH 《Neuron》2002,35(6):1147-1156
One central problem in vision is how to compensate for retinal slip. A novel illusion (visual jitter) suggests the compensation mechanism is based solely on retinal motion. Adaptation to visual noise attenuates the motion signals used by the compensation stage, producing illusory jitter due to the undercompensation of retinal slip. Here, we investigated the neural substrate of retinal slip compensation during this illusion using high-field fMRI and retinotopic mapping in flattened cortical format. When jitter perception occurred, MR signal decreased in lower stages of the visual system but increased prominently in area MT+. In conclusion, visual areas as early as V1 are responsible for the adaptation stage, and MT+ is involved in the compensation stage. The present finding suggests the pathway from V1 to MT+ has an important role in stabilizing the visual world.  相似文献   

13.
Multiple dots moving independently back and forth on a flat screen induce a compelling illusion of a sphere rotating in depth (structure-from-motion). If all dots simultaneously reverse their direction of motion, two perceptual outcomes are possible: either the illusory rotation reverses as well (and the illusory depth of each dot is maintained), or the illusory rotation is maintained (but the illusory depth of each dot reverses). We investigated the role of attention in these ambiguous reversals. Greater availability of attention--as manipulated with a concurrent task or inferred from eye movement statistics--shifted the balance in favor of reversing illusory rotation (rather than depth). On the other hand, volitional control over illusory reversals was limited and did not depend on tracking individual dots during the direction reversal. Finally, display properties strongly influenced ambiguous reversals. Any asymmetries between 'front' and 'back' surfaces--created either on purpose by coloring or accidentally by random dot placement--also shifted the balance in favor of reversing illusory rotation (rather than depth). We conclude that the outcome of ambiguous reversals depends on attention, specifically on attention to the illusory sphere and its surface irregularities, but not on attentive tracking of individual surface dots.  相似文献   

14.
郭昆  李朝义 《生理学报》1993,45(6):543-551
用定量的心理物理测量方法,研究了错觉图形组成成分间的亮度对比和颜色对比方位错觉、长度觉及面积错觉幅度的影响。测试结果表明:与通常的错觉效应相比,当错觉图形组成成分间存在亮度对比或颜色对比(等亮度)时,受试者的错觉程度明显降低;其中,当存在颜色对比时,方位错觉的下降幅度更为显著,达到69.3%。此外还观察到,在单纯亮度对比条件下,只需1.8%和5.3%的低对比度即可分别产生轮廓和边缘错觉;但在等亮度  相似文献   

15.
Multisensory integration is a key factor in establishing bodily self-consciousness and in adapting humans to novel environments. The rubber hand illusion paradigm, in which humans can immediately perceive illusory ownership to an artificial hand, is a traditional technique for investigating multisensory integration and the feeling of illusory ownership. However, the long-term learning properties of the rubber hand illusion have not been previously investigated. Moreover, although sleep contributes to various aspects of cognition, including learning and memory, its influence on illusory learning of the artificial hand has not yet been assessed. We determined the effects of daily repetitive training and sleep on learning visuo-tactile-proprioceptive sensory integration and illusory ownership in healthy adult participants by using the traditional rubber hand illusion paradigm. Subjective ownership of the rubber hand, proprioceptive drift, and galvanic skin response were measured to assess learning indexes. Subjective ownership was maintained and proprioceptive drift increased with daily training. Proprioceptive drift, but not subjective ownership, was significantly attenuated after sleep. A significantly greater reduction in galvanic skin response was observed after wakefulness compared to after sleep. Our results suggest that although repetitive rubber hand illusion training facilitates multisensory integration and physiological habituation of a multisensory incongruent environment, sleep corrects illusional integration and habituation based on experiences in a multisensory incongruent environment. These findings may increase our understanding of adaptive neural processes to novel environments, specifically, bodily self-consciousness and sleep-dependent neuroplasticity.  相似文献   

16.
Visual illusions are valuable tools for the scientific examination of the mechanisms underlying perception. In the peripheral drift illusion special drift patterns appear to move although they are static. During fixation small involuntary eye movements generate retinal image slips which need to be suppressed for stable perception. Here we show that the peripheral drift illusion reveals the mechanisms of perceptual stabilization associated with these micromovements. In a series of experiments we found that illusory motion was only observed in the peripheral visual field. The strength of illusory motion varied with the degree of micromovements. However, drift patterns presented in the central (but not the peripheral) visual field modulated the strength of illusory peripheral motion. Moreover, although central drift patterns were not perceived as moving, they elicited illusory motion of neutral peripheral patterns. Central drift patterns modulated illusory peripheral motion even when micromovements remained constant. Interestingly, perceptual stabilization was only affected by static drift patterns, but not by real motion signals. Our findings suggest that perceptual instabilities caused by fixational eye movements are corrected by a mechanism that relies on visual rather than extraretinal (proprioceptive or motor) signals, and that drift patterns systematically bias this compensatory mechanism. These mechanisms may be revealed by utilizing static visual patterns that give rise to the peripheral drift illusion, but remain undetected with other patterns. Accordingly, the peripheral drift illusion is of unique value for examining processes of perceptual stabilization.  相似文献   

17.
Selectively attending to task-relevant sounds whilst ignoring background noise is one of the most amazing feats performed by the human brain. Here, we studied the underlying neural mechanisms by recording magnetoencephalographic (MEG) responses of 14 healthy human subjects while they performed a near-threshold auditory discrimination task vs. a visual control task of similar difficulty. The auditory stimuli consisted of notch-filtered continuous noise masker sounds, and of 1020-Hz target tones occasionally () replacing 1000-Hz standard tones of 300-ms duration that were embedded at the center of the notches, the widths of which were parametrically varied. As a control for masker effects, tone-evoked responses were additionally recorded without masker sound. Selective attention to tones significantly increased the amplitude of the onset M100 response at 100 ms to the standard tones during presence of the masker sounds especially with notches narrower than the critical band. Further, attention modulated sustained response most clearly at 300–400 ms time range from sound onset, with narrower notches than in case of the M100, thus selectively reducing the masker-induced suppression of the tone-evoked response. Our results show evidence of a multiple-stage filtering mechanism of sensory input in the human auditory cortex: 1) one at early (100 ms) latencies bilaterally in posterior parts of the secondary auditory areas, and 2) adaptive filtering of attended sounds from task-irrelevant background masker at longer latency (300 ms) in more medial auditory cortical regions, predominantly in the left hemisphere, enhancing processing of near-threshold sounds.  相似文献   

18.
在自然环境中,人和动物常在一定的背景噪声下感知信号声刺激,然而,关于低强度的弱背景噪声如何影响听皮层神经元对声刺激频率的编码尚不清楚.本研究以大鼠听皮层神经元的频率反应域为研究对象,测定了阈下背景噪声对79个神经元频率反应域的影响.结果表明,弱背景噪声对大鼠初级听皮层神经元的听反应既有抑制性影响、又有易化性影响.一般来说,抑制性影响使神经元的频率调谐范围和最佳频率反应域缩小,易化性影响使神经元的频率调谐范围和最佳频率反应域增大.对于少数神经元,弱背景噪声并未显著改变其频率调谐范围,但却改变了其最佳频率反应域范围.弱背景噪声对63.64%神经元的特征频率和55.84%神经元的最低阈值无显著影响.神经元频率调谐曲线的尖部比中部更容易受到弱背景噪声的影响.该研究结果有助于我们进一步理解复杂声环境下大脑听皮层对听觉信息的编码机制.  相似文献   

19.
弱噪声对下丘神经元声强敏感性的动态调制   总被引:2,自引:2,他引:2  
Wang D  Pi JH  Tang J  Wu FJ  Chen QC 《生理学报》2005,57(1):59-65
为探讨复杂听环境下行为相关声信号提取的可能机制,研究了弱噪声对下丘(IC)神经元强度.放电率函数(RIF)的影响。实验在9只昆明小鼠(Musmusculus Km)上进行,在自由声场刺激条件下,分别记录短纯音刺激以及同步输出短纯音阂下5dB包络白噪声刺激时IC神经元的RIF,共获112个IC神经元,测量了其中44个神经元在加入噪声前(W/O)后(w)的RIF。以加入噪声前后RIF的声强动力学范围(DR)、斜率、以及不同声刺激强度的放电率抑制百分比变化为指标,比较分析发现:弱噪声对神经元发放率的影响呈三种类型,即抑制(39/44,88.6%)、易化(2/44,4.6%)和无影响(3/44,6.8%),但只有抑制性影响有显著性意义(P<0.001,n=39);弱噪声对阂反应的抑制效应最强,并随纯音强度的增加而逐步减弱(P<0.01301,n=39);此外,弱噪声的抑制作用还使大部分神经元的(31/39,79.5%)DR变窄(P<0.01,,l=31)、RIF的斜率增加(P<0.01,n=31)。上述结果提示,弱噪声参与下丘神经元声强敏感性的动态调制过程。这一观察为人们深入了解自然听环境中声信号提取的中枢机制提供了新认识。  相似文献   

20.
Experience-dependent plasticity of receptive fields in the auditory cortex has been demonstrated by electrophysiological experiments in animals. In the present study we used PET neuroimaging to measure regional brain activity in volunteer human subjects during discriminatory classical conditioning of high (8000 Hz) or low (200 Hz) frequency tones by an aversive 100 dB white noise burst. Conditioning-related, frequency-specific modulation of tonotopic neural responses in the auditory cortex was observed. The modulated regions of the auditory cortex positively covaried with activity in the amygdala, basal forebrain and orbitofrontal cortex, and showed context-specific functional interactions with the medial geniculate nucleus. These results accord with animal single-unit data and support neurobiological models of auditory conditioning and value-dependent neural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号