首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kim BY  Kang DO  Oh WK  Kim JH  Choi YK  Jang JS  Suh PG  Ryu SH  Mheen TI  Ahn JS 《FEBS letters》2000,472(1):45-49
To directly define the role of phospholipase Cgamma1 (PLCgamma1) in NF-kappaB activation, NF-kappaB promoted luciferase reporter gene plasmid (pNF-kappaB-Luc) was transfected into rat-3Y1 fibroblasts that overexpress whole PLCgamma1 (PLCgamma1-3Y1), src homology domains SH2-SH2-SH3 of PLCgamma1 (SH223-3Y1) and v-src (Src-3Y1). Transient transfection with pNF-kappaB-Luc remarkably increased the luciferase activity in all three transformants compared with normal rat-3Y1 cells. Pretreatment with inhibitors of protein tyrosine kinase reduced this increase in luciferase activity, but U73122 (a PLC inhibitor) did not. While PD98059, an inhibitor of mitogen activated protein kinase (MAPK), significantly reduced the luciferase activity, there was no effect by wortmannin and Ro-31-8220, inhibitors of phosphatidylinositol 3-kinase (PI3K) and protein kinase C (PKC), respectively. This study shows a direct evidence that the SH2-SH2-SH3 region of PLCgamma1 contributes to the NF-kappaB signaling and that MAPK, but not PI3K and PKC, is involved in SH2-SH2-SH3 mediated NF-kappaB activation in these cells.  相似文献   

2.
Fibronectin (Fn) is involved in early stages of bone formation and basic fibroblast growth factor (bFGF) is an important factor regulating osteogenesis. bFGF increased Fn expression, which was attenuated by phosphatidylinositol phospholipase inhibitor (U73122), protein kinase C inhibitor (GF109203X), Src inhibitor (PP2), NF-kappaB inhibitor (PDTC), IkappaBalpha phosphorylation inhibitor (Bay 117082), or IkappaB protease inhibitor (TPCK). bFGF-induced increase of Fn-luciferase activity was antagonized by cells transfected with Fn construct without NF-kappaB regulatory site. Stimulation of osteoblasts with bFGF activated IkappaB kinase alpha/beta (IKK alpha/beta) and increased IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 and p50 translocation from the cytosol to the nucleus, the formation of an NF-kappaB-specific DNA-protein complex and kappaB-luciferase activity. bFGF-mediated an increase of IKKalpha/beta activity and DNA-binding activity was inhibited by U73122, GF109203X, or PP2. The binding of p65 to the NF-kappaB element, as well as the recruitment of p300 and the enhancement of p50 acetylation on the Fn promoter was enhanced by bFGF. Overexpression of constitutively active FGF receptor 2 (FGFR2) increased Fn-luciferase activity, which was inhibited by co-transfection with dominant negative (DN) mutants of PLCgamma2, PKCalpha, c-Src, IKKalpha, or IKKbeta. Our results suggest that bFGF increased Fn expression in rat osteoblasts via the FGFR2/PLCgamma2/PKCalpha/c-Src/NF-kappaB signaling pathway.  相似文献   

3.
We have further tested the hypothesis that receptor-mediated modulation of KCNQ channels involves depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphoinositide-specific phospholipase C (PLC). We used four parallel assays to characterize the agonist-induced PLC response of cells (tsA or CHO cells) expressing M1 muscarinic receptors: translocation of two fluorescent probes for membrane lipids, release of calcium from intracellular stores, and chemical measurement of acidic lipids. Occupation of M1 receptors activates PLC and consumes cellular PIP2 in less than a minute and also partially depletes mono- and unphosphorylated phosphoinositides. KCNQ current is simultaneously suppressed. Two inhibitors of PLC, U73122 and edelfosine (ET-18-OCH3), can block the muscarinic actions completely, including suppression of KCNQ current. However, U73122 also had many side effects that were attributable to alkylation of various proteins. These were mimicked or occluded by prior reaction with the alkylating agent N-ethylmaleimide and included block of pertussis toxin-sensitive G proteins and effects that resembled a weak activation of PLC or an inhibition of lipid kinases. By our functional criteria, the putative PLC activator m-3M3FBS did stimulate PLC, but with a delay and an irregular time course. It also suppressed KCNQ current. The M1 receptor-mediated activation of PLC and suppression of KCNQ current were stopped by lowering intracellular calcium well below resting levels and were slowed by not allowing intracellular calcium to rise in response to PLC activation. Thus calcium release induced by PLC activation feeds back immediately on PLC, accelerating it during muscarinic stimulation in strong positive feedback. These experiments clarify important properties of receptor-coupled PLC responses and their inhibition in the context of the living cell. In each test, the suppression of KCNQ current closely paralleled the expected fall of PIP2. The results are described by a kinetic model.  相似文献   

4.
Based on recent studies showing that PLCgamma associates to insulin receptor, we investigated its role in insulin stimulation of glucose transport in brown adipocytes. Insulin stimulation induced rapid PLCgamma association to phosphorylated insulin receptor, and activation of PLCgamma, as assessed by the mobilization of Ca(2+) from intracellular stores and by the production of the second messenger DAG. Both events are dependent on activation of PI3-kinase. Inhibition of PLCgamma activity either with the chemical compound U73122 or with an inhibitor peptide precluded insulin stimulation of glucose uptake, GLUT4 translocation, and actin reorganization, as wortmannin did. In contrast, the inactive analog U73343 did not have an inhibitory effect. Furthermore, translocation of GLUT4-GFP in response to insulin was completely abolished by cotransfection with a PLCgamma-inactive mutant in HeLa cells, a cell model sensitive to insulin that express PLCgamma. U73122 did not affect PI3-kinase nor Akt activation, but impaired PKCzeta activation by insulin, as wortmannin did. PLC activity renders two products, IP(3) and DAG, and DAG can be metabolized to PA by the action of DAG-kinase. Using the compound R54494, a DAG-kinase inhibitor, insulin-induced PKCzeta activation was also suppressed, this activity being restored by addition of PA. In summary, these data indicate that PLCgamma, activated at least partially by PI3-kinase, is a link between insulin receptor and PKCzeta through the production of PA and could mediate insulin-induced glucose uptake and GLUT4 translocation.  相似文献   

5.
Testosterone at physiological intratesticular concentrations induces a dose-dependent depolarisation and an increase in input resistance together with an increment of 45Ca2+ uptake in the Sertoli cells from seminiferous tubules of immature rat. Previous studies have implicated K(+)ATP channels in these testosterone actions. This study demonstrates that testosterone and sulphonylureas (glibenclamide and tolbutamide) depolarise the membrane potential, augment resistance and 45Ca2+ uptake in the Sertoli cells of seminiferous tubules from 10-15 day-old rats. These actions were nullified by the presence of the K(+)ATP channel opener diazoxide. The depolarisation was also observed with the impermeant bovine serum albumin-bound testosterone. Testosterone actions were blocked by both pertussis toxin and the phospholipase C (PLC) inhibitor U73122 implying the involvement of PLC - phosphatidylinositol 4-5 bisphosphate (PIP2) hydrolysis via G protein in testosterone actions. Polycations, including spermine and LaCl3, depolarised the membrane potential and increased the resistance. Hyperpolarisation caused by EGTA was reversed by LaCl3 and by the presence of testosterone. This last effect was nullified by the presence of U73122. All of the above results indicate that the action of testosterone on the Sertoli cell membrane is exercised on the K(+)ATP channels through PLC-PIP2 hydrolysis that closes the channel, depolarises the membrane, and stimulates 45Ca2+ uptake.  相似文献   

6.
The phosphatidylinositol 4,5-bisphosphate (PIP(2))-sensitive inward rectifier channel Kir2.1 was expressed in Drosophila photoreceptors and used to monitor in vivo PIP(2) levels. Since the wild-type (WT) Kir2.1 channel appeared to be saturated by the prevailing PIP(2) concentration, we made a single amino acid substitution (R228Q), which reduced the effective affinity for PIP(2) and yielded channels generating currents proportional to the PIP(2) levels relevant for phototransduction. To isolate Kir2.1 currents, recordings were made from mutants lacking both classes of light-sensitive transient receptor potential channels (TRP and TRPL). Light resulted in the effective depletion of PIP(2) by phospholipase C (PLC) in approximately three or four microvilli per absorbed photon at rates exceeding approximately 150% of total microvillar phosphoinositides per second. PIP(2) was resynthesized with a half-time of approximately 50 s. When PIP(2) resynthesis was prevented by depriving the cell of ATP, the Kir current spontaneously decayed at maximal rates representing a loss of approximately 40% loss of total PIP(2) per minute. This loss was attributed primarily to basal PLC activity, because it was greatly decreased in norpA mutants lacking PLC. We tried to confirm this by using the PLC inhibitor U73122; however, this was found to act as a novel inhibitor of the Kir2.1 channel. PIP(2) levels were reduced approximately 5-fold in the diacylglycerol kinase mutant (rdgA), but basal PLC activity was still pronounced, consistent with the suggestion that raised diacylglycerol levels are responsible for the constitutive TRP channel activity characteristic of this mutant.  相似文献   

7.
8.
In a previous study (K.-I. Sato et al., 1999, Dev. Biol. 209, 308-320), we presented evidence that a Src-related protein-tyrosine kinase (PTK), named Xyk, may act upstream of the calcium release in fertilization of the Xenopus egg. In the present study, we examined whether PTK activation of phospholipase Cgamma (PLCgamma) plays a role in the fertilization-induced calcium signaling. Immunoprecipitation studies show that Xenopus egg PLCgamma is tyrosine phosphorylated and activated within a few minutes after fertilization but not after A23187-induced egg activation. Consistently, we observed a fertilization-induced association of PLCgamma with Xyk activity that was not seen in A23187-activated eggs. A Src-specific PTK inhibitor, PP1, blocked effectively the fertilization-induced association of PLCgamma with Xyk activity and up-regulation of PLCgamma, when microinjected into the egg. In addition, a PLC inhibitor, U-73122, inhibited sperm-induced inositol 1,4,5-trisphosphate production and the calcium transient and subsequent calcium-dependent events such as cortical contraction, elevation of fertilization envelope, and tyrosine dephosphorylation of p42 MAP kinase, all of which were also inhibited by PP1. On the other hand, A23187 could cause the calcium response and calcium-dependent events in eggs injected with PP1 or U-73122. These results support the idea that Xenopus egg fertilization requires Src-family PTK-dependent PLCgamma activity that acts upstream of the calcium-dependent signaling pathway.  相似文献   

9.
Mitochondrial Ca2+ (mCa2+) handling is an important regulator of liver cell function that controls events ranging from cellular respiration and signal transduction to apoptosis. Cytosolic Ca2+ enters mitochondria through the ruthenium red-sensitive mCa2+ uniporter, but the mechanisms governing uniporter activity are unknown. Activation of many Ca2+ channels in the cell membrane requires PLC. This activation commonly occurs through phosphitidylinositol-4,5-biphosphate (PIP2) hydrolysis and the production of the second messengers inositol 1,4,5-trisphosphate [I(1,4,5)P3] and 1,2-diacylglycerol (DAG). PIP2 was recently identified in mitochondria. We hypothesized that PLC exists in liver mitochondria and regulates mCa2+ uptake through the uniporter. Western blot analysis with anti-PLC antibodies demonstrated the presence of PLC-delta1 in pure preparations of mitochondrial membranes isolated from rat liver. In addition, the selective PLC inhibitor U-73122 dose-dependently blocked mCa2+ uptake when whole mitochondria were incubated at 37 degrees C with 45Ca2+. Increasing extra mCa2+ concentration significantly stimulated mCa2+ uptake, and U-73122 inhibited this effect. Spermine, a uniporter agonist, significantly increased mCa2+ uptake, whereas U-73122 dose-dependently blocked this effect. The inactive analog of U-73122, U-73343, did not affect mCa2+ uptake in any experimental condition. Membrane-permeable I(1,4,5)P3 receptor antagonists 2-aminoethoxydiphenylborate and xestospongin C also inhibited mCa2+ uptake. Although extra mitochondrial I(1,4,5)P3 had no effect on mCa2+ uptake, membrane-permeable DAG analogs 1-oleoyl-2-acetyl-sn-glycerol and DAG-lactone, which inhibit PLC activity, dose-dependently inhibited mCa2+ uptake. These data indicate that PLC-delta1 exists in liver mitochondria and is involved in regulating mCa2+ uptake through the uniporter.  相似文献   

10.
Phospholipase C (PLC) enzymes are an important family of regulatory proteins involved in numerous cellular functions, primarily through hydrolysis of the polar head group from inositol-containing membrane phospholipids. U73122 (1-(6-((17β-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione), one of only a few small molecules reported to inhibit the activity of these enzymes, has been broadly applied as a pharmacological tool to implicate PLCs in diverse experimental phenotypes. The purpose of this study was to develop a better understanding of molecular interactions between U73122 and PLCs. Hence, the effects of U73122 on human PLCβ3 (hPLCβ3) were evaluated in a cell-free micellar system. Surprisingly, U73122 increased the activity of hPLCβ3 in a concentration- and time-dependent manner; up to an 8-fold increase in enzyme activity was observed with an EC50=13.6±5 μm. Activation of hPLCβ3 by U73122 required covalent modification of cysteines as evidenced by the observation that enzyme activation was attenuated by thiol-containing nucleophiles, l-cysteine and glutathione. Mass spectrometric analysis confirmed covalent reaction with U73122 at eight cysteines, although maximum activation was achieved without complete alkylation; the modified residues were identified by LC/MS/MS peptide sequencing. Interestingly, U73122 (10 μm) also activated hPLCγ1 (>10-fold) and hPLCβ2 (~2-fold); PLCδ1 was neither activated nor inhibited. Therefore, in contrast to its reported inhibitory potential, U73122 failed to inhibit several purified PLCs. Most of these PLCs were directly activated by U73122, and a simple mechanism for the activation is proposed. These results strongly suggest a need to re-evaluate the use of U73122 as a general inhibitor of PLC isozymes.  相似文献   

11.
Tamoxifen (TAM) is the endocrine therapeutic agent the most widely used in the treatment of breast cancer, and it operates primarily through the induction of apoptosis. In this study, we attempted to elucidate the non-ER mediated mechanism behind TAM treatment, involving the phospholipase C-protein kinase C (PLC-PKC) mediated phospholipase D (PLD) activation pathway, using multimodality methods. In TAM treated MCF7 cells, the PLC and PLD protein and mRNA levels increased. Phosphatidylethanol (PEt) and diacylglycerol (DAG) generation also increased, showing increased activity of PLD and PLCgamma1. Translocation of PKCalpha, from cytosol to membrane, was observed in TAM treated cells. By showing that both PKC and PLC inhibitors could reduce the effects of TAM-induced PLD activation, we confirmed the role of PKC and PLC as upstream regulators of PLD. Finally, we demonstrated that TAM treatment reduced the viability of MCF7 cells and brought about rapid cell death. From these results, we confirmed the hypothesis that TAM induces apoptosis in breast cancer cells, and that the signal transduction pathway, involving PLD, PLC, and PKC, constitutes one of the possible mechanisms underlying the non-ER mediated effects associated with TAM.  相似文献   

12.
Lysophosphatidic acid (LPA) and endothelin-1 (ET-1) activate phospholipase D (PLD) in many cell types. To see if phospholipase C-gamma1 plays a role, we used embryonic fibroblasts from mice in which the PLCgamma1 gene was disrupted. Surprisingly, the effect of LPA on inositol phosphate accumulation was increased in these PLCgamma1-/- cells, whereas that of ET-1 was completely abrogated. When PLD activity was measured, the response to LPA was also enhanced and the response to ET-1 lost in the PLCgamma1-/- cells. Treatment of these cells with ionomycin and oleoyl acetyl glycerol to mimic PLC stimulation restored PLD activity. Treatment of either PLCgamma1+/+ and PLCgamma1-/- cells with tyrosine kinase inhibitors did not inhibit LPA- or ET-1-induced PLD activity. Moreover, LPA and ET-1 treatment of PLCgamma1+/+ and PLCgamma1-/- cells did not cause tyrosine phosphorylation of PLC-gamma1 or PLC-gamma2. In summary, these results show that the altered PLD responses to LPA and ET-1 in PLCgamma1-/- are due to changes in PLC activity and do not involve tyrosine kinase activity.  相似文献   

13.
Injection of a porcine cytosolic sperm factor (SF) or of a porcine testicular extract into mammalian eggs triggers oscillations of intracellular free calcium ([Ca(2+)](i)) similar to those initiated by fertilization. To elucidate whether SF activates the phosphoinositide (PI) pathway, mouse eggs or SF were incubated with U73122, an inhibitor of events leading to phospholipase C (PLC) activation and/or of PLC itself. In both cases, U73122 blocked the ability of SF to induce [Ca(2+)](i) oscillations, although it did not inhibit Ca(2+) release caused by injection of inositol 1,4,5-triphosphate (IP(3)). The inactive analogue, U73343, had no effect on SF-induced Ca(2+) responses. To determine at the single cell level whether SF triggers IP(3) production concomitantly with a [Ca(2+)](i) rise, SF was injected into Xenopus oocytes and IP(3) concentration was determined using a biological detector cell combined with capillary electrophoresis. Injection of SF induced a significant increase in [Ca(2+)](i) and IP(3) production in these oocytes. Using ammonium sulfate precipitation, chromatographic fractionation, and Western blotting, we determined whether PLCgamma1, PLCgamma2, or PLCdelta4 and/or its splice variants, which are present in sperm and testis, are responsible for the Ca(2+) activity in the extracts. Our results revealed that active fractions do not contain PLCgamma1, PLCgamma2, or PLCdelta4 and/or its splice variants, which were present in inactive fractions. We also tested whether IP(3) could be the sensitizing stimulus of the Ca(2+)-induced Ca(2+) release mechanism, which is an important feature of fertilized and SF-injected eggs. Eggs injected with adenophostin A, an IP(3) receptor agonist, showed enhanced Ca(2+) responses to CaCl(2) injections. Thus, SF, and probably sperm, induces [Ca(2+)](i) rises by persistently stimulating IP(3) production, which in turn results in long-lasting sensitization of Ca(2+)-induced Ca(2+) release. Whether SF is itself a PLC or whether it acts upstream of the egg's PLCs remains to be elucidated.  相似文献   

14.
PKCtheta plays an essential role in activation of mature T cells via stimulation of AP-1 and NF-kappaB, and is known to selectively translocate to the immunological synapse in antigen-stimulated T cells. Recently, we reported that a Vav/Rac pathway which depends on actin cytoskeleton reorganization mediates selective recruitment of PKCtheta to the membrane or cytoskeleton and its catalytic activation by anti-CD3/CD28 costimulation. Because this pathway acted selectively on PKCtheta, we addressed here the question of whether the translocation and activation of PKCtheta in T cells is regulated by a unique pathway distinct from the conventional mechanism for PKC activation, i.e., PLC-mediated production of DAG. Using three independent approaches, i.e., a selective PLC inhibitor, a PLCgamma1-deficient T cell line, or a dominant negative PLCgamma1 mutant, we demonstrate that CD3/CD28-induced membrane recruitment and COOH-terminal phosphorylation of PKCtheta are largely independent of PLC. In contrast, the same inhibitory strategies blocked the membrane translocation of PKCalpha. Membrane or lipid raft recruitment of PKCtheta (but not PKCalpha) was absent in T cells treated with phosphatidylinositol 3-kinase (PI3-K) inhibitors or in Vav-deficient T cells, and was enhanced by constitutively active PI3-K. 3-phosphoinositide-dependent kinase-1 (PDK1) also upregulated the membrane translocation of PKCtheta;, but did not associate with it. These results provide evidence that a nonconventional PI3-K- and Vav-dependent pathway mediates the selective membrane recruitment and, possibly, activation of PKCtheta in T cells.  相似文献   

15.
Previous studies demonstrated that ionizing radiation activates the epidermal growth factor receptor (EGFR), as measured by Tyr autophosphorylation, and induces transient increases in cytosolic free [Ca2+], [Ca2+]f. The mechanistic linkage between these events has been investigated in A431 squamous carcinoma cells with the EGFR Tyr kinase inhibitor, AG1478. EGFR autophosphorylation induced by radiation at doses of 0.5-5 Gy or EGF concentrations of 1-10 ng/ml is inhibited by >75% at 100 nM AG1478. Activation of EGFR enhances IP3 production as a result of phospholipase C (PLC) activation. At the doses used, radiation stimulates Tyr phosphorylation of both, PLCgamma and erbB-3, and also mediates the association between erbB-3 and PLCgamma not previously described. The increased erbB-3 Tyr phosphorylation is to a significant extent due to transactivation by EGFR as >70% of radiation- and EGF-induced erbB-3 Tyr phosphorylation is inhibited by AG 1478. The radiation-induced changes in [Ca2+]f are dependent upon EGFR, erbB-3 and PLCgamma activation since radiation stimulated IP3 formation and Ca2+ oscillations are inhibited by AG1478, the PLCgamma inhibitor U73122 or neutralizing antibody against an extracellular epitope of erbB-3. These results demonstrate that radiation induces qualitatively and quantitatively similar responses to EGF in stimulation of the plasma membrane-associated receptor Tyr kinases and immediate downstream effectors, such as PLCgamma and Ca2+.  相似文献   

16.
The C2 domain of protein kinase Calpha (PKCalpha) controls the translocation of this kinase from the cytoplasm to the plasma membrane during cytoplasmic Ca2+ signals. The present study uses intracellular coimaging of fluorescent fusion proteins and an in vitro FRET membrane-binding assay to further investigate the nature of this translocation. We find that Ca2+-activated PKCalpha and its isolated C2 domain localize exclusively to the plasma membrane in vivo and that a plasma membrane lipid, phosphatidylinositol-4,5-bisphosphate (PIP2), dramatically enhances the Ca2+-triggered binding of the C2 domain to membranes in vitro. Similarly, a hybrid construct substituting the PKCalpha Ca2+-binding loops (CBLs) and PIP2 binding site (beta-strands 3-4) into a different C2 domain exhibits native Ca2+-triggered targeting to plasma membrane and recognizes PIP2. Conversely, a hybrid containing the CBLs but lacking the PIP2 site translocates primarily to trans-Golgi network (TGN) and fails to recognize PIP2. Similarly, PKCalpha C2 domains possessing mutations in the PIP2 site target primarily to TGN and fail to recognize PIP2. Overall, these findings demonstrate that the CBLs are essential for Ca2+-triggered membrane binding but are not sufficient for specific plasma membrane targeting. Instead, targeting specificity is provided by basic residues on beta-strands 3-4, which bind to plasma membrane PIP2.  相似文献   

17.
Presenilins (PSs) are involved in processing several proteins such as the amyloid precursor protein (APP), as well as in pathways for cell death and survival. We previously showed that some familial Alzheimer's disease PS mutations cause increased basal and acetylcholine muscarinic receptor-stimulated phospholipase C (PLC) activity which was gamma-secretase dependent. To further evaluate the dependence of PLC on PSs we measured PLC activity and the activation of variant protein kinase C (PKC) isoforms in mouse embryonic fibroblasts (MEFs) lacking either PS1, PS2, or both. PLC activity and PKCalpha and PKCgamma activations were significantly lower in PS1 and PS2 double knockout MEFs after PLC stimulation. Protein levels of PKCalpha and PKCgamma were lower in PS1 and PS2 double knockout MEFs. In contrast, PKCdelta levels were significantly elevated in PS1 and PS2 double knockout as well as in PS1 knockout MEFs. Also, PKCdelta levels were lowered after transfection of PS1 into PS1 knockout or PS double knockout MEFs. Using APP knockout MEFs we showed that the expression of PKCalpha, but not the other PKC isoforms is partially dependent on APP and can be regulated by APP intracellular domain (AICD). These results show that PLC and PKC activations are modulated by PS and also that PSs differentially regulate the expression of PKC isoforms by both APP/AICD-dependent and independent mechanisms.  相似文献   

18.
Upon contact with airway epithelial cells, mycobacteria activate several signal transduction events that are required for induction of NF-kappaB-dependent chemokine gene expression. However, downstream signaling pathways, especially that of Ca(2+)-dependent protein kinase C alpha (PKCalpha), and in particular, the identity of the IKKalphabeta signal pathway for CXCL8 secretion in Mycobacterium bovis BCG-induced epithelial cells are still unknown. In this study, we demonstrated that the phosphoinositide-phospholipase C (PI-PLC) downstream signaling pathway is involved in M. bovis BCG-induced CXCL8 release, since A549 cells pretreated with U73122, a PI-PLC inhibitor, inhibited CXCL8 release, whereas U73343 the inactive analog had no effect. In addition, our results demonstrated that M. bovis BCG-induced CXCL8 production by A549 cells was significantly blocked by using neomycin (another well-described inhibitor of PI-PLC with a different mechanism of action), Ro-32-0432 and Ro-31-8220 (two PKCalpha inhibitors), PP1 and PP2 (two potent and selective inhibitors of the Src-family tyrosine kinases), and Bay 11-7082 (an IkappaB phosphorylation inhibitor). We also demonstrated that M. bovis BCG can rapidly induce translocation of PKCalpha from the cytosol to the membrane, and that treatment of cells with M. bovis BCG caused time-dependent increases in phosphorylation of c-Src at tyrosine 416. Finally, our studies revealed that M. bovis BCG induced the association of c-Src and IKKalphabeta during the interaction of PKCalpha and IKKalphabeta. Altogether, these results represent the first evidence to date suggesting that M. bovis BCG activates the PI-PLC/PKCalpha/c-Src/IKKalphabeta signaling pathway to induce CXCL8 release in human epithelial cells.  相似文献   

19.
PI3K plays key roles in cell growth, differentiation, and survival by generating the second messenger phosphatidylinositol-(3,4,5)-trisphosphate (PIP3). PIP3 activates numerous enzymes, in part by recruiting them from the cytosol to the plasma membrane. We find that in immature B lymphocytes carrying a nonautoreactive Ag receptor, PI3K signaling suppresses RAG expression and promotes developmental progression. Inhibitors of PI3K signaling abrogate this positive selection. Furthermore, immature primary B cells from mice lacking the p85alpha regulatory subunit of PI3K suppress poorly RAG expression, undergo an exaggerated receptor editing response, and, as in BCR-ligated cells, fail to progress into the G1 phase of cell cycle. Moreover, immature B cells carrying an innocuous receptor have sustained elevation of PIP3 levels and activation of the downstream effectors phospholipase C (PLC)gamma2, Akt, and Bruton's tyrosine kinase. Of these, PLCgamma2 appears to play the most significant role in down-regulating RAG expression. It therefore appears that when the BCR of an immature B cell is ligated, PIP3 levels are reduced, PLCgamma2 activation is diminished, and receptor editing is promoted by sustained RAG expression. Taken together, our results provide evidence that PI3K signaling is an important cue required for fostering development of B cells carrying a useful BCR.  相似文献   

20.
The M-type potassium channel, of which its molecular basis is constituted by KCNQ2-5 homo- or heteromultimers, plays a key role in regulating neuronal excitability and is modulated by many G protein-coupled receptors. In this study, we demonstrate that histamine inhibits KCNQ2/Q3 currents in human embryonic kidney (HEK)293 cells via phosphatidylinositol 4,5-bisphosphate (PIP(2)) hydrolysis mediated by stimulation of H(1) receptor and phospholipase C (PLC). Histamine inhibited KCNQ2/Q3 currents in HEK293 cells coexpressing H(1) receptor, and this effect was totally abolished by H(1) receptor antagonist mepyramine but not altered by H(2) receptor antagonist cimetidine. The inhibition of KCNQ currents was significantly attenuated by a PLC inhibitor U-73122 but not affected by depletion of internal Ca(2+) stores or intracellular Ca(2+) concentration ([Ca(2+)](i)) buffering via pipette dialyzing BAPTA. Moreover, histamine also concentration dependently inhibited M current in rat superior cervical ganglion (SCG) neurons by a similar mechanism. The inhibitory effect of histamine on KCNQ2/Q3 currents was entirely reversible but became irreversible when the resynthesis of PIP(2) was impaired with phosphatidylinsitol-4-kinase inhibitors. Histamine was capable of producing a reversible translocation of the PIP(2) fluorescence probe PLC(delta1)-PH-GFP from membrane to cytosol in HEK293 cells by activation of H(1) receptor and PLC. We concluded that the inhibition of KCNQ/M currents by histamine in HEK293 cells and SCG neurons is due to the consumption of membrane PIP(2) by PLC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号