首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Increasing evidence suggests that individual isoforms of protein kinase C (PKC) play distinct roles in regulating platelet activation.

Methodology/Principal Findings

In this study, we focus on the role of two novel PKC isoforms, PKCδ and PKCε, in both mouse and human platelets. PKCδ is robustly expressed in human platelets and undergoes transient tyrosine phosphorylation upon stimulation by thrombin or the collagen receptor, GPVI, which becomes sustained in the presence of the pan-PKC inhibitor, Ro 31-8220. In mouse platelets, however, PKCδ undergoes sustained tyrosine phosphorylation upon activation. In contrast the related isoform, PKCε, is expressed at high levels in mouse but not human platelets. There is a marked inhibition in aggregation and dense granule secretion to low concentrations of GPVI agonists in mouse platelets lacking PKCε in contrast to a minor inhibition in response to G protein-coupled receptor agonists. This reduction is mediated by inhibition of tyrosine phosphorylation of the FcRγ-chain and downstream proteins, an effect also observed in wild-type mouse platelets in the presence of a PKC inhibitor.

Conclusions

These results demonstrate a reciprocal relationship in levels of the novel PKC isoforms δ and ε in human and mouse platelets and a selective role for PKCε in signalling through GPVI.  相似文献   

2.
The C1 domains of novel PKCs mediate the diacylglycerol-dependent translocation of these enzymes. The four different C1B domains of novel PKCs (δ, ε, θ and η) were studied, together with different lipid mixtures containing acidic phospholipids and diacylglycerol or phorbol ester. The results show that either in the presence or in the absence of diacylglycerol, C1Bε and C1Bη exhibit a substantially higher propensity to bind to vesicles containing negatively charged phospholipids than C1Bδ and C1Bθ. The observed differences between the C1B domains of novel PKCs (in two groups of two each) were also evident in RBL-2H3 cells and it was found that, as with model membranes, in which C1Bε and C1Bη could be translocated to membranes by the addition of a soluble phosphatidic acid without diacylglycerol or phorbol ester, C1Bδ and C1Bθ were not translocated when soluble phosphatidic acid was added, and diacylglycerol was required to achieve a detectable binding to cell membranes. It is concluded that two different subfamilies of novel PKCs can be established with respect to their propensity to bind to the cell membrane and that these peculiarities in recognizing lipids may explain why these isoenzymes are specialized in responding to different triggering signals and bind to different cell membranes.  相似文献   

3.
Vitamin E isoforms have opposing regulatory effects on leucocyte recruitment during inflammation. Furthermore, in vitro, vitamin E isoforms have opposing effects on leucocyte migration across endothelial cells by regulating VCAM (vascular cell-adhesion molecule)-1 activation of endothelial cell PKCα (protein kinase Cα). However, it is not known whether tocopherols directly regulate cofactor-dependent or oxidative activation of PKCα. We report in the present paper that cofactor-dependent activation of recombinant PKCα was increased by γ-tocopherol and was inhibited by α-tocopherol. Oxidative activation of PKCα was inhibited by α-tocopherol at a 10-fold lower concentration than γ-tocopherol. In binding studies, NBD (7-nitrobenz-2-oxa-1,3-diazole)-tagged α-tocopherol directly bound to full-length PKCα or the PKCα-C1a domain, but not PKCζ. NBD-tagged α-tocopherol binding to PKCα or the PKCα-C1a domain was blocked by diacylglycerol, α-tocopherol, γ-tocopherol and retinol, but not by cholesterol or PS (phosphatidylserine). Tocopherols enhanced PKCα-C2 domain binding to PS-containing lipid vesicles. In contrast, the PKCα-C2 domain did not bind to lipid vesicles containing tocopherol without PS. The PKCα-C1b domain did not bind to vesicles containing tocopherol and PS. In summary, α-tocopherol and γ-tocopherol bind the diacylglycerol-binding site on PKCα-C1a and can enhance PKCα-C2 binding to PS-containing vesicles. Thus the tocopherols can function as agonists or antagonists for differential regulation of PKCα.  相似文献   

4.
过表达PKCε和PKCη在HCC1806细胞中的抗凋亡作用   总被引:1,自引:0,他引:1  
为探讨PKCε、PKCη对乳腺癌细胞中TNFα诱导凋亡的影响,采用PCR技术,从人肌肉cDNA文库中克隆了全长PKCε和PKCη序列,亚克隆至pcDNA3,转化HCC1806细胞,并选择出稳定的转化细胞株.然后用流式细胞仪检测了PKCε、PKCη过表达对DNA断裂的影响,用Western印迹方法检测了PKCε、PKCη过表达对PARP、caspase 3和caspase 8水解的影响,以及对Bcl-2,Bax表达的影响,和对MAPK磷酸化的影响.流式细胞仪分析DNA含量的结果表明:TNFα处理后,HCC1806/PC、HCC1806/ε、HCC1806/η的sub_G1状态的DNA含量分别为:57.7%、23.3%、14.6%.Western印迹结果表明,当用0.01nmol/L TNFα处理,HCC1806/η中PARP、caspase3、caspase8的水解程度最低,HCC1806/ε中次之,HCC1806/PC最严重;与HCC1806/PC比较,无论用不用TNFα处理,HCC1806/ε都表达更高的Bcl_2,而HCC1806/η不影响Bcl_2的表达.过表达PKCη而不是PKCε抑制了由TNFα引起的p38和JNK的磷酸化,并且是JNK的抑制剂SP600125而不是p38的抑制剂SB220025抑制了PARP的裂解.以上结果显示,过表达PKCε、PKCη可能通过不同的信号途径在HCC1806中起抗凋亡作用,PKCε上调了bcl_2的表达,而PKCη抑制了JNK的磷酸化.  相似文献   

5.
The human mast cell lines HMC‐1560 and HMC‐1560,816 were used to study histamine release, Ca2+ signaling and protein kinase C (PKC) localization and expression, with phorbol 12‐myristate 13‐acetate (PMA). Both sublines carry activating mutations in the proto‐oncogene of c‐kit that cause autophosphorylation and permanent c‐kit tyrosine kinase activation. Both have the Gly‐560 → Val mutation but only the second carries the Asp‐816 → Val mutation. In this study, it was observed that the stimulation of PKC has different effects in HMC‐1560 and HMC‐1560,816 and this would be related to the difference in activating mutations in both mast cell lines. PKC activation increases ionomycin‐induced histamine release in HMC‐1560. This article demonstrates an opposite histamine response in HMC‐1560,816 cells, even though classical PKCs are the family of isozymes responsible for this effect in both cellular lines. Furthermore, it can be observed that upon cell stimulation with PMA, primarily cytosolic PKC translocates to the nucleous in HMC‐1560,816 cells, but not in HMC‐1560 cell line. J. Cell. Biochem. 112: 2637–2651, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

6.
7.
8.
Protein kinase C (PKC) is a family of at least 10 isozymes involved in the activation of different signal transduction pathways. The exact function of these isozymes is not known at present. Isozyme-selective inhibitors would be important to explain the function of the different PKCs and are anticipated to have pharmaceutical potential. Here we report that the small organic molecule BAS 02104951 [5-(1,3-benzodioxol-5-ylmethylene)-1-(phenylmethyl)-2,4,6(1H,3H,5H)-pyrimidinetrion], a barbituric acid derivative, inhibited PKCη and PKCε in vitro (IC(50) 18 and 36 μM, respectively). BAS 02104951 also inhibited the interaction of PKCε with its adaptor protein receptor for activated C-kinase 2 (RACK2) (IC(50) 28.5 μM). BAS 02104951 also inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced Elk-1 phosphorylation in HeLa cells, translocation of PKCε and PKCη to the membrane following treatment of PC3 cells with TPA. The compound did not inhibit the proliferation of PC3 and HeLa cells. BAS 02104951 can be used as selective inhibitor of PKCε in cells not expressing PKCη and may serve as a basis for the rational development of a selective inhibitor of PKCε or PKCη, or for an inhibitor of the PKCε/RACK2 interaction.  相似文献   

9.
PKCδ是nPKC家族成员,参与细胞凋亡调控,其激活机制与特异性位点的磷酸化和半胱天冬酶3(caspase-3)的剪切密切联系.PKCδ激活后可通过多种途径介导细胞凋亡:激活多种蛋白激酶级联启动细胞凋亡信号,转位至线粒体诱导细胞色素C等凋亡因子的释放,核转位启动核内凋亡通路诱导细胞凋亡.本文综述了PKCδ的分子结构、激活机制以及调控细胞凋亡的最新研究进展.  相似文献   

10.
PKC亚型在细胞周期调控中的作用   总被引:2,自引:0,他引:2  
蛋白激酶C(protein kinase C,PKC)是70年代末由Nishizuka等发现的,它是由相关蛋白构成的一个大家族。目前为止已经发现PKC家族的十三种亚型,各亚型均为单肽链,分子量约为67-83KD,按照它们激活时对Ca~(2+)、PKC的天然激活剂二脂酰甘油(DAG)的需要程度将其划分为三种类型,第一种为经典PKC(classical PKCs,cPKC),包含α、βI、βⅡ和γ四种亚型;第二种为新型PKC(novel PKCs,nPKC),包括δ、ε、η、θ和μ亚型;第三种为非典型PKC(atypical PKC,aPKC),包括λ、ξ和新发现的PKC3亚型。cPKC可以被Ca~(2+)、DAG和佛波酯激活;nPKC不含Ca~(2+)结合位点,不能被Ca~(2+)激活,但可被DAG和佛波酯激活;aPKC则不能被Ca~(2+)或者佛波酯激活(见表1)。  相似文献   

11.
Previous studies demonstrated α1-adrenergic receptors (ARs) increase STAT3 activation in transfected and non-cardiac primary cell lines. However, the mechanism used by α1-ARs resulting in STAT3 activation is unknown. While other G-protein-coupled receptors (GPCRs) can couple to STAT3, these mechanisms demonstrate coupling through SRC, TYK, Rac, or complex formation with Gq and used only transfected cell lines. Using normal and transgenic mice containing constitutively active mutations (CAM) of the α1A-AR subtype, neonatal mouse myocytes and whole hearts were analyzed for the mechanism to couple to STAT3 activation. α1-ARs stimulated time-dependent increases in p-SRC, p-JAK2, and p-STAT3 in normal neonatal myocytes. Using various kinase inhibitors and siRNA, we determined that the α1A-AR coupled to STAT3 through distinct and unique pathways in neonatal myocytes. We found that PKC? inhibition decreased p-ERK and p-Ser STAT3 levels without affecting p-Tyr STAT3. In contrast, we found that PKCδ inhibition affected p-SRC and p-JAK2 resulting in decreased p-Tyr and p-Ser STAT3 levels. We suggest a novel α1A-AR mediated PKC?/ERK pathway that regulates the phosphorylation status of STAT3 at Ser-727 while PKCδ couples to SRC/JAK2 to affect Tyr-705 phosphorylation. Furthermore, this pathway has not been previously described in a GPCR system that couples to STAT3. Given cell survival and protective cardiac effects induced by PKC, STAT3 and ERK signaling, our results could explain the neuroprotective and cardiac protective pathways that are enhanced with α1A-AR agonism.  相似文献   

12.
The variations of the intracellular localization of the individual protein kinase C (PKC) isoforms are related with their different biological functions. In this study, we have investigated the precise intracellular translocation of endogenous PKCα and PKCε in PMA-stimulated normal and tumoral lactotroph cells by using confocal and immunogold electron microscopy, which was correlated with the rate of cell proliferation of both pituitary cell phenotypes. The present results showed that the short phorbol ester incubation stimulated the proliferation of normal and tumoral lactotroph cells, as determined by the measurement of the BrdU-labelling index. The translocation of PKCα to plasma and nuclear membranes induced by PMA was more marked than that observed for PKCε in normal and tumoral lactotroph cells. Our results showed that PKCs translocation to the plasma and nuclear membranes varied from isozyme to isozyme emphasizing that PKCα could be related with the mitogenic stimulus exerted by phorbol ester. These data support the notion that specific PKC isozymes may exert spatially defined effects by virtue of their directed translocation to distinct intracellular sites.  相似文献   

13.
BackgroundProtein Kinase C (PKC) is a promiscuous serine/threonine kinase regulating vasodilatory responses in vascular endothelial cells. Calcium-dependent PKCbeta (PKCβ) and calcium-independent PKCeta (PKCη) have both been implicated in the regulation and dysfunction of endothelial responses to shear stress and agonists.ObjectiveWe hypothesized that PKCβ and PKCη differentially modulate shear stress-induced nitric oxide (NO) production by regulating the transduced calcium signals and the resultant eNOS activation. As such, this study sought to characterize the contribution of PKCη and PKCβ in regulating calcium signaling and endothelial nitric oxide synthase (eNOS) activation after exposure of endothelial cells to ATP or shear stress.MethodsBovine aortic endothelial cells were stimulated in vitro under pharmacological inhibition of PKCβ with LY333531 or PKCη targeting with a pseudosubstrate inhibitor. The participation of PKC isozymes in calcium flux, eNOS phosphorylation and NO production was assessed following stimulation with ATP or shear stress.ResultsPKCη proved to be a robust regulator of agonist- and shear stress-induced eNOS activation, modulating calcium fluxes and tuning eNOS activity by multi-site phosphorylation. PKCβ showed modest influence in this pathway, promoting eNOS activation basally and in response to shear stress. Both PKC isozymes contributed to the constitutive and induced phosphorylation of eNOS. The observed PKC signaling architecture is intricate, recruiting Src to mediate a portion of PKCη's control on calcium entry and eNOS phosphorylation. Elucidation of the importance of PKCη in this pathway was tempered by evidence of a single stimulus producing concurrent phosphorylation at ser1179 and thr497 which are antagonistic to eNOS activity.ConclusionsWe have, for the first time, shown in a single species in vitro that shear stress- and ATP-stimulated NO production are differentially regulated by classical and novel PKCs. This study furthers our understanding of the PKC isozyme interplay that optimizes NO production. These considerations will inform the ongoing design of drugs for the treatment of PKC-sensitive cardiovascular pathologies.  相似文献   

14.
心肌肥厚过程中PKC的双刃剑作用   总被引:2,自引:0,他引:2  
Yu ZB  Wang YY  Zhang R 《生理科学进展》2007,38(4):339-342
在慢性压力超负荷致心肌肥厚过程中,蛋白激酶C(PKC)是促心肌细胞肥大信号转导通路上的关键分子。心肌中PKC存在多种异构体,其各自的功能与作用尚不清楚。借助于PKC的选择性激动剂与抑制剂、腺病毒转染或转基因模型的研究表明,不同种属心肌中共同拥有的PKC有四种,它们的作用分别为:PKCε、PKCβ与PKCδ均可独立介导心肌细胞肥大,相互间能发挥代偿作用;激活PKCα与PKCβ亦可导致心肌收缩性能降低,相反,激活PKCε可增强心肌收缩性能。PKC的这种既可促进心肌发生代偿性肥厚,又可降低心肌收缩性能而引起失代偿的双重作用,在肥厚心肌向心衰转化过程中值得关注。  相似文献   

15.

Background

Integrins, cell-surface receptors that mediate adhesive interactions between cells and the extracellular matrix (ECM), play an important role in cancer progression. Expression of the vitronectin receptor αvβ3 integrin correlates with increased invasive and metastatic capacity of malignant melanomas, yet it remains unclear how expression of this integrin triggers melanoma invasion and metastasis.

Results

Two melanoma cell lines C8161.9 and M14 both express high levels of αvβ3 integrin and adhere to vitronectin. However, only the highly metastatic C8161.9 cells are capable of invading vitronectin-enriched Matrigel in an αvβ3-depenent manner. Elevated levels of PKCα and PKCδ, and activated Src were detected specifically in the highly metastatic melanoma cells, but not in the low metastatic M14 cells. Inhibition of Src or PKC activity suppressed αvβ3-dependent invasion. Furthermore, over expression of Src or PKCα and PKCδ was sufficient to confer αvβ3-dependent invasiveness to M14 cells. Stress fiber formation and focal adhesion formation were almost completely absent in C8161.9 cells compared to M14 cells. Inhibition of Src signaling was sufficient to restore normal actin architecture, and resulted in decreased p190RhoGAP phosphorylation and enhanced RhoA activity. Src had no effect on Rac activity. Loss of PKCα expression, but not PKCδ, by siRNA inhibited Rac and PAK activity as well as invasiveness. Loss of PKCα restored focal adhesion formation and partially restored stress fiber formation, while loss of PKCδ primarily restored stress fibers.

Conclusion

The misregulated expression of PKCα and PKCδ and elevated Src activity in metastatic melanoma cells is required for efficient αvβ3-mediated invasion. PKCα and Src enhance αvβ3-mediated invasion in part by increasing the GTPase activity of Rac relative to RhoA. PKCα influences focal adhesion formation, while PKCδ controls stress fibers.  相似文献   

16.
目的探索青春型双歧杆菌的DNA对巨噬细胞PKC家族的影响.方法以激光共聚焦显微镜定量测定小鼠腹腔巨噬细胞PKCα、PKCβⅠ、PKCβⅡ、PKCγ、PKCε和PKCζ的含量.结果双歧杆菌DNA注射组小鼠腹腔巨噬细胞PKCα和PKCβⅡ的平均荧光强度明显高于对照组(P<0.01),而PKCβⅠ、PKCγ、PKCε和PKCζ的平均荧光强度在2组间则差异无显著性(P>0.05).结论青春型双歧杆菌的DNA能活化巨噬细胞的PKCα和PKCβⅡ.  相似文献   

17.
The identification of a novel series of PKCθ inhibitors and subsequent optimization using docking based on a crystal structure of PKCθ is described. SAR was rapidly generated around an amino pyridine-ketone hit; (6-aminopyridin-2-yl)(2-aminopyridin-3-yl)methanone 2 leading to compound 21 which significantly inhibits production of IL-2 in a mouse SEB-IL2 model.  相似文献   

18.
利用免疫印迹技术及内源性底物磷酸化方法,我们研究了在巨噬细胞的信号传递中起重要作用的PKC同功酶的分布及其在免疫调变剂LPS的刺激下产生的激活和转位。在未激活的巨噬细胞中,PKC-β捻量高于PKC-α和ε,它和PKC-α的分布均是胞质中大于胞膜。以PMA为阳性对照,结果提示LPS介导的抑制性巨噬细胞免疫调变机制中涉及到PKC-α和PKC-ε从胞质到膜组份的转位而不是PKC-β(PKC-βI或βⅡ)  相似文献   

19.
PKC对小鼠受精卵发育的调控作用   总被引:8,自引:0,他引:8  
为研究 TPA及 PKC的反义寡核苷酸对 1 -细胞期鼠受精卵发育的影响 ,采用免疫细胞化学法标记 PKC(α及 β亚型 ) ,并用激光扫描共聚焦显微镜测定卵内 PKC荧光强度 ;同时利用显微注射法注射 PKC的反义寡核苷酸 ,观察其对受精卵分裂的影响 . 1 0 0 μg/ L TPA对 1 -细胞期受精卵的发育具有完全抑制作用 .TPA处理 1 2 h后 ,对照组受精卵停留在 1 -细胞期 ,而未经 TPA处理的1 -细胞期卵可以分裂到 2 -细胞期 .共焦激光显示实验组与对照组相比 ,PKC(α、β亚型 )荧光强度均有下降 (P<0 .0 1 ) .显微注射 PKC antisenseα及 antisenseβ的受精卵 ,分别只有 1 4 .2 %和 3.33%的卵可以发育到 2 -细胞期 .与对照组 (注射 M2培养液 )差异显著 (P<0 .0 1 ) .结果表明 ,(1 ) TPA长期处理 1 -细胞期受精卵 ,抑制 1 -细胞期卵分裂到 2 -细胞期 ;(2 ) PKC的反义寡核苷酸 (α及β亚型 )可以抑制小鼠 1 -细胞期卵的发育  相似文献   

20.
Previous studies demonstrated α?-adrenergic receptors (ARs) increase STAT3 activation in transfected and non-cardiac primary cell lines. However, the mechanism used by α?-ARs resulting in STAT3 activation is unknown. While other G-protein-coupled receptors (GPCRs) can couple to STAT3, these mechanisms demonstrate coupling through SRC, TYK, Rac, or complex formation with Gq and used only transfected cell lines. Using normal and transgenic mice containing constitutively active mutations (CAM) of the α(1A)-AR subtype, neonatal mouse myocytes and whole hearts were analyzed for the mechanism to couple to STAT3 activation. α?-ARs stimulated time-dependent increases in p-SRC, p-JAK2, and p-STAT3 in normal neonatal myocytes. Using various kinase inhibitors and siRNA, we determined that the α(1A)-AR coupled to STAT3 through distinct and unique pathways in neonatal myocytes. We found that PKC? inhibition decreased p-ERK and p-Ser STAT3 levels without affecting p-Tyr STAT3. In contrast, we found that PKCδ inhibition affected p-SRC and p-JAK2 resulting in decreased p-Tyr and p-Ser STAT3 levels. We suggest a novel α(1A)-AR mediated PKC?/ERK pathway that regulates the phosphorylation status of STAT3 at Ser-727 while PKCδ couples to SRC/JAK2 to affect Tyr-705 phosphorylation. Furthermore, this pathway has not been previously described in a GPCR system that couples to STAT3. Given cell survival and protective cardiac effects induced by PKC, STAT3 and ERK signaling, our results could explain the neuroprotective and cardiac protective pathways that are enhanced with α(1A)-AR agonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号