首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physiological, anthropometric, and power profiling data were retrospectively analyzed from 4 elite taekwondo athletes from the Australian National Olympic team 9 weeks from Olympic departure. Power profiling data were collected weekly throughout the 9-week period. Anthropometric skinfolds generated a lean mass index (LMI). Physiological tests included a squat jump and bench throw power profile, bleep test, 20-m sprint test, running VO2max test, and bench press and squat 3 repetition maximum (3RM) strength tests. After this, the athletes power, velocity, and acceleration profile during unweighted squat jumps and single-leg jumps were tracked using a linear position transducer. Increases in power, velocity, and acceleration between weeks and bilateral comparisons were analyzed. Athletes had an LMI of 37.1 ± 0.4 and were 173.9 ± 0.2 m and 67 ± 1.1 kg. Relatively weaker upper body (56 ± 11.97 kg 3RM bench press) compared to lower body strength (88 ± 2.89 kg 3RM squat) was shown alongside a VO2max of 53.29 ml(-1)·min(-1)·kg, and a 20-m sprint time of 3.37 seconds. Increases in all power variables for single-leg squat and squat jumps were found from the first session to the last. Absolute peak power in single-leg squat jumps increased by 13.4-16% for the left and right legs with a 12.9% increase in squat jump peak power. Allometrically scaled peak power showed greater increases for single-leg (right leg: 18.55%; left: 23.49%) and squat jump (14.49%). The athlete's weight did not change significantly throughout the 9-week mesocycle. Progressions in power increases throughout the weeks were undulating and can be related to the intensity of the prior week's training and athlete injury. This analysis has shown that a 9-week mesocycle before Olympic departure that focuses on core lifts has the ability to improve power considerably.  相似文献   

2.
Training at a load maximizing power output (Pmax) is an intuitively appealing strategy for enhancement of performance that has received little research attention. In this study we identified each subject's Pmax for an isoinertial resistance training exercise used for testing and training, and then we related the changes in strength to changes in sprint performance. The subjects were 18 well-trained rugby league players randomized to two equal-volume training groups for a 7-week period of squat jump training with heavy loads (80% 1RM) or with individually determined Pmax loads (20.0-43.5% 1RM). Performance measures were 1RM strength, maximal power at 55% of pretraining 1RM, and sprint times for 10 and 30 m. Percent changes were standardized to make magnitude-based inferences. Relationships between changes in these variables were expressed as correlations. Sprint times for 10 m showed improvements in the 80% 1RM group (-2.9 +/- 3.2%) and Pmax group (-1.3 +/- 2.2%), and there were similar improvements in 30-m sprint time (-1.9 +/- 2.8 and -1.2 +/- 2.0%, respectively). Differences in the improvements in sprint time between groups were unclear, but improvement in 1RM strength in the 80% 1RM group (15 +/- 9%) was possibly substantially greater than in the Pmax group (11 +/- 8%). Small-moderate negative correlations between change in 1RM and change in sprint time (r approximately -0.30) in the combined groups provided the only evidence of adaptive associations between strength and power outputs, and sprint performance. In conclusion, it seems that training at the load that maximizes individual peak power output for this exercise with a sample of professional team sport athletes was no more effective for improving sprint ability than training at heavy loads, and the changes in power output were not usefully related to changes in sprint ability.  相似文献   

3.
The objective of this investigation was to examine the influence of body mass in the calculation of power and the subsequent effect on the load-power relationship in the jump squat, squat, and power clean. Twelve Division I male athletes were evaluated on their performance across various intensities in all the 3 lifts. Power output was calculated using 3 separate techniques: (a) including the contribution of body mass in force output (IBM), (b) including the contribution of the mass of body less the mass of the shanks and feet in force output (IBMS), and (c) excluding the contribution of body mass in force output (EBM). Peak power, peak power relative to body mass, and peak force calculated using EBM were significantly (p < or = 0.05) lower than outputs calculated with IBM and IBMS. The load that maximized power output was unchanged between the 3 techniques in the jump squat (0% 1 repetition maximum [1RM]) and power clean (80% 1RM) but was shifted from 56% (IBM and IBMS) to 71% 1RM (EBM) in the squat. Across all 3 movements, the shape of the load-power curve was affected when derived via the EBM method as a result of the underrepresentation of power output at light loads. This was due to the majority of the load being neglected when the mass of the body was removed from the system mass used in the calculation of force. This study indicates that not only is the actual power output significantly lower when body mass is excluded from the force output of a lower body movement, but the load-power relationship is altered as well. Therefore, it is imperative that the mass of the individual being tested is incorporated into the calculation of force used to determine power output during lower-body movements.  相似文献   

4.
The purpose of this investigation was to examine the impact of load on the power-, force- and velocity-time curves during the jump squat. The analysis of these curves for the entire movement at a sampling frequency of 200-500 Hz averaged across 18 untrained male subjects is the most novel aspect of this study. Jump squat performance was assessed in a randomized fashion across five different external loads: 0, 20, 40, 60, and 80 kg (equivalent to 0 +/- 0, 18 +/- 4, 37 +/- 8, 55 +/- 12, 74 +/- 15% of 1RM, respectively). The 0-kg loading condition (i.e., body mass only) was the load that maximized peak power output, displaying a significantly (p 相似文献   

5.
The purpose of the present study was to investigate the additive effects of ballistic training to a traditional heavy resistance training program on upper- and lower-body maximal strength. Seventeen resistance-trained men were randomly assigned to 1 of 2 groups: (i) a combined ballistic and heavy resistance training group (COM; age = 21.4 +/- 1.7 years, body mass = 82.7 +/- 15.1 kg) or (ii) a heavy resistance training group (HR; age = 20.1 +/- 1.2 years, body mass = 81.0 +/- 9.2 kg) and subsequently participated in an 8-week periodized training program. Training was performed 3 days per week, that is, 6-8 exercises per workout (6-8 traditional exercises for HR; 4-6 traditional + 2 ballistic exercises in COM) for 3-8 repetitions. A significant increase in 1-repetition maximum (1RM) squat was shown in both groups (COM = 15.2%; HR = 17.3%) with no difference observed between groups. However, 1RM bench press increased to a significantly greater extent (P = 0.04) in COM than HR (11.6% vs. 7.1%, respectively). For peak power attained during the jump squat, an interaction (P = 0.02) was observed where the 5.4% increase in COM and -3.2% reduction in HR were statistically significant. Nonsignificant increases were observed in peak plyometric push-up power in COM (8.5%) and HR (3.4%). Lean body mass increased significantly in both groups, with no between-group differences observed. The results of this study support the inclusion of ballistic exercises into a heavy resistance training program for increasing 1RM bench press and enhancing lower-body power.  相似文献   

6.
The purpose of this study was to investigate the acute effect of whole-body vibration with a frequency of 50 Hz (WBV(50Hz)) on peak power in squat jump (SJ), 1 repetition maximum (1RM) in parallel squat, and electromyography (EMG) activity and compare them with no-vibration conditions in power lifters. Twelve national level male power lifters (age 24 ± 5 years, body mass 110 ± 24 kg, height 179 ± 7 cm) tested peak power in SJ and 1RM in parallel squat while they were randomly exposed to WBV(50Hz) or to no vibration. These tests were performed in a Smith Machine. Peak power output was higher while performed with a WBV(50Hz) compared with the no-WBV condition (p < 0.05). This increase in power output was accompanied by higher EMG starting values and EMG peak values of the investigated thigh muscles during WBV(50Hz) (p < 0.05). There was no difference between adding WBV(50Hz) and no-vibration conditions in 1RM parallel squat. In conclusion, the results of this study suggest that the application of WBV(50Hz) acutely increases peak power output during SJ in well strength trained individuals such as power lifters. This increase in power was accompanied by an increased EMG activity in the quadriceps muscles. However, in 1RM parallel squat, there was no difference between WBV50Hz and no-vibration conditions. Therefore, adding WBV(50Hz) has no acute additive effect on 1RM parallel squat in power lifters and, based on the present findings, may thus not be recommended in the training to improve 1RM in power lifters. However, WBV(50Hz) seems to have an acute additive effect on peak power output and may be used in well strength trained individuals for whom a high power output is important for performance.  相似文献   

7.
The purpose of this study was to determine the acute effects of a spectrum of eccentric loads on force, velocity, and power during the concentric portion of maximal-effort jump squats utilizing a repeated measures design. Thirteen resistance-trained men (age = 22.8 +/- 2.9 years, weight = 87.1 +/- 11.8 kg, 163.5 +/- 28.6 kg squat 1 repetition maximum [1RM]; mean +/- SD), who routinely incorporated back squats into their training, participated as subjects in this investigation. Jump squat performance was assessed using 4 experimental conditions. The first of these conditions consisted of an isoinertial load equal to 30% of back squat 1RM. The remaining conditions consisted of jump squats with a concentric load of 30% 1RM, subsequent to the application of experimental augmented eccentric loading (AEL) conditions of 20, 50, and 80% of back squat 1RM, respectively. All subjects performed 2 sets of 1RM of maximum-effort jump squats with all experimental conditions in a counter-balanced sequence. Forty-eight hours after completing the first testing session, subjects repeated the experimental testing protocol to establish stability reliability. Peak performance values for the reliable variables of force, velocity, and power, as well as force and power values obtained at 20-ms intervals during the initial 400 ms of the concentric jump squat range of motion, showed no statistical difference (p > 0.05) across the experimental AEL loads. These results suggest that load-spectrum AEL prior to a 30% 1RM jump squat fails to acutely enhance force, velocity, and power.  相似文献   

8.
One of the most popular exercises for developing lower-body muscular power is the weighted vertical jump. The present study sought to examine the effect of altering the position of the external load on the kinematics and kinetics of the movement. Twenty-nine resistance-trained rugby union athletes performed maximal effort jumps with 0, 20, 40, and 60% of their squat 1 repetition maximum (1RM) with the load positioned (a) on the posterior aspect of the shoulder using a straight barbell and (b) at arms' length using a hexagonal barbell. Kinematic and kinetic variables were calculated through integration of the vertical ground reaction force data using a forward dynamics approach. Performance of the hexagonal barbell jump resulted in significantly (p < 0.05) greater values for jump height, peak force, peak power, and peak rate of force development compared with the straight barbell jump. Significantly (p < 0.05) greater peak power was produced during the unloaded jump compared with all trials where the external load was positioned on the shoulder. In contrast, significantly (p < 0.05) greater peak power was produced when using the hexagonal barbell combined with a load of 20% 1RM compared with all other conditions investigated. The results suggest that weighted vertical jumps should be performed with the external load positioned at arms' length rather than on the shoulder when attempting to improve lower-body muscular performance.  相似文献   

9.
Training at the optimal load for peak power output (PPO) has been proposed as a method for enhancing power output, although others argue that the force, velocity, and PPO are of interest across the full range of loads. The aim of this study was to examine the influence of load on PPO, peak barbell velocity (BV), and peak vertical ground reaction force (VGRF) during the jump squat (JS) in a group of professional rugby players. Eleven male professional rugby players (age, 26 ± 3 years; height, 1.83 ± 6.12 m; mass, 97.3 ± 11.6 kg) performed loaded JS at loads of 20-100% of 1 repetition maximum (1RM) JS. A force plate and linear position transducer, with a mechanical braking unit, were used to measure PPO, VGRF, and BV. Load had very large significant effects on PPO (p < 0.001, partial η2 = 0.915); peak VGRF (p < 0.001, partial η2 = 0.854); and peak BV (p < 0.001, partial η2 = 0.973). The PPO and peak BV were the highest at 20% 1RM, though PPO was not significantly greater than that at 30% 1RM. The peak VGRF was significantly greater at 1RM than all other loads, with no significant difference between 20 and 60% 1RM. In resistance trained professional rugby players, the optimal load for eliciting PPO during the loaded JS in the range measured occurs at 20% 1RM JS, with decreases in PPO and BV, and increases in VGRF, as the load is increased, although greater PPO likely occurs without any additional load.  相似文献   

10.
11.
The purpose of this study was to examine the effects of a 6-week, periodized squat training program, with or without whole-body low-frequency vibration (WBLFV), on jump performance. Males ranged in age from 20 to 30 years and were randomized into groups that did squat training with (SQTV, n = 13) or without (SQT, n = 11) vibration, or a control group (CG, n = 6). Measures of jump height (cm), peak power (Pmax), Pmax per kilogram of body mass (Pmax/kg), and mean power were recorded during 30-cm depth jumps and 20-kg squat jumps at weeks 1 (pretraining), 3 (midtraining), and 7 (posttraining). No significant group differences were seen for 30-cm depth jump height between weeks 1 and 7 (p > 0.05). Trial three (W7) measures were greater than those for trial two (W3) and trial one (W1) (p < 0.05). Significant group differences were seen for 20-kg squat jump height, with SQTV > SQT between weeks 1 and 7 (p < 0.05). Significant trial differences were seen, with W7 > W3 > W1 (p < 0.05) as well as for 30-cm depth jump Pmax percent change (W7 > W3 and W1 p < 0.05)). A significant trial effect was seen for 20-kg squat jump Pmax (W7 > W1, p < 0.05) and 20-kg squat jump Pmax/kg percent change (W7 > W3 > W1, p < 0.05). The addition of vibration to SQTV seemed to facilitate Pmax and mean power adaptation for depth jumps and Pmax for squat jumps, although not significantly (p > 0.05). Stretch reflex potentiation and increased motor unit synchronization and firing rates may account for the trends seen. Baseline squat strength, resistance training experience, and amplitude, frequency, and duration of application of WBLFV seem to be important factors that need to be controlled for.  相似文献   

12.
Research has identified that the optimal power load for static squat jumps (with no countermovement) is lower than the loads usually recommended for power training. Lower loads may permit the performance of additional repetitions before the onset of fatigue compared with heavier loads; therefore, the aim of this study was to determine the point of fatigue during squat jumps at various loads (0, 20, 40, 60% 1-repetition maximum [1RM]). Seventeen professional rugby league players performed sets of 6 squat jumps (with no countermovement), using 4 loading conditions (0, 20, 40, and 60% of 1RM back squat). Repeated measures analysis of variance revealed no significant differences (p > 0.05) in force, velocity, power, and displacement between repetitions, for the 0, 20, and 40% loading conditions. The 60% condition showed no significant difference (p > 0.05) in peak force between repetitions; however, velocity (1.12 + 0.10 and 1.18 + 0.11 m·s(-1)), power (3,385 + 343 and 3,617 + 396 W) and displacement (11.13 + 2.31 and 11.85 + 2.16 cm) were significantly (p < 0.02) lower during repetition 6 compared with repetition 2. These findings indicate that when performing squat jumps (with no countermovement) with a load <40% 1RM back squat, up to >6 repetitions can be completed without inducing fatigue and a minimum of 4-6 repetitions should be performed to achieve peak power output. When performing squat jumps (with no countermovement) with a load equal to the 60% 1RM only, 5 repetitions should be performed to minimize fatigue and ensure maintenance of velocity and power.  相似文献   

13.
ABSTRACT: Comfort, P, Fletcher, C, and McMahon, JJ. Determination of optimal loading during the power clean, in collegiate athletes. J Strength Cond Res 26(11): 2970-2974, 2012-Although previous research has been performed in similar areas of study, the optimal load for the development of peak power during training remains controversial, and this has yet to be established in collegiate level athletes. The purpose of this study was to determine the optimal load to achieve peak power output during the power clean in collegiate athletes. Nineteen male collegiate athletes (age 21.5 ± 1.4 years; height 173.86 ± 7.98 cm; body mass 78.85 ± 8.67 kg) performed 3 repetitions of power cleans, while standing on a force platform, using loads of 30, 40, 50, 60, 70, and 80% of their predetermined 1-repetition maximum (1RM) power clean, in a randomized, counterbalanced order. Peak power output occurred at 70% 1RM (2,951.7 ± 931.71 W), which was significantly greater than the 30% (2,149.5 ± 406.98 W, p = 0.007), 40% (2,201.0 ± 438.82 W, p = 0.04), and 50% (2,231.1 ± 501.09 W, p = 0.05) conditions, although not significantly different when compared with the 60 and 80% 1RM loads. In addition, force increased with an increase in load, with peak force occurring at 80% 1RM (1,939.1 ± 320.97 N), which was significantly greater (p < 0.001) than the 30, 40, 50, and 60% 1RM loads but not significantly greater (p > 0.05) than the 70% 1RM load (1,921.2 ± 345.16 N). In contrast, there was no significant difference (p > 0.05) in rate of force development across loads. When training to maximize force and power, it may be advantageous to use loads equivalent to 60-80% of the 1RM, in collegiate level athletes.  相似文献   

14.
The purpose of this study was to determine the early phase adaptations in short-term traditional (TRT) versus superslow (SST) resistance training. Sixteen apparently healthy subjects participated in this study. Subjects were pretested and posttested for their 1 repetition maximums (1RM) in the squat and bench press, peak power in a countermovement jump (CMJ) and squat jump (SJ), and body composition using dual energy x-ray absorptiometry. Subjects participated in an 8-week resistance training program in either SST (n = 9, 3 men, 6 women), using 50% of 1RM, or TRT (n = 7, 3 men, 4 women), using 80% of 1RM. Both groups trained 3 days per week. The TRT and SST groups improved in strength by 6.8 and 3.6% in the squat exercise and by 8.6 and 9.1% in the bench press, respectively. Peak power for the CMJ increased significantly in the TRT group, from 23.0 +/- 5.5 W/kg to 25.0 +/- 6.3 W/kg; no such increase was seen with respect to the SST group. Both groups' 1RM increased significantly for both the bench press and the squat. No changes in body composition were seen for either group. The results of this study suggest that TRT is more effective for improving peak power than SST.  相似文献   

15.
The purpose of this investigation was to determine the relationship between countermovement vertical jump (CMJ) performance and various methods used to assess isometric and dynamic multijoint strength. Twelve NCAA Division I-AA male football and track and field athletes (age, 19.83 +/- 1.40 years; height, 179.10 +/- 4.56 cm; mass, 90.08 +/- 14.81 kg; percentage of body fat, 11.85 +/- 5.47%) participated in 2 testing sessions. The first session involved 1 repetition maximum (1RM) (kg) testing in the squat and power clean. During the second session, peak force (N), relative peak force (N x kg(-1)), peak power (W), relative peak power (W x kg(-1)), peak velocity (m x s(-1)), and jump height (meters) in a CMJ, and peak force and rate of force development (RFD) (N x s(-1)) in a maximal isometric squat (ISO squat) and maximal isometric mid-thigh pull (ISO mid-thigh) were assessed. Significant correlations (P < or = 0.05) were found when comparing relative 1RMs (1RM/body mass), in both the squat and power clean, to relative CMJ peak power, CMJ peak velocity, and CMJ height. No significant correlations existed between the 4 measures of absolute strength, which did not account for body mass (squat 1RM, power clean 1RM, ISO squat peak force, and ISO mid-thigh peak force) when compared to CMJ peak velocity and CMJ height. In conclusion, multijoint dynamic tests of strength (squat 1RM and power clean 1RM), expressed relative to body mass, are most closely correlated with CMJ performance. These results suggest that increasing maximal strength relative to body mass can improve performance in explosive lower body movements. The squat and power clean, used in a concurrent strength and power training program, are recommended for optimizing lower body power.  相似文献   

16.
The purpose of this study was to investigate the relationship of the 1 repetition maximum (1RM) squat to power output during countermovement and static weighted vertical squat jumps. The training experience of subjects (N = 22, 87.0 +/- 15.3 kg, 14.1 +/- 7.1% fat, 22.2 +/- 3.8 years) ranged from 7 weeks to 15+ years. Based on the 1RM squat, subjects were further divided into the 5 strongest and 5 weakest subjects (p 相似文献   

17.
The purpose of this study was to compare anthropometric and athletic performance variables during the playing career of NCAA Division III college football players. Two hundred and eighty-nine college football players were assessed for height, body mass, body composition, 1-repetition-maximum (1RM) bench press, 1RM squat, vertical jump height (VJ), vertical jump peak, and vertical jump mean (VJMP) power, 40-yd sprint speed (40S), agility, and line drill (LD) over an 8-year period. All testing occurred at the beginning of summer training camp in each of the seasons studied. Data from all years of testing were combined. Players in their fourth and fifth (red-shirt year) seasons of competition were significantly (p < 0.05) heavier than first-year players. Significant increases in strength were seen during the course of the athletes' collegiate career (31.0% improvement in the 1RM bench press and 36.0% increase in squat strength). The VJ was significantly greater during the fourth year of competition compared to in the previous 3 years of play. Vertical jump peak and VJMP were significantly elevated from years 1 and 2 and were significantly higher during year 4 than during any previous season of competition. No significant changes in 40S or LD time were seen during the athletes playing career. Fatigue rate for the LD (fastest time/slowest time of 3 LD) significantly improved from the first (83.4 ± 6.4%) to second season (85.1 ± 6.5%) of competition. Fatigue rates in the fourth (88.3 ± 4.8%) and fifth (91.2 ± 5.2%) seasons were significantly greater than in any previous season. Strength and power performance improvements appear to occur throughout the football playing career of NCAA Division III athletes. However, the ability to significantly improve speed and agility may be limited.  相似文献   

18.
The purpose of this study was to assess lower-body muscular strength and work capacity after off-season resistance training and the efficacy of predicting maximal squat strength (1 repetition maximum [1RM]) from repetitions to fatigue. National Collegiate Athletic Association Division-II football players (n = 58) were divided into low-strength (LS, 1RM < 365 lb, n = 32) and high-strength (HS, 1RM ≥ 365 lb, n = 26) groups before training based on median 1RM squat performance. Maximal repetitions to failure (RTFs) were performed with a relative load of 70% of 1RM before training and 60, 70, 80, and 90% of 1RM after 12 weeks of a linear periodization resistance training program. As a team, 1RM squat (32 ± 27 lb), 70% RTF (4.5 ± 4.5 reps), and work capacity at 70% 1RM load (1,482 ± 1,181 lb reps) increased significantly after training. Likewise, training resulted in significant increases in 1RM, RTF at 70% 1RM, and work capacity (load × reps) in both LS (8 ± 33 lb, 3.9 ± 4.7 reps, 1,736 ± 1,521 lb reps, respectively) and HS (27 ± 21 lb, 4.9 ± 4.4 reps, 2,387 ± 1,767 lb reps, respectively), with no significant difference between groups. There was no relationship between the change in work capacity and the change in muscular strength for either the LS (r = 0.02) or HS (r = 0.06) group. Predicted 1RMs were best when RTFs were performed using 80% 1RM (5-17 RTFs), with an error of ±5% in 95% of the subjects. In conclusion, the changes in muscular strength associated with an off-season training program appear to have a positive influence on squat work capacity at 70% of 1RM and allow favorable prediction of 1RM using submaximal loads.  相似文献   

19.
The purpose of this study was to investigate the validity of power measurement techniques during the jump squat (JS) utilizing various combinations of a force plate and linear position transducer (LPT) devices. Nine men with at least 6 months of prior resistance training experience participated in this acute investigation. One repetition maximums (1RM) in the squat were determined, followed by JS testing under 2 loading conditions (30% of 1RM [JS30] and 90% of 1RM [JS90]). Three different techniques were used simultaneously in data collection: (a) 1 linear position transducer (1-LPT); (b) 1 linear position transducer and a force plate (1-LPT + FP); and (c) 2 linear position transducers and a force place (2-LPT + FP). Vertical velocity-, force-, and power-time curves were calculated for each lift using these methodologies and were compared. Peak force and peak power were overestimated by 1-LPT in both JS30 and JS90 compared with 2-LPT + FP and 1-LPT + FP (p 相似文献   

20.
The purpose of this investigation was to determine if there was a difference in kinetic variables and muscle activity when comparing a squat to a box squat. A box squat removes the stretch-shortening cycle component from the squat, and thus, the possible influence of the box squat on concentric phase performance is of interest. Eight resistance trained men (Height: 179.61 ± 13.43 cm; Body Mass: 107.65 ± 29.79 kg; Age: 24.77 ± 3.22 years; 1 repetition maximum [1RM]: 200.11 ± 58.91 kg) performed 1 repetition of squats and box squats using 60, 70, and 80% of their 1RM in a randomized fashion. Subjects completed the movement while standing on a force plate and with 2 linear position transducers attached to the bar. Force and velocity were used to calculate power. Peak force and peak power were determined from the force-time and power-time curves during the concentric phase of the lift. Muscle activity (electromyography) was recorded from the vastus lateralis, vastus medialis, biceps femoris, and longissimus. Results indicate that peak force and peak power are similar between the squat and box squat. However, during the 70% of 1RM trials, the squat resulted in a significantly lower peak force in comparison to the box squat (squat = 3,269 ± 573 N, box squat = 3,364 ± 575 N). In addition, during the 80% of 1RM trials, the squat resulted in significantly lower peak power in comparison to the box squat (squat = 2,050 ± 486 W, box squat = 2,197 ± 544 W). Muscle activity was generally higher during the squat in comparison to the box squat. In conclusion, minimal differences were observed in kinetic variables and muscle activity between the squat and box squat. Removing the stretch-shortening cycle during the squat (using a box) appears to have limited negative consequences on performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号