首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The force-length-relation (F-l-r) is an important property of skeletal muscle to characterise its function, whereas for in vivo human muscles, torque-angle relationships (T-a-r) represent the maximum muscular capacity as a function of joint angle. However, since in vivo force/torque-length data is only available for rotational single-joint movements the purpose of the present study was to identify torque-angle-relationships for multi-joint leg extension. Therefore, inverse dynamics served for calculation of ankle and knee joint torques of 18 male subjects when performing maximum voluntary isometric contractions in a seated leg press. Measurements in increments of 10° knee angle from 30° to 100° knee flexion resulted in eight discrete angle configurations of hip, knee and ankle joints. For the knee joint we found an ascending-descending T-a-r with a maximum torque of 289.5° ± 43.3 Nm, which closely matches literature data from rotational knee extension. In comparison to literature we observed a shift of optimum knee angle towards knee extension. In contrast, the T-a-r of the ankle joint vastly differed from relationships obtained for isolated plantar flexion. For the ankle T-a-r derived from multi-joint leg extension subjects operated over different sections of the force-length curve, but the ankle T-a-r derived from isolated joint efforts was over the ascending limb for all subjects. Moreover, mean maximum torque of 234.7 ± 56.6 Nm exceeded maximal strength of isolated plantar flexion (185.7 ± 27.8 Nm). From these findings we conclude that muscle function between isolated and more physiological multi-joint tasks differs. This should be considered for ergonomic and sports optimisation as well as for modelling and simulation of human movement.  相似文献   

2.
Although activity of the rectus femoris (RF) differs from that of the other synergists in quadriceps femoris muscle group during physical activities in humans, it has been suggested that the activation pattern of the vastus intermedius (VI) is similar to that of the RF. The purpose of present study was to examine activation of the VI during isometric hip flexion. Ten healthy men performed isometric hip flexion contractions at 25%, 50%, 75%, and 100% of maximal voluntary contraction at hip joint angles of 90°, 110° and 130°. Surface electromyography (EMG) was used to record activity of the four quadriceps femoris muscles and EMG signals were root mean square processed and normalized to EMG amplitude during an isometric knee extension with maximal voluntary contraction. The normalized EMG was significantly higher for the VI than for the vastus medialis during hip flexion at 100% of maximal voluntary contraction at hip joint angles of 110° and 130° (P < 0.05). The onset of VI activation was 230–240 ms later than the onset of RF activation during hip flexion at each hip joint angle, which was significantly later than during knee extension at 100% of maximal voluntary contraction (P < 0.05). These results suggest that the VI is activated later than the RF during hip flexion. Activity of the VI during hip flexion might contribute to stabilize the knee joint as an antagonist and might help to smooth knee joint motion, such as in the transition from hip flexion to knee extension during walking, running and pedaling.  相似文献   

3.
The aim of the present study was to investigate the EMG-joint angle relationship during voluntary contraction with maximum effort and the differences in activity among three hamstring muscles during knee flexion. Ten healthy subjects performed maximum voluntary isometric and isokinetic knee flexion. The isometric tests were performed for 5 s at knee angles of 60 and 90 degrees. The isokinetic test, which consisted of knee flexion from 0 to 120 degrees in the prone position, was performed at an angular velocity of 30 degrees /s (0.523 rad/s). The knee flexion torque was measured using a KIN-COM isokinetic dynamometer. The individual EMG activity of the hamstrings, i.e. the semitendinosus, semimembranosus, long head of the biceps femoris and short head of the biceps femoris muscles, was detected using a bipolar fine wire electrode. With isometric testing, the knee flexion torque at 60 degrees knee flexion was greater than that at 90 degrees. The mean peak isokinetic torque occurred from 15 to 30 degrees knee flexion angle and then the torque decreased as the knee angle increased (p<0.01). The EMG activity of the hamstring muscles varied with the change in knee flexion angle except for the short head of the biceps femoris muscle under isometric condition. With isometric contraction, the integrated EMGs of the semitendinosus and semimembranosus muscles at a knee flexion angle of 60 degrees were significantly lower than that at 90 degrees. During maximum isokinetic contraction, the integrated EMGs of the semitendinosus, semimembranosus and short head of the biceps femoris muscles increased significantly as the knee angle increased from 0 to 105 degrees of knee flexion (p<0.05). On the other hand, the integrated EMG of the long head of the biceps femoris muscle at a knee angle of 60 degrees was significantly greater than that at 90 degrees knee flexion with isometric testing (p<0.01). During maximum isokinetic contraction, the integrated EMG was the greatest at a knee angle between 15 and 30 degrees, and then significantly decreased as the knee angle increased from 30 to 120 degrees (p<0.01). These results demonstrate that the EMG activity of hamstring muscles during maximum isometric and isokinetic knee flexion varies with change in muscle length or joint angle, and that the activity of the long head of the biceps femoris muscle differs considerably from the other three heads of hamstrings.  相似文献   

4.
The purpose of this study was to examine the acute effects of static versus dynamic stretching on peak torque (PT) and electromyographic (EMG), and mechanomyographic (MMG) amplitude of the biceps femoris muscle (BF) during isometric maximal voluntary contractions of the leg flexors at four different knee joint angles. Fourteen men ((mean +/- SD) age, 25 +/- 4 years) performed two isometric leg flexion maximal voluntary contractions at knee joint angles of 41 degrees , 61 degrees , 81 degrees , and 101 degrees below full leg extension. EMG (muV) and MMG (m x s(-2)) signals were recorded from the BF muscle while PT values (Nm) were sampled from an isokinetic dynamometer. The right hamstrings were stretched with either static (stretching time, 9.2 +/- 0.4 minutes) or dynamic (9.1 +/- 0.3 minutes) stretching exercises. Four repetitions of three static stretching exercises were held for 30 seconds each, whereas four sets of three dynamic stretching exercises were performed (12-15 repetitions) with each set lasting 30 seconds. PT decreased after the static stretching at 81 degrees (p = 0.019) and 101 degrees (p = 0.001) but not at other angles. PT did not change (p > 0.05) after the dynamic stretching. EMG amplitude remained unchanged after the static stretching (p > 0.05) but increased after the dynamic stretching at 101 degrees (p < 0.001) and 81 degrees (p < 0.001). MMG amplitude increased in response to the static stretching at 101 degrees (p = 0.003), whereas the dynamic stretching increased MMG amplitude at all joint angles (p 相似文献   

5.
The aim of this study was to investigate the kinematic, kinetic, and electromyographic pattern before, during and after downward squatting when the trunk movement is restricted in the sagittal plane. Eight healthy subjects performed downward squatting at two different positions, semisquatting (40 degrees knee flexion) and half squatting (70 degrees knee flexion). Electromyographic responses of the vastus medialis oblique, vastus medialis longus, rectus femoris, vastus lateralis, biceps femoris, semitendineous, gastrocnemius lateralis, and tibialis anterior were recorded. The kinematics of the major joints were reconstructed using an optoelectronic system. The center of pressure (COP) was obtained using data collected from one force plate, and the ankle and knee joint torques were calculated using inverse dynamics. In the upright position there were small changes in the COP and in the knee and ankle joint torques. The tibialis anterior provoked the disruption of this upright position initiating the squat. During the acceleration phase of the squat the COP moved posteriorly, the knee joint torque remained in flexion and there was no measurable muscle activation. As the body went into the deceleration phase, the knee joint torque increased towards extension with major muscle activities being observed in the four heads of the quadriceps. Understanding these kinematic, kinetic and EMG strategies before, during and after the squat is expected to be beneficial to practitioners for utilizing squatting as a task for improving motor function.  相似文献   

6.
Force enhancement is a well accepted property of skeletal muscle and has been observed at all structural levels ranging from single myofibrils to voluntarily activated m. quadriceps femoris in vivo. However, force enhancement has not been studied for multi-joint movements like human leg extension; therefore knowledge about its relevance in daily living remains limited. The purpose of this study was to determine whether there is force enhancement during maximal voluntary multi-joint leg extension. Human leg extension was studied (n=22) on a motor driven leg press dynamometer where external reaction forces under the feet as well as activity of 8 lower extremity muscles were measured. In addition, torque in the ankle and knee joints was calculated using inverse dynamics. The steady-state isometric force, joint torques, and muscle activation after active stretch (20° stretch amplitude at 60°/s) were compared with the corresponding values obtained during isometric reference contractions. There was consistent force enhancement during and following stretch for both forces and joint torques. Potentiation during stretch reached values between 26% and 30%, while a significant force enhancement of 10.5–12.3% and 4.3–7.4% remained 0.5–1 and 2.5–3 s after stretch, respectively. During stretch, EMG signals of m. gastrocnemius medialis and lateralis were significantly increased, while following stretch all analyzed muscles showed the same activity as during the reference contractions. We conclude from these results that force enhancement exists in everyday movements and should be accounted for when analyzing or modelling human movement.  相似文献   

7.
The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.  相似文献   

8.
Although the possibility that the vastus intermedius (VI) muscle contributes to flexion of the knee joint has been suggested previously, the detail of its functional role in knee flexion is not well understood. The purpose of this study was to examine the antagonist coactivation of VI during isometric knee flexion. Thirteen men performed 25–100% of maximal voluntary contraction (MVC) at 90°, 120°, and 150° knee joint angles. Surface electromyography (EMG) of the four individual muscles in the quadriceps femoris (QF) was recorded and normalized by the EMG signals during isometric knee extension at MVC. Cross-talk on VI EMG signal was assessed based on the median frequency response to selective cooling of hamstring muscles. Normalized EMG of the VI was significantly higher than that of the other synergistic QF muscles at each knee joint angle (all P < 0.05) with minimum cross-talk from the hamstrings to VI. There were significant correlations between the EMG signal of the hamstrings and VI (r = 0.55–0.85, P < 0.001). These results suggest that VI acts as a primary antagonistic muscle of QF during knee flexion, and that VI is presumably a main contributor to knee joint stabilization.  相似文献   

9.
The purpose of this study was to investigate the effect of pre-exhaustion exercise on lower-extremity muscle activation during a leg press exercise. Pre-exhaustion exercise, a technique frequently used by weight trainers, involves combining a single-joint exercise immediately followed by a related multijoint exercise (e.g., a knee extension exercise followed by a leg press exercise). Seventeen healthy male subjects performed 1 set of a leg press exercise with and without pre-exhaustion exercise, which consisted of 1 set of a knee extension exercise. Both exercises were performed at a load of 10 repetitions maximum (10 RM). Electromyography (EMG) was recorded from the rectus femoris, vastus lateralis, and gluteus maximus muscles simultaneously during the leg press exercise. The number of repetitions of the leg press exercise performed by subjects with and without pre-exhaustion exercise was also documented. The activation of the rectus femoris and the vastus lateralis muscles during the leg press exercise was significantly less when subjects were pre-exhausted (p < 0.05). No significant EMG change was observed for the gluteus maximus muscle. When in a pre-exhausted state, subjects performed significantly (p < 0.001) less repetitions of the leg press exercise. Our findings do not support the popular belief of weight trainers that performing pre-exhaustion exercise is more effective in order to enhance muscle activity compared with regular weight training. Conversely, pre-exhaustion exercise may have disadvantageous effects on performance, such as decreased muscle activity and reduction in strength, during multijoint exercise.  相似文献   

10.
Quantitative changes in valgus/varus knee stability with different levels of muscular activity were determined for five subjects. A specially designed machine was used to measure resistance to angulation in the frontal plane. This device held the thigh stationary, the knee straight, an cycled the leg from side to side at a constant rate between present moment limits. Resistance to this forced valgus/varus motion was measured simultaneously with torque about the knee in the sagittal plane. Muscle activity was monitored by electromyography (EMG). Direct comparison of moment-rotation characteristics allowed changes in stability to be quantified as a function of extension and flexion torque. Extension torques less than 20% of the maximum increased varus stability more than valgus stability. Flexion torques of the same relative magnitude increased valgus stability more than varus stability. Comparison with the literature suggested that prevention of opening of the lateral side of the joint under varus loading was responsible for increased varus stability with increasing torque, both with extension and flexion torques.  相似文献   

11.
IntroductionMusculoskeletal modeling allows insight into the interaction of muscle force and knee joint kinematics that cannot be measured in the laboratory. However, musculoskeletal models of the lower extremity commonly use simplified representations of the knee that may limit analyses of the interaction between muscle forces and joint kinematics. The goal of this research was to demonstrate how muscle forces alter knee kinematics and consequently muscle moment arms and joint torque in a musculoskeletal model of the lower limb that includes a deformable representation of the knee.MethodsTwo musculoskeletal models of the lower limb including specimen-specific articular geometries and ligament deformability at the knee were built in a finite element framework and calibrated to match mean isometric torque data collected from 12 healthy subjects. Muscle moment arms were compared between simulations of passive knee flexion and maximum isometric knee extension and flexion. In addition, isometric torque results were compared with predictions using simplified knee models in which the deformability of the knee was removed and the kinematics at the joint were prescribed for all degrees of freedom.ResultsPeak isometric torque estimated with a deformable knee representation occurred between 45° and 60° in extension, and 45° in flexion. The maximum isometric flexion torques generated by the models with deformable ligaments were 14.6% and 17.9% larger than those generated by the models with prescribed kinematics; by contrast, the maximum isometric extension torques generated by the models were similar. The change in hamstrings moment arms during isometric flexion was greater than that of the quadriceps during isometric extension (a mean RMS difference of 9.8 mm compared to 2.9 mm, respectively).DiscussionThe large changes in the moment arms of the hamstrings, when activated in a model with deformable ligaments, resulted in changes to flexion torque. When simulating human motion, the inclusion of a deformable joint in a multi-scale musculoskeletal finite element model of the lower limb may preserve the realistic interaction of muscle force with knee kinematics and torque.  相似文献   

12.
Residual force enhancement (RFE) is a term describing the observation that muscle tension during a contraction that includes a stretch and hold remains above that during an isometric contraction at the hold length. RFE has been observed during in vitro and in vivo experiments, but results involving voluntary contractions are mixed, particularly with respect to large muscles. The purpose of this study was to determine if RFE can be observed in large muscles such as knee extensors and flexors at joint configurations corresponding to the ascending and descending limbs of the muscle force-length curve. Two groups of twenty participants (ten males and ten females per group) performed maximum voluntary contractions on a Biodex machine in purely isometric conditions and in isometric conditions immediately following eccentric stretch. Knee extension trials were performed at 40° (short muscles) and 100° (long muscles) flexion from full extension (0°), and knee flexion trials were performed at 70° (short muscles) and 10° (long muscles) flexion. Stretch-isometric trials terminated at these angles following 30° of eccentric motion at 30°/s. Statistically-significant RFE was observed for both tasks at long-muscle joint configurations, but was not observed for either task at short-muscle joint configurations. Passive torque enhancement was also observed following muscle relaxation at long-muscle joint configurations for both tasks, but for only knee flexion at short-muscle joint configurations. These results reinforce for voluntary contractions of large muscles the RFE behavior observed in smaller muscles, and provide further evidence that RFE occurs primarily on the descending limb of the muscle force-length curve.  相似文献   

13.
The hamstring muscles have the potential to counteract anterior shear forces at the knee joint by co-contracting during knee extension efforts. Such a muscle recruitment pattern might protect the anterior cruciate ligament (ACL) by reducing its strain. In this study we investigated to what extent co-activation of the knee flexors during extension efforts is compatible with the hypothesis that this co-activation serves to counteract anterior tibial shear forces during isometric knee extension efforts in healthy subjects. To this aim, it is investigated whether co-activation varies with the required knee extension moment, with the knee joint angle, and with the position of the external flexing force relative to the knee joint. With unaltered moment and muscle activation, distal positioning of the flexing force on the tibia causes higher resultant (muscular plus external) forward shear forces at the knee as compared to proximal positioning. In ten subjects, knee flexor and extensor EMG was measured during a quasi-isometric positioning task for a range (5-50 degrees) of knee flexion angles. It was found that the co-activation of the knee flexors increased with the extension moment, but this increase was less than proportional (p<0.001). The extension moment increased 2.7 to 3.4 times, whereas the activation of Biceps Femoris and Semitendinosus increased only a factor 1.3 to 2.0 (joint angle dependent). Furthermore, a strong increase in co-activation was seen near full extension of the knee joint. The position of the external extension load on the tibia did not affect the level of co-contraction. It is argued that these results do not suggest a recruitment pattern that is directed at reduction of anterior shear forces in the knee joint during sub-maximal isometric knee extension efforts in healthy subjects.  相似文献   

14.
The objective of this work was to develop a noninvasive method to measure the joint torques produced by biarticular muscles at two joints simultaneously. During intramuscular stimulation of the cat medial gastrocnemius (MG) muscle, torques at the ankle and knee joints were calculated from forces measured in two dimensions at the end point of the cat paw under isometric conditions. The method was verified by the known anatomical properties of cat MG muscle and the tibialis anterior (TA) muscle. The MG muscle was shown to produce a significant flexion torque at the knee, besides an extension torque at the ankle. This was in agreement with its anatomical arrangement. The TA muscle produced primarily an ankle flexion torque. The small knee torque, due to measurement errors, yielded an estimate of measurement accuracy of 3.0 +/- 2.1% (n = 52). The coupling ratio of the MG muscle, defined as T(ankle)/T(knee), varied significantly with both knee and ankle angles. The profile of MG mechanical coupling agreed qualitatively with changes in limb configuration. The method can be used to measure recruitment properties of electrically stimulated biarticular muscles, and may potentially be used to study the biomechanics of biarticular coupling.  相似文献   

15.
Measures of knee joint function, although useful in predicting injury, can be misleading because hip position in traditional seated isokinetic tests is dissimilar to when injuries occur. This study aimed to determine the differences between seated and supine peak torques and strength ratios and examine the interaction of position with joint velocity. This was a cross-sectional, repeated measures study. Isokinetic knee extensor and flexor concentric and eccentric peak torque was measured seated and supine (10° hip flexion) at 1.04 and 3.14 rad·s(-1) in 11 Rugby players. Repeated measures analysis of variance and paired t-tests were used to analyze peak torques and strength ratios. Bonferroni post hoc, limits of agreement, and Pearson's correlation were applied. Seated peak torque was typically greater than that for supine for muscle actions and velocities. The values ranged from 109 ± 18 N·m (mean ± σ) for supine hamstring concentric peak torque at 1.04 rad·s(-1) to 330 ± 71 for seated quadriceps eccentric peak torque at 1.04 rad·s(-1). There was a significant position × muscle action interaction; eccentric peak torque was reduced more than concentric in the supine position. Knee joint strength ratios ranged from 0.47 ± 0.06 to 0.86 ± 0.23, with a significant difference in means between supine and seated positions for functional ratio at 3.14 rad·s(-1) observed; for seated it was 0.86 ± 0.23; and for supine, it was 0.68 ± 0.15 (p < 0.05). Limits of agreement for traditional and functional ratios ranged from 1.09 ×/÷ 1.37 to 1.13 ×/÷ 1.51. We conclude that hip angle affects isokinetic peak torques and knee joint strength ratios. Therefore, the hip angle should be nearer 10° when measuring knee joint function because this is more ecologically valid. Using similar protocols, sports practitioners can screen for injury and affect training to minimize injury.  相似文献   

16.
The purpose of this study was to investigate the relationships between the ankle joint angle and maximum isometric force of the toe flexor muscles. Toe flexor strength and electromyography activity of the foot muscles were measured in 12 healthy men at 6 different ankle joint angles with the knee joint at 90 deg in the sitting position. To measure the maximum isometric force of the toe flexor muscles, subjects exerted maximum force on a toe grip dynamometer while the activity levels of the intrinsic and extrinsic plantar muscles were measured. The relation between ankle joint angle and maximum isometric force of the toe flexor muscles was determined, and the isometric force exhibited a peak when the ankle joint was at 70–90 deg on average. From this optimal neutral position, the isometric force gradually decreased and reached its nadir in the plantar flexion position (i.e., 120 deg). The EMG activity of the abductor hallucis (intrinsic plantar muscle) and peroneus longus (extrinsic plantar muscle) did not differ at any ankle joint angles. The results of this study suggest that the force generation of toe flexor muscles is regulated at the ankle joint and that changes in the length-tension relations of the extrinsic plantar muscle could be a reason for the force-generating capacity at the metatarsophalangeal joint when the ankle joint angle is changed.  相似文献   

17.
The purpose of this study was to examine whether prediction of antagonist moment (M(flx)) of the hamstrings using clinically applicable models depends on the muscles examined. Nine healthy males performed maximal isometric knee extension and flexion contractions at 0 degrees , 45 degrees and 90 degrees angles. Calibration knee flexion efforts were also performed at different levels of intensity. The resulting electromyographic (EMG) - moment curves were fitted using polynomial equations which were then used to estimate M(flx) from the antagonist EMG. Analysis of variance designs showed that the M(flx) predicted using the biceps femoris EMG was not significantly different compared with those predicted using the semitendinosus EMG data (p>0.05). Further, prediction of M(flx) using the EMG of both muscles or a combination of EMGs and architectural properties reduced estimation error but did not provide significantly different predicted values compared with the simpler single-muscle EMG - moment models (p<0.05). It appears that M(flx) prediction using the present EMG - moment model is not muscle specific. Prediction using models which combine EMG data and anatomic parameters of the hamstring muscle components yielded more accurate estimates and therefore their use to examine co-contraction levels is recommended.  相似文献   

18.
The purpose of the study was to test the hypothesis on whether individuals with patellofemoral pain syndrome (PFPS) try to avoid knee position during upward squatting so as not to aggravate this syndrome. Also, we tested whether PFPS would generate changes in the kinetic and electromyographic (EMG) strategies used to perform this task. Eight healthy subjects and 8 subjects with PFPS, but without a history of pain for at least 30 days, took part in the experiment. They were asked to perform upward squatting with knees initially flexed at 60° (very flexed) until reaching an upright position. Angle, velocity, and acceleration (kinematic) were reconstructed for knee and ankle joints. The torques at these joints were calculated using inverse dynamics, taking into account anthropometric and inertial characteristics of each subject, including records from force data. Only activities of major muscles were recorded. The kinetic and EMG profiles were quantified during acceleration and deceleration phases of the upward squatting. Both healthy and PFPS subjects used the same kinetic and EMG strategies to perform the upward squatting, even though the magnitude of the muscle activities were decreased for the latter group. Compared to the control group, the PFPS subjects presented larger joint ankle torques and smaller knee joint torques. However, the subjects avoided keeping their knees very flexed at the initial position. Group differences in the kinetic and EMG strategies can be explained by differences in the initial position, suggesting a protective strategy used by subjects with PFPS. Therefore, for these subjects, coaches and therapists should avoid using this exercise when the knee is required to move above 40° flexion.  相似文献   

19.
Quadriceps muscle activation is assessed using the superimposed burst technique. This technique involves percutaneous muscle stimulation superimposed during maximal isometric volitional knee extension. It is unknown whether accessory muscle activation during maximal knee extension influences estimates of quadriceps muscle activation. Our aim was to compare accessory muscle activation while performing the superimposed burst technique using investigator delivered verbal instruction to constrain the system (CS) and a participant preferred (PP) technique. Twenty five healthy, active individuals (13M/12F, age=23.8 ± 3.35, height=72.73 ± 14.51 cm, and weight=175.29 ± 9.59 kg) were recruited for this study. All participants performed superimposed burst testing with (CS) and without (PP) verbal instruction to encourage isolated quadriceps activation during maximal isometric knee extension. The main outcome variables measured were knee extension torque, quadriceps central activation ratio and mean EMG of vastus lateralis, biceps femoris, and lumbar paraspinal muscles. There were significant differences in knee extension torque (CS=2.87 ± 0.93 Nm/kg, PP=3.40 ± 1.12 Nm/kg, p<0.001), superimposed burst torque (CS=3.40 ±0.98 Nm/kg, PP=3.75 ± 1.11 Nm/kg, p=0.002) and quadriceps CAR (CS=84.1 ± 12.0%, PP=90.2 ± 9.9%, p<0.001) between the techniques. There was also a significant difference in lumbar paraspinal EMG (CS=6.40 ± 8.52%, PP=11.86 ± 14.89%, p=0.043) between the techniques however vastus lateralis EMG was not significantly different. Patient instruction via verbal instruction to constrain proximal structures may help patient minimize confounders to knee extension torque generation while maximizing quadriceps activation.  相似文献   

20.
Muscle activities of the lower limb during level and uphill running   总被引:2,自引:1,他引:1  
This study aimed to compare the muscle activities of the lower limb during overground level running (LR) and uphill running (UR) by using a musculoskeletal model. Six male distance runners ran at three running speeds (slow: 3.3 m/s; medium: 4.2 m/s; and high: 5.0 m/s) on a level runway and a slope of 9.1% grade in which force platforms were mounted. A musculoskeletal leg model and optimization were used to estimate the muscle activation and muscle torque from the joint torque of the lower limb calculated by the inverse dynamics approach. At high speed, the activation and muscle torque of the muscle groups surrounding the hip joints, such as the hamstrings and iliopsoas, during the recovery phase were significantly greater during UR than during LR. At all the running speeds, the knee extension torque by the vasti during the support phase was significantly smaller during UR. Further, the hip flexion and knee extension torques by the rectus femoris during UR were significantly greater than those during LR at all the speeds; this would play a role in compensating for the decrease in the knee extension torque by the vasti and in maintaining the trunk in a forward-leaning position. These results revealed that the activation and muscle torque of the hip extensors and flexors were augmented during UR at the high speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号