首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

To assess physical activity levels objectively using accelerometers in community dwelling over 65 s and to examine associations with health, social, environmental and psychological factors.

Design

Cross sectional survey.

Setting

17 general practices in Scotland, United Kingdom.

Participants

Random sampling of over 65 s registered with the practices in four strata young-old (65–80 years), old-old (over 80 years), more affluent and less affluent groups.

Main Outcome Measures

Accelerometry counts of activity per day. Associations between activity and Theory of Planned Behaviour variables, the physical environment, health, wellbeing and demographic variables were examined with multiple regression analysis and multilevel modelling.

Results

547 older people (mean (SD) age 79(8) years, 54% female) were analysed representing 94% of those surveyed. Accelerometry counts were highest in the affluent younger group, followed by the deprived younger group, with lowest levels in the deprived over 80 s group. Multiple regression analysis showed that lower age, higher perceived behavioural control, the physical function subscale of SF-36, and having someone nearby to turn to were all independently associated with higher physical activity levels (R2 = 0.32). In addition, hours of sunshine were independently significantly associated with greater physical activity in a multilevel model.

Conclusions

Other than age and hours of sunlight, the variables identified are modifiable, and provide a strong basis for the future development of novel multidimensional interventions aimed at increasing activity participation in later life.  相似文献   

2.

Background

Antiretroviral therapy for HIV-2 infection is hampered by intrinsic resistance to many of the drugs used to treat HIV-1. Limited studies suggest that the integrase inhibitors (INIs) raltegravir and elvitegravir have potent activity against HIV-2 in culture and in infected patients. There is a paucity of data on genotypic variation in HIV-2 integrase that might confer intrinsic or transmitted INI resistance.

Methods

We PCR amplified and analyzed 122 HIV-2 integrase consensus sequences from 39 HIV-2–infected, INI-naive adults in Senegal, West Africa. We assessed genetic variation and canonical mutations known to confer INI-resistance in HIV-1.

Results

No amino acid-altering mutations were detected at sites known to be pivotal for INI resistance in HIV-1 (integrase positions 143, 148 and 155). Polymorphisms at several other HIV-1 INI resistance-associated sites were detected at positions 72, 95, 125, 154, 165, 201, 203, and 263 of the HIV-2 integrase protein.

Conclusion

Emerging genotypic and phenotypic data suggest that HIV-2 is susceptible to the new class of HIV integrase inhibitors. We hypothesize that intrinsic HIV-2 integrase variation at “secondary” HIV-1 INI-resistance sites may affect the genetic barrier to HIV-2 INI resistance. Further studies will be needed to assess INI efficacy as part of combination antiretroviral therapy in HIV-2–infected patients.  相似文献   

3.
4.

Background

Globally plants are the primary sink of atmospheric CO2, but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important.

Methodology

We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either 13CO2 to leaves or 13C-glucose to shoots via xylem uptake. The translocation of 13CO2 from the source to other plant parts could be traced by 13C-labeled isoprene and respiratory 13CO2 emission.

Principal Finding

In intact plants, assimilated 13CO2 was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h−1. 13C label was stored in the roots and partially reallocated to the plants'' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76–78%) from recently fixed CO2, to a minor extent from xylem-transported sugars (7–11%) and from photosynthetic intermediates with slower turnover rates (8–11%).

Conclusion

We quantified the plants'' C loss as respiratory CO2 and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux.  相似文献   

5.
Wang Q  Shen B  Zheng P  Feng H  Chen L  Zhang J  Zhang C  Zhang G  Teng J  Chen J 《PloS one》2010,5(10):e13252

Background

Coat protein complex I (COPI) vesicles, coated by seven coatomer subunits, are mainly responsible for Golgi-to-ER transport. Silkworm posterior silkgland (PSG), a highly differentiated secretory tissue, secretes fibroin for silk production, but many physiological processes in the PSG cells await further investigation.

Methodology/Principal Findings

Here, to investigate the role of silkworm COPI, we cloned six silkworm COPI subunits (α,β,β′, δ, ε, and ζ-COP), determined their peak expression in day 2 in fifth-instar PSG, and visualized the localization of COPI, as a coat complex, with cis-Golgi. By dsRNA injection into silkworm larvae, we suppressed the expression of α-, β′- and γ-COP, and demonstrated that COPI subunits were required for PSG tube expansion. Knockdown of α-COP disrupted the integrity of Golgi apparatus and led to a narrower glandular lumen of the PSG, suggesting that silkworm COPI is essential for PSG tube expansion.

Conclusions/Significance

The initial characterization reveals the essential roles of silkworm COPI in PSG. Although silkworm COPI resembles the previously characterized coatomers in other organisms, some surprising findings require further investigation. Therefore, our results suggest the silkworm as a model for studying intracellular transport, and would facilitate the establishment of silkworm PSG as an efficient bioreactor.  相似文献   

6.
Chuck CP  Chow HF  Wan DC  Wong KB 《PloS one》2011,6(11):e27228

Background

Coronaviruses (CoVs) can be classified into alphacoronavirus (group 1), betacoronavirus (group 2), and gammacoronavirus (group 3) based on diversity of the protein sequences. Their 3C-like protease (3CLpro), which catalyzes the proteolytic processing of the polyproteins for viral replication, is a potential target for anti-coronaviral infection.

Methodology/Principal Findings

Here, we profiled the substrate specificities of 3CLpro from human CoV NL63 (group 1), human CoV OC43 (group 2a), severe acute respiratory syndrome coronavirus (SARS-CoV) (group 2b) and infectious bronchitis virus (IBV) (group 3), by measuring their activity against a substrate library of 19×8 of variants with single substitutions at P5 to P3'' positions. The results were correlated with structural properties like side chain volume, hydrophobicity, and secondary structure propensities of substituting residues. All 3CLpro prefer Gln at P1 position, Leu at P2 position, basic residues at P3 position, small hydrophobic residues at P4 position, and small residues at P1'' and P2'' positions. Despite 3CLpro from different groups of CoVs share many similarities in substrate specificities, differences in substrate specificities were observed at P4 positions, with IBV 3CLpro prefers P4-Pro and SARS-CoV 3CLpro prefers P4-Val. By combining the most favorable residues at P3 to P5 positions, we identified super-active substrate sequences ‘VARLQ↓SGF’ that can be cleaved efficiently by all 3CLpro with relative activity of 1.7 to 3.2, and ‘VPRLQ↓SGF’ that can be cleaved specifically by IBV 3CLpro with relative activity of 4.3.

Conclusions/Significance

The comprehensive substrate specificities of 3CLpro from each of the group 1, 2a, 2b, and 3 CoVs have been profiled in this study, which may provide insights into a rational design of broad-spectrum peptidomimetic inhibitors targeting the proteases.  相似文献   

7.

Background

Gliomas frequently contain mutations in the cytoplasmic NADP+-dependent isocitrate dehydrogenase (IDH1) or the mitochondrial NADP+-dependent isocitrate dehydrogenase (IDH2). Several different amino acid substitutions recur at either IDH1 R132 or IDH2 R172 in glioma patients. Genetic evidence indicates that these mutations share a common gain of function, but it is unclear whether the shared function is dominant negative activity, neomorphic production of (R)-2-hydroxyglutarate (2HG), or both.

Methodology/Principal Findings

We show by coprecipitation that five cancer-derived IDH1 R132 mutants bind IDH1-WT but that three cancer-derived IDH2 R172 mutants exert minimal binding to IDH2-WT. None of the mutants dominant-negatively lower isocitrate dehydrogenase activity at physiological (40 µM) isocitrate concentrations in mammalian cell lysates. In contrast to this, all of these mutants confer 10- to 100-fold higher 2HG production to cells, and glioma tissues containing IDH1 R132 or IDH2 R172 mutations contain high levels of 2HG compared to glioma tissues without IDH mutations (54.4 vs. 0.1 mg 2HG/g protein).

Conclusions

Binding to, or dominant inhibition of, WT IDH1 or IDH2 is not a shared feature of the IDH1 and IDH2 mutations, and thus is not likely to be important in cancer. The fact that the gain of the enzymatic activity to produce 2HG is a shared feature of the IDH1 and IDH2 mutations suggests that this is an important function for these mutants in driving cancer pathogenesis.  相似文献   

8.

Background and Aims

Grevillea rhizomatosa is a spreading shrub which exhibits multiple breeding strategies within a narrow area in the fire-prone heathlands of eastern Australia. Reproductive strategies include self-compatibility, self-incompatibility and clonality (with and without sterility). The close proximity of contrasting breeding systems provides an opportunity to explore the evolution of sterility and to compare and contrast the origins of genotypic diversity (recombinant or somatic) against degrees of sexual expression.

Methods

ISSR markers for 120 band positions (putative loci) were used to compare genetic diversity among five populations at a macro-scale of 5 m between samples (n = 244 shrubs), and at a micro-scale of nearest neighbours for all plants in five 25-m2 quadrats with contrasting fertilities (n = 162 shrubs). Nearest-neighbour sampling included several clusters of connected ramets. Matrix incompatibility (MIC) analyses were used to evaluate the relative contribution of recombination and somatic mutation to genotype diversity.

Key Results

High levels of genotypic diversity were found in all populations regardless of fertilities (fertile populations, G/N ≥ 0·94; sterile populations, G/N ≥ 0·97) and most sterile populations had a unique genetic profile. Somatic mutations were detected along connected ramets in ten out of 42 ramet clusters. MIC analyses showed that somatic mutations have contributed to diversity in all populations and particularly so in sterile populations.

Conclusions

Somatic mutations contribute significantly to gene diversity in sterile populations of Grevillea rhizomatosa, the accumulation of which is the likely cause of male and female sterility. High levels of genetic diversity therefore may not always be synonymous with sexual fitness and genetic health. We hypothesize that frequent fires drive selection for clonal reproduction, at the cost of flowering such that sexual functions are not maintained through selection, and the build-up of somatic mutations in meristems results in high genotype diversity at the cost of pollen and ovule fertilities.  相似文献   

9.

Purpose

Characteristic hypoglycemia, hypotriglyceridemia, hypocholesterolemia, lower body mass, and fat as well as pronounced insulin-sensitivity of RLIP76−/− mice suggested to us the possibility that elevation of RLIP76 in response to stress could itself elicit metabolic syndrome (MSy). Indeed, if it were required for MSy, drugs used to treat MSy should have no effect on RLIP76−/− mice.

Research Design and Methods

Blood glucose (BG) and lipid measurements were performed in RLIP76+/+ and RLIP76−/− mice, using Ascensia Elite Glucometer® for glucose and ID Labs kits for cholesterol and triglycerides assays. The ultimate effectors of gluconeogenesis are the three enzymes: PEPCK, F-1,6-BPase, and G6Pase, and their expression is regulated by PPARγ and AMPK. The activity of these enzymes was tested by protocols standardized by us. Expressions of RLIP76, PPARα, PPARγ, HMGCR, pJNK, pAkt, and AMPK were performed by Western-blot and tissue staining.

Results

The concomitant activation of AMPK and PPARγ by inhibiting transport activity of RLIP76, despite inhibited activity of key glucocorticoid-regulated hepatic gluconeogenic enzymes like PEPCK, G6Pase and F-1,6-BP in RLIP76−/− mice, is a salient finding of our studies. The decrease in RLIP76 protein expression by rosiglitazone and metformin is associated with an up-regulation of PPARγ and AMPK.

Conclusions/Significance

All four drugs, rosiglitazone, metformin, gemfibrozil and atorvastatin failed to affect glucose and lipid metabolism in RLIP76−/− mice. Studies confirmed a model in which RLIP76 plays a central role in the pathogenesis of MSy and RLIP76 loss causes profound and global alterations of MSy signaling functions. RLIP76 is a novel target for single-molecule therapeutics for metabolic syndrome.  相似文献   

10.
Banerjee N  Sengupta S  Roy A  Ghosh P  Das K  Das S 《PloS one》2011,6(4):e18593

Background

Allium sativum leaf agglutinin (ASAL) is a 25-kDa homodimeric, insecticidal, mannose binding lectin whose subunits are assembled by the C-terminal exchange process. An attempt was made to convert dimeric ASAL into a monomeric form to correlate the relevance of quaternary association of subunits and their functional specificity. Using SWISS-MODEL program a stable monomer was designed by altering five amino acid residues near the C-terminus of ASAL.

Methodology/Principal Findings

By introduction of 5 site-specific mutations (-DNSNN-), a β turn was incorporated between the 11th and 12th β strands of subunits of ASAL, resulting in a stable monomeric mutant ASAL (mASAL). mASAL was cloned and subsequently purified from a pMAL-c2X system. CD spectroscopic analysis confirmed the conservation of secondary structure in mASAL. Mannose binding assay confirmed that molecular mannose binds efficiently to both mASAL and ASAL. In contrast to ASAL, the hemagglutination activity of purified mASAL against rabbit erythrocytes was lost. An artificial diet bioassay of Lipaphis erysimi with mASAL displayed an insignificant level of insecticidal activity compared to ASAL. Fascinatingly, mASAL exhibited strong antifungal activity against the pathogenic fungi Fusarium oxysporum, Rhizoctonia solani and Alternaria brassicicola in a disc diffusion assay. A propidium iodide uptake assay suggested that the inhibitory activity of mASAL might be associated with the alteration of the membrane permeability of the fungus. Furthermore, a ligand blot assay of the membrane subproteome of R. solani with mASAL detected a glycoprotein receptor having interaction with mASAL.

Conclusions/Significance

Conversion of ASAL into a stable monomer resulted in antifungal activity. From an evolutionary aspect, these data implied that variable quaternary organization of lectins might be the outcome of defense-related adaptations to diverse situations in plants. Incorporation of mASAL into agronomically-important crops could be an alternative method to protect them from dramatic yield losses from pathogenic fungi in an effective manner.  相似文献   

11.

Rationale

Despite preclinical success in regenerating and revascularizing the infarcted heart using angiogenic growth factors or bone marrow (BM) cells, recent clinical trials have revealed less benefit from these therapies than expected.

Objective

We explored the therapeutic potential of myocardial gene therapy of placental growth factor (PlGF), a VEGF-related angiogenic growth factor, with progenitor-mobilizing activity.

Methods and Results

Myocardial PlGF gene therapy improves cardiac performance after myocardial infarction, by inducing cardiac repair and reparative myoangiogenesis, via upregulation of paracrine anti-apoptotic and angiogenic factors. In addition, PlGF therapy stimulated Sca-1+/Lin (SL) BM progenitor proliferation, enhanced their mobilization into peripheral blood, and promoted their recruitment into the peri-infarct borders. Moreover, PlGF enhanced endothelial progenitor colony formation of BM-derived SL cells, and induced a phenotypic switch of BM-SL cells, recruited in the infarct, to the endothelial, smooth muscle and cardiomyocyte lineage.

Conclusions

Such pleiotropic effects of PlGF on cardiac repair and regeneration offer novel opportunities in the treatment of ischemic heart disease.  相似文献   

12.

Background

Acetamiprid (ACE) and imidacloprid (IMI) belong to a new, widely used class of pesticide, the neonicotinoids. With similar chemical structures to nicotine, neonicotinoids also share agonist activity at nicotinic acetylcholine receptors (nAChRs). Although their toxicities against insects are well established, their precise effects on mammalian nAChRs remain to be elucidated. Because of the importance of nAChRs for mammalian brain function, especially brain development, detailed investigation of the neonicotinoids is needed to protect the health of human children. We aimed to determine the effects of neonicotinoids on the nAChRs of developing mammalian neurons and compare their effects with nicotine, a neurotoxin of brain development.

Methodology/Principal Findings

Primary cultures of cerebellar neurons from neonatal rats allow for examinations of the developmental neurotoxicity of chemicals because the various stages of neurodevelopment—including proliferation, migration, differentiation, and morphological and functional maturation—can be observed in vitro. Using these cultures, an excitatory Ca2+-influx assay was employed as an indicator of neural physiological activity. Significant excitatory Ca2+ influxes were evoked by ACE, IMI, and nicotine at concentrations greater than 1 µM in small neurons in cerebellar cultures that expressed the mRNA of the α3, α4, and α7 nAChR subunits. The firing patterns, proportion of excited neurons, and peak excitatory Ca2+ influxes induced by ACE and IMI showed differences from those induced by nicotine. However, ACE and IMI had greater effects on mammalian neurons than those previously reported in binding assay studies. Furthermore, the effects of the neonicotinoids were significantly inhibited by the nAChR antagonists mecamylamine, α-bungarotoxin, and dihydro-β-erythroidine.

Conclusions/Significance

This study is the first to show that ACE, IMI, and nicotine exert similar excitatory effects on mammalian nAChRs at concentrations greater than 1 µM. Therefore, the neonicotinoids may adversely affect human health, especially the developing brain.  相似文献   

13.

Background

The objectives of this study were to evaluate the best position and best exploration probe for determining liver stiffness (LS) in dogs using transient liver elastography (TE). Thirteen dogs were used in the study.

Methodology/Principal Findings

Morphometric measurements taken were thoracic circumference, weight and height. Elastographic measurements were taken in 4 anatomical positions using two different probes: medium (M) and small (S). The exploration was considered correct when the success rate was above 60% and the interquartile range of the measurements did not exceed 30%. The best measurements were obtained in the middle of the 6th–9th intercostal spaces, with the dog in the left lateral position and using probe M for preference in adults and probe S mandatory for animals <2 years. The correlation between probes was 99%. Intra-observer variability showed an intra-class correlation of 97.6%.

Conclusions/Significance

TE is a technique that is reproducible in dogs.  相似文献   

14.

Background

Patients suffering from ulcerative colitis (UC) bear an increased risk for colorectal cancer. Due to the sparsity of colitis-associated cancer (CAC) and the long duration between UC initiation and overt carcinoma, elucidating mechanisms of inflammation-associated carcinogenesis in the gut is particularly challenging. Adequate murine models are thus highly desirable. For human CACs a high frequency of chromosomal instability (CIN) reflected by aneuploidy could be shown, exceeding that of sporadic carcinomas. The aim of this study was to analyze mouse models of CAC with regard to CIN. Additionally, protein expression of p53, beta-catenin and Ki67 was measured to further characterize murine tumor development in comparison to UC-associated carcinogenesis in men.

Methods

The AOM/DSS model (n = 23) and IL-10−/− mice (n = 8) were applied to monitor malignancy development via endoscopy and to analyze premalignant and malignant stages of CACs. CIN was assessed using DNA-image cytometry. Protein expression of p53, beta-catenin and Ki67 was evaluated by immunohistochemistry. The degree of inflammation was analyzed by histology and paralleled to local interferon-γ release.

Results

CIN was detected in 81.25% of all murine CACs induced by AOM/DSS, while all carcinomas that arose in IL-10−/− mice were chromosomally stable. Beta-catenin expression was strongly membranous in IL-10−/− mice, while 87.50% of AOM/DSS-induced tumors showed cytoplasmatic and/or nuclear translocation of beta-catenin. p53 expression was high in both models and Ki67 staining revealed higher proliferation of IL-10−/−-induced CACs.

Conclusions

AOM/DSS-colitis, but not IL-10−/− mice, could provide a powerful murine model to mechanistically investigate CIN in colitis-associated carcinogenesis.  相似文献   

15.

Background & Aims

Telaprevir, a hepatitis C virus NS3/4A protease inhibitor has significantly improved sustained viral response rates when given in combination with pegylated interferon alfa-2a and ribavirin, compared with current standard of care in hepatitis C virus genotype 1 infected patients. In patients with a failed sustained response, the emergence of drug-resistant variants during treatment has been reported. It is unclear to what extent these variants persist in untreated patients. The aim of this study was to assess using ultra-deep pyrosequencing, whether after 4 years follow-up, the frequency of resistant variants is increased compared to pre-treatment frequencies following 14 days of telaprevir treatment.

Methods

Fifteen patients from 2 previous telaprevir phase 1 clinical studies (VX04-950-101 and VX05-950-103) were included. These patients all received telaprevir monotherapy for 14 days, and 2 patients subsequently received standard of care. Variants at previously well-characterized NS3 protease positions V36, T54, R155 and A156 were assessed at baseline and after a follow-up of 4±1.2 years by ultra-deep pyrosequencing. The prevalence of resistant variants at follow-up was compared to baseline.

Results

Resistance associated mutations were detectable at low frequency at baseline. In general, prevalence of resistance mutations at follow-up was not increased compared to baseline. Only one patient had a small, but statistically significant, increase in the number of V36M and T54S variants 4 years after telaprevir-dosing.

Conclusion

In patients treated for 14 days with telaprevir monotherapy, ultra-deep pyrosequencing indicates that long-term persistence of resistant variants is rare.  相似文献   

16.

Background

Prolactin (PRL) secretion is quantifiable as mean, peak and nadir PRL concentrations, degree of irregularity (ApEn, approximate entropy) and spikiness (brief staccato-like fluctuations).

Hypothesis

Distinct PRL dynamics reflect relatively distinct (combinations of) subject variables, such as gender, age, and BMI.

Location

Clinical Research Unit.

Subjects

Seventy-four healthy adults aged 22–77 yr (41 women and 33 men), with BMI 18.3–39.4 kg/m2.

Measures

Immunofluorometric PRL assay of 10-min samples collected for 24 hours.

Results

Mean 24-h PRL concentration correlated jointly with gender (P<0.0001) and BMI (P = 0.01), but not with age (overall R2 = 0.308, P<0.0001). Nadir PRL concentration correlated with gender only (P = 0.017) and peak PRL with gender (P<0.001) and negatively with age (P<0.003), overall R2 = 0.325, P<0.0001. Forward-selection multivariate regression of PRL deconvolution results demonstrated that basal (nonpulsatile) PRL secretion tended to be associated with BMI (R2 = 0.058, P = 0.03), pulsatile secretion with gender (R2 = 0.152, P = 0.003), and total secretion with gender and BMI (R2 = 0.204, P<0.0001). Pulse mass was associated with gender (P = 0.001) and with a negative tendency to age (P = 0.038). In male subjects older than 50 yr (but not in women) approximate entropy was increased (0.942±0.301 vs. 1.258±0.267, P = 0.007) compared with younger men, as well as spikiness (0.363±0.122 vs. 0463±2.12, P = 0.031). Cosinor analysis disclosed higher mesor and amplitude in females than in men, but the acrophase was gender-independent. The acrophase was determined by age and BMI (R2 = 0.186, P = 0.001).

Conclusion

In healthy adults, selective combinations of gender, age, and BMI specify distinct PRL dynamics, thus requiring balanced representation of these variables in comparative PRL studies.  相似文献   

17.

Objective

Physical fitness is reduced in adults with Down syndrome (DS). The present study was conducted to elucidate the exercise response in adults with DS.

Design

Case controlled before-after trial.

Setting

Residential centre for people with intellectual disabilities.

Participants

96 Adults with DS, 25 non-DS adults with an intellectual disability, 33 controls.

Interventions

Echocardiography to exclude heart defects and to measure cardiac index (CI) in the supine position, supine position with raised legs, and following ten knee bends.

Main outcome measure

Exercise testing

Results

At rest, mean CI was not significantly different between persons with DS and controls (2.3 vs. 2.4 l/min/m2, p = 0.3). However, mean CI after exercise was significantly lower in DS (2.9 vs. 3.7 l/min/m2, p < 0.001) and mean CI increase from rest to exercise was more than 50% lower in DS. On the contrary, CI after exercise was similar among controls and non-DS adults with an intellectual disability. Significantly lower stroke volumes in DS were found with insufficient heart rate response.

Conclusions

CI at rest was similar in adults with DS and controls; however persons with DS have a diminished cardiac response to exercise. Stroke volumes were significantly lower in DS during exercise and a compensated heightened heart rate was absent.  相似文献   

18.

Background

Langerhans cell histiocytosis (LCH) features inflammatory granuloma characterised by the presence of CD1a+ dendritic cells or ‘LCH cells’. Badalian-Very et al. recently reported the presence of a canonical V600EB-RAF mutation in 57% of paraffin-embedded biopsies from LCH granuloma. Here we confirm their findings and report the identification of two novel B-RAF mutations detected in LCH patients.

Methods and Results

Mutations of B-RAF were observed in granuloma samples from 11 out of 16 patients using ‘next generation’ pyrosequencing. In 9 cases the mutation identified was V600EB-RAF. In 2 cases novel polymorphisms were identified. A somatic 600DLATB-RAF insertion mimicked the structural and functional consequences of the V600EB-RAF mutant. It destabilized the inactive conformation of the B-RAF kinase and resulted in increased ERK activation in 293 T cells. The 600DLATB-RAF and V600EB-RAF mutations were found enriched in DNA and mRNA from the CD1a+ fraction of granuloma. They were absent from the blood and monocytes of 58 LCH patients, with a lower threshold of sequencing sensitivity of 1%–2% relative mutation abundance. A novel germ line T599AB-RAF mutant allele was detected in one patient, at a relative mutation abundance close to 50% in the LCH granuloma, blood monocytes and lymphocytes. However, T599AB-RAF did not destabilize the inactive conformation of the B-RAF kinase, and did not induce increased ERK phosphorylation or C-RAF transactivation.

Conclusions

Our data confirmed presence of the V600EB-RAF mutation in LCH granuloma of some patients, and identify two novel B-RAF mutations. They indicate that V600EB-RAF and 600DLATB-RAF mutations are somatic mutants enriched in LCH CD1a+ cells and absent from the patient blood. Further studies are needed to assess the functional consequences of the germ-line T599AB-RAF allele.  相似文献   

19.

Rationale

In ventricular myocytes of large mammals, not all ryanodine receptor (RyR) clusters are associated with T-tubules (TTs); this fraction increases with cellular remodeling after myocardial infarction (MI).

Objective

To characterize RyR functional properties in relation to TT proximity, at baseline and after MI.

Methods

Myocytes were isolated from left ventricle of healthy pigs (CTRL) or from the area adjacent to a myocardial infarction (MI). Ca2+ transients were measured under whole-cell voltage clamp during confocal linescan imaging (fluo-3) and segmented according to proximity of TTs (sites of early Ca2+ release, F>F50 within 20 ms) or their absence (delayed areas). Spontaneous Ca2+ release events during diastole, Ca2+ sparks, reflecting RyR activity and properties, were subsequently assigned to either category.

Results

In CTRL, spark frequency was higher in proximity of TTs, but spark duration was significantly shorter. Block of Na+/Ca2+ exchanger (NCX) prolonged spark duration selectively near TTs, while block of Ca2+ influx via Ca2+ channels did not affect sparks properties. In MI, total spark mass was increased in line with higher SR Ca2+ content. Extremely long sparks (>47.6 ms) occurred more frequently. The fraction of near-TT sparks was reduced; frequency increased mainly in delayed sites. Increased duration was seen in near-TT sparks only; Ca2+ removal by NCX at the membrane was significantly lower in MI.

Conclusion

TT proximity modulates RyR cluster properties resulting in intracellular heterogeneity of diastolic spark activity. Remodeling in the area adjacent to MI differentially affects these RyR subpopulations. Reduction of the number of sparks near TTs and reduced local NCX removal limit cellular Ca2+ loss and raise SR Ca2+ content, but may promote Ca2+ waves.  相似文献   

20.

Background

In dystrophic skeletal muscle, osmotic stimuli somehow relieve inhibitory control of dihydropyridine receptors (DHPR) on spontaneous sarcoplasmic reticulum elementary Ca2+ release events (ECRE) in high Ca2+ external environments. Such ‘uncontrolled’ Ca2+ sparks were suggested to act as dystrophic signals. They may be related to mechanosensitive pathways but the mechanisms are elusive. Also, it is not known whether truncated dystrophins can correct the dystrophic disinhibition.

Methodology/Principal Findings

We recorded ECRE activity in single intact fibers from adult wt, mdx and mini-dystrophin expressing mice (MinD) under resting isotonic conditions and following hyper-/hypo-osmolar external shock using confocal microscopy and imaging techniques. Isotonic ECRE frequencies were small in wt and MinD fibers, but were markedly increased in mdx fibers. Osmotic challenge dramatically increased ECRE activity in mdx fibers. Sustained osmotic challenge induced marked exponential ECRE activity adaptation that was three times faster in mdx compared to wt and MinD fibers. Rising external Ca2+ concentrations amplified osmotic ECRE responses. The eliminated ECRE suppression in intact osmotically stressed mdx fibers was completely and reversibly resuscitated by streptomycine (200 µM), spider peptide GsMTx-4 (5 µM) and Gd3+ (20 µM) that block unspecific, specific cationic and Ca2+ selective mechanosensitive channels (MsC), respectively. ECRE morphology was not substantially altered by membrane stress. During hyperosmotic challenge, membrane potentials were polarised and a putative depolarisation through aberrant MsC negligible excluding direct activation of ECRE through tubular depolarisation.

Conclusions/Significance

Dystrophin suppresses spontaneous ECRE activity by control of mechanosensitive pathways which are suggested to interact with the inhibitory DHPR loop to the ryanodine receptor. MsC-related disinhibition prevails in dystrophic muscle and can be resuscitated by transgenic mini-dystrophin expression. Our results have important implications for the pathophysiology of DMD where abnormal MsC in dystrophic muscle confer disruption of microdomain Ca2+ homeostasis. MsC blockers should have considerable therapeutic potential if more muscle specific compounds can be found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号