首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formate dehydrogenase from Pseudomonas aeruginosa contains molybdenum, a [4Fe-4S] cluster and cytochrome b. This paper reports the detection of molybdenum as Mo(V) by e.p.r. spectroscopy. In order to generate Mo(V) signals, addition of amounts of excess formate varying between 10- and 50-fold over enzyme, followed by 200-fold excess of sodium dithionite, were used. Two Mo(V) species were observed. One, the major component, has g1 = 2.012, g2 = 1.985 and g3 = 1.968, appeared at low concentrations of formate and increased linearly in intensity with increasing concentrations of formate up to 25-fold excess over the enzyme. At higher formate concentration this signal disappeared. The appearance and disappearance of this Mo(V) signal seems to parallel the state of reduction of the [4Fe-4S] clusters. A second, minor, Mo(V) species with g-values g1 = 1.996, g2 = 1.981 and g3 = 1.941 appears at a constant level during the formate-dithionite titration. No evidence has been obtained for nuclear hyperfine coupling to protons. The major Mo(V) species has unusual e.p.r. signals compared with other molybdenum-containing enzymes, except for that observed in the formate dehydrogenase from Methanobacterium formicicum [Barber, Siegel, Schauer, May & Ferry (1983) J. Biol. Chem. 258, 10839-10845]. The present work suggests that the enzyme is acting as a CO2 reductase, with dithionite as an electron donor to a [4Fe-4S] cluster, which in turn donates electrons to molybdenum, producing a Mo(V) species with CO2 bound to the metal.  相似文献   

2.
A study has been made of e.p.r. signals due to Mo(V) in reduced sulphite oxidase (EC 1.8.3.1) from chicken liver. Reduction by SO3(2-), or photochemically in the presence of a deazaflavin derivative, produces spectra indistinguishable from one another. Three types of spectra from the enzyme were distingusihed and shown to correspond to single chemical species, since they could be simulated at both 9 and 35 GHz by using the same parameters. These were the low-pH form of the enzyme, with gav. 1.9805, the high-pH form, with gav. 1.9681 and a phosphate complex, with gav. 1.9741. The low-H form shows interaction with a single exchangeable proton, with A(1H)av. (hyperfine coupling constant) = 0.98 mT, probably in the form of an MoOH group. Parameters of the signals are compared with those for signals from xanthine oxidase and nitrate reductase. The signal from the phosphate complex of sulphite oxidase in unique among anion complexes of Mo-containing enzymes in showing no hyperfine coupling to protons. There is no evidence for additional weakly coupled protons or nitrogen nuclei in the sulphite oxidase signals. The possibility is considered that the enzymic mechanism involves abstraction of a proton and two electrons from HSO3- by a Mo = O group in the enzyme.  相似文献   

3.
The carbon monoxide oxidases (COXs) purified from the carboxydotrophic bacteria Pseudomonas carboxydohydrogena and Pseudomonas carboxydoflava were found to be molybdenum hydroxylases, identical in cofactor composition and spectral properties to the recently characterized enzyme from Pseudomonas carboxydovorans (O. Meyer, J. Biol. Chem. 257:1333-1341, 1982). All three enzymes exhibited a cofactor composition of two flavin adenine dinucleotides, two molybdenums, eight irons and eight labile sulfides per dimeric molecule, typical for molybdenum-containing iron-sulfur flavoproteins. The millimolar extinction coefficient of the COXs at 450 nm was 72 (per two flavin adenine dinucleotides), a value similar to that of milk xanthine oxidase and chicken liver xanthine dehydrogenase at 450 nm. That molybdopterin, the novel prosthetic group of the molybdenum cofactor of a variety of molybdoenzymes (J. Johnson and K. V. Rajagopalan, Proc. Natl. Acad. Sci. U.S.A. 79:6856-6860, 1982) is also a constituent of COXs from carboxydotrophic bacteria is indicated by the formation of identical fluorescent cofactor derivatives, by complementation of the nitrate reductase activity in extracts of Neurospora crassa nit-l, and by the presence of organic phosphate additional to flavin adenine dinucleotides. Molybdopterin is tightly but noncovalently bound to the protein. COX, sulfite oxidase, xanthine oxidase, and xanthine dehydrogenase each contains 2 mol of molybdopterin per mol of enzyme. The presence of a trichloroacetic acid-releasable, so-far-unidentified, phosphorous-containing moiety in COX is suggested by the results of phosphate analysis.  相似文献   

4.
The magnetic properties of the haem groups of Pseudomonas cytochrome oxidase and its cyanide-bound derivatives were studied in both the oxidized and reduced states by means of m.c.d. (magnetic circular dichroism) at low temperatures. In addition, the oxidized forms of the enzyme were also investigated by e.p.r. (electron-paramagnetic-resonance) spectroscopy, and a parallel study, using both e.p.r. and m.c.d., was made on Pseudomonas cytochrome c-551 to aid spectral assignments. For ascorbate-reduced Pseudomonas cytochrome oxidase, the temperature-independence of those features in the m.c.d. spectrum corresponding to the haem c, and the temperature-dependence of those signals corresponding to the haem d1, showed the former to be low-spin and the latter to be high-spin (s = 2). However, addition of cyanide to the reduced enzyme gave a form of the protein that was completely low-spin. The e.p.r. and m.c.d. sectra of oxidized Pseudomonas cytochrome oxidase and its cyanide derivative were consistent with the haem c and d1 components being low-spin in both cases. Pseudomonas cytochrome c-551 was found to be low-spin in both its oxidized and reduced redox states.  相似文献   

5.
The molybdenum centre of spinach (Spinacia oleracea) nitrate reductase has been investigated by e.p.r. spectroscopy of molybdenum(V) in reduced forms of the enzyme. The resting enzyme gives no signals attributable to Mo(V). However, on reduction with NADH, Mo(V) signals appeared at relatively short reaction times but decreased again on prolonged exposure to excess of the substrate as the enzyme was further reduced. On brief treatment of such samples with nitrate, Mo(V) signals reappeared but disappeared again on longer exposure to excess nitrate as the enzyme became fully reoxidized. Detailed investigation of the signals carried out in both 1H2O and 2H2O revealed the presence of two signal-giving species, referred to as 'signal A' and 'signal B', analogous to corresponding signals from nitrate reductase from Escherichia coli and from liver sulphite oxidase. Signal A has gav. 1.9767 and shows coupling to a single proton, exchangeable with the solvent, with A(1H)av. 1.3mT, whereas signal B shows no more than weak coupling to protons. Investigation of interconversion between the two species indicated that decreasing the pH from 8.0 to 6.7 had little effect, but that signal A was favoured by the presence of Cl-. This suggests, by analogy with recent work on sulphite oxidase by Bray, Gutteridge, Lamy & Wilkinson [Biochem. J. (1983) 211, 227-236] that Cl- is a ligand of molybdenum in the species giving signal A.  相似文献   

6.
The molecular properties of a novel membrane quinol oxidase from the marine bacterium Pseudomonas nautica 617 are presented. The protein contains 2b hemes/mole which may be distinguished by EPR spectroscopy but not by optical spectroscopy and electrochemistry. Respiration, though being cyanide insensitive, is not inhibited by carbon monoxide and oxygen reduction is carried out only half-way with production of hydrogen peroxide. The terminal oxidase represents, therefore, a unique example in the large family of terminal oxidases known up to date.  相似文献   

7.
The aa3-type cytochrome c oxidases purified from Nitrobacter agilis, Thiobacillus novellus, Nitrosomonas europaea, and Pseudomonas AM 1 were compared. They have haem a and copper atom as the prosthertic groups and show alpha and gamma absorption peaks at around 600 and 440 nm, respectively. Each oxidase molecule is composed of two kinds of subunits. The N. agilis oxidase has 2 moles of haem a and 2 atoms of copper in the minimal structural unit composed of one molecule each of the two kinds of subunits, while the T. novellus enzyme seems to contain one molecule of the haem and one atom of the metal in the unit. The N. europaea oxidase shows very low affinity for carbon monoxide. Each oxidase reacts rapidly with some eukaryotic cytochromes c as well as with its native cytochrome c. The cytochrome c oxidase activity of the N. agilis oxidase is 50% inhibited by 1 microM KCN, while 50% inhibition of the activity requires 100 microM KCN in the case of the N. europaea enzyme.  相似文献   

8.
Studies by e.p.r. (electron-paramagnetic-resonance) spectroscopy and by stopped-flow spectrophotometry on turkey liver xanthine dehydrogenase revealed strong similarities to as well as important differences from the Veillonella alcalescens xanthine dehydrogenase and milk xanthine oxidase. The turkey enzyme is contaminated by up to three non-functional forms, giving molybdenum e.p.r. signals designated Resting I, Resting II and Slow. Slow and to a lesser extent Resting I signals are like those from the Veillonella enzyme, whereas Resting II is very like a resting signal described by K. V. Rajagopolan, P. Handler, G. Palmer & H. Beinert (1968) (J. Biol. Chem. 243, 3784-3796) for aldehyde oxidase. Another non-functional form that gives the Inhibited signal is produced on treatment of the enzyme with formaldehyde. Stopped-flow measurements at 450 nm show that, as for the milk enzyme, reduction by xanthine is rate-limiting in enzyme turnover. The active enzyme gives rise to Very Rapid and Rapid molybdenum(V) e.p.r. signals, as well as to an FADH signal. That these signals are almost indistinguishable from those of the milk enzyme, confirms the similarities between the active sites. There are two types of iron-sulphur centres that give signals like those in the milk enzyme, though with slightly different parameters. Quantitative reduction titration of the functional enzyme with xanthine revealed two important differences between the turkey and the milk enzymes. First, the turkey enzyme FADH/FADH2 system has a redox potential sufficiently low that xanthine is incapable of reducing the flavin completely. This finding presumably explains the very low oxidase activity. Secondly, whereas the Fe/S II chromophore in the milk enzyme has a relatively high redox potential, for the turkey enzyme the value of this potential is lower and similar to that of its Fe/S I chromophore.  相似文献   

9.
Cytochrome c oxidase has been purified from rat liver mitochondria using affinity chromatography. The preparation contains 10.5 to 13.4 nmol of heme a + a3 per mg of protein and migrates as a single band during polyacrylamide gel electrophoresis under nondissociating conditions. It has a heme a/a3 ratio of 1.12 and is free of cytochromes b, c, and c1 as well as the enzymes, NADH dehydrogenase, succinic dehydrogenase, coenzyme Q-cytochrome c reductase, and ATPase. The enzyme preparation consists of six polypeptides having apparent Mr of 66,000, 39,000, 23,000, 14,000, 12,500 and 10,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The peptide composition is similar to those found for cytochrome c oxidases from other systems. The enzymatic activity of the purified enzyme is completely inhibited by carbon monoxide or cyanide, partially inhibited by Triton X-100 and dramatically enhanced by Tween 80 or phospholipids.  相似文献   

10.
Molybdenum(V) e.p.r. spectra from reduced forms of aldehyde oxidase were obtained and compared with those from xanthine oxidase. Inhibited and Desulpho Inhibited signals from aldehyde oxidase were fully characterized, and parameters were obtained with the help of computer simulations. These differ slightly but significantly from the corresponding parameters for the xanthine oxidase signals. Rapid type 1 and type 2 and Slow signals were obtained from aldehyde oxidase, but were not fully characterized. From the general similarities of the signals from the two enzymes, it is concluded that the ligands of molybdenum must be identical and that the overall co-ordination geometries must be closely similar in the enzymes. The striking differences in substrate specificity must relate primarily to structural differences in a part of the active centre concerned with substrate binding and not involving the catalytically important molybdenum site.  相似文献   

11.
Preparations of nitrate reductase in the resting state from Pseudomonas aeruginosa exhibit an Mo(V) e.p.r. signal. Progressive reduction of the enzyme results at first in the intensification and then in the disappearance of the signal. Three different species of Mo(V) were detected by e.p.r. These are the high-pH species (g1 = 1.9871; g2 = 1.9795; g3 = 1.9632) and nitrate and nitrite complexes of a low-pH species (respectively g1 = 2.0004; g2 = 1.9858; g3 = 1.9670; and g1 = 1.9975; g2 = 1.9848; g3 = 1.9652). These signals are closely analogous to those for the enzyme from Escherichia coli described by Vincent & Bray [(1978) Biochem. J. 171, 639-647]. Signals typical of iron-sulphur clusters were also detected. In the oxidized enzyme these are believed to arise from a [3Fe-4S] cluster (g = 2.01) and in the reduced enzyme from an unusual low-potential [4Fe-4S]+ cluster (g1 = 2.054; g2 = 1.952; g3 = 1.878). The iron-sulphur centres were also studied in a 'high-catalytic-activity' form of the enzyme. Reduction with Na2S2O4 resulted in the formation of a complex signal with g values at 2.054, 1.952, 1.928, 1.903 and 1.878. The signal could be deconvoluted by reductive titration of the enzyme into two species (g1 = 2.054; g2 = 1.952; g3 = 1.878; and g1 = 2.036; g2 = 1.928; g3 = 1.903). The degradation of a [4Fe-4S] into a [3Fe-4S] cluster in the enzyme is suggested by these studies, the process being dependent on the method used to purify the enzyme. The addition of nitrate to the reduced enzyme results in the oxidation of Mo(IV) to Mo(V) and of all the iron-sulphur centres.  相似文献   

12.
A novel type of cytochrome c oxidase was purified to homogeneity from Pseudomonas aeruginosa which was grown aerobically. The purified oxidase contained two molecules of heme a, two atoms of copper, and one molecule of protoheme per molecule. One of the two heme a molecules in the oxidase reacted with carbon monoxide, so that the enzyme was of baa3-type. The oxidase molecule was composed of three subunits with molecular weights of 38,000, 57,000, and 82,000. Although the oxidase oxidized ferrocytochrome c-550 obtained from the bacterial cells grown aerobically, the oxidizing activity was not high. The "resting form" and the "pulsed form" of the oxidase were observed clearly with this enzyme, and the transition from the resting form to the pulsed form was accompanied by a distinct change of the enzymatic activity. The difference in the kinetics of the catalytic reactions between the two forms is discussed.  相似文献   

13.
Restricted bioavailability of copper in certain environments can interfere with cellular respiration because copper is an essential cofactor of most terminal oxidases. The global response of the metabolically versatile bacterium and opportunistic pathogen Pseudomonas aeruginosa to copper limitation was assessed under aerobic conditions. Expression of cioAB (encoding an alternative, copper-independent, cyanide-resistant ubiquinol oxidase) was upregulated, whereas numerous iron uptake functions (including the siderophores pyoverdine and pyochelin) were expressed at reduced levels, presumably reflecting a lower demand for iron by respiratory enzymes. Wild-type P. aeruginosa was able to grow aerobically in a defined glucose medium depleted of copper, whereas a cioAB mutant did not grow. Thus, P. aeruginosa relies on the CioAB enzyme to cope with severe copper deprivation. A quadruple cyo cco1 cco2 cox mutant, which was deleted for all known heme-copper terminal oxidases of P. aeruginosa, grew aerobically, albeit more slowly than did the wild type, indicating that the CioAB enzyme is capable of energy conservation. However, the expression of a cioA'-'lacZ fusion was less dependent on the copper status in the quadruple mutant than in the wild type, suggesting that copper availability might affect cioAB expression indirectly, via the function of the heme-copper oxidases.  相似文献   

14.
The molybdenum centre of respiratory nitrate reductase from Paracoccus denitrificans has been investigated by e.p.r. spectroscopy of Mo(V). In common with the centres of the analogous enzymes from Escherichia coli and Pseudomonas aeruginosa, it undergoes a pH- and anion-dependent transition between two different e.p.r. signal-giving species. Comparison of the relevant e.p.r. parameters extracted with the help of computer simulations reveals ligation of the metal in the active centres of the three enzymes to be identical.  相似文献   

15.
1. Electron-paramagnetic-resonance (e.p.r.) studies at 9 and 35GHz at helium temperatures have given new information relating to the structure and mechanism of action of xanthine oxidase. 2. As reported by others, the enzyme gives two types of e.p.r. signal attributed to iron-sulphur systems. The first has g(av.)=1.95. Parameters of the second are determined as g(1) 2.12, g(2) 2.007 and g(3) 1.91, with g(av.)=2.01. This species seems to have a slightly higher redox potential than the former one. 3. Temperature-dependent changes in the form of Mo(v) e.p.r. signals from the enzyme, observed under certain conditions, are shown to be due to weak spin-spin interaction between Mo(v) and g(av.)=1.95 Fe/S. The phenomenon has been studied most fully for the Slow Mo(v) signal. Here, the spectral change takes the form of an additional approximately isotropic 11G splitting, detected below about 45 degrees K only. Samples without Fe/S reduced showed no such changes of spectrum. 4. Similar spectral changes were observed in the Rapid Mo(v) signals, obtained in rapid-freezing experiments, but only in samples corresponding to relatively long reaction times with the substrate. It is suggested therefore that the phenomenon may provide a means of distinguishing enzyme centres with Mo only reduced from those in which both Mo and Fe/S are reduced. 5. Additional rapid-freezing data tending to support a two- rather than a one-electron transfer of reducing equivalents from substrates to xanthine oxidase are reported.  相似文献   

16.
Cyclohexylamine oxidase was purified 90-fold from cell-free extracts of Pseudomonas sp. capable of assimilating sodium cyclamate. The purified enzyme was homogeneous in disc electrophoresis, and the molecular weight was found to be approximately 80,000 by gel filtration. The enzyme catalyzed the following reaction: cyclohexylamine+O2+H2O leads to cyclohexanone+NH3+H2O2. The enzyme thus can be classified as an amine oxidase; it utilized oxygen as the ultimate electron acceptor. The pH optimum of the reaction was 6.8 and the apparent Km value for cyclohexylamine was 2.5 X 10(-4) M. The enzyme was highly specific for the deamination of alicyclic primary amines such as cyclohexylamine, but was found to be inactive toward ordinary amines used as substrates for amine oxidases. The enzyme solution was yellow in color and showed a typical flavoprotein spectrum; the addition of cyclohexylamine under anaerobic conditions caused reduction of the flavin in the native enzyme. The flavin of the prosthetic group was identified as FAD by thin layer chromatography. The participation of sulfhydryl groups in the enzymic action was also suggested by the observation that the enzyme activity was inhibited in the presence of PCMB and could be recovered by the addition of glutathione.  相似文献   

17.
The interaction of chloride, fluoride and phosphate ions with the molybdenum centre of sulphite oxidase in the pH range 6.2 to 9.6 has been studied by e.p.r. of Mo(V) in the enzyme reduced by sulphite. Detailed studies were made from e.p.r. spectra recorded at about 120K and more limited studies from spectra of liquid samples at about 295K and also from enzyme activity measurements. Interconversion between low-pH and high-pH Mo(V) e.p.r. signal-giving species [described by Lamy, Gutteridge & Bray (1980) Biochem. J. 185, 397-403] is influenced by chloride concentration, a 10-fold increase in concentration (in the range of about 1 mM to 100 mM) causing an increase of about 1 pH unit in the apparent pK for the conversion. This suggests that chloride is a constituent of the low-pH species. In support of this, high concentrations of fluoride modified the e.p.r. spectrum. Partial conversion to a Mo(V) species, in which F- has presumably replaced Cl- and showing hyperfine coupling of A(19F)av. 0.5mT, is indicated. It is proposed that interconversion between high-pH and low-pH species is of the form: (formula; see text) No evidence that Cl- is essential for enzymic activity was found. Data relating to equilibria amongst low-pH, high-pH and also the phosphate species are presented. Depending on pH and on concentrations of Cl- and H2PO4-, one, two, or all three species may be present. Qualitatively, under appropriate conditions, the phosphate species tends to replace some or all of the low-pH species. Quantitative analysis by a computer procedure permitted an appropriate scheme to be deduced and equilibrium constants to be evaluated. Studies on the e.p.r. signals at 295K indicated that similar equilibria applied in liquid solution, but with some changes in the values of the constants. The structure of the molybdenum centre in its various states and the nature of the enzymic reaction are discussed.  相似文献   

18.
The cytochrome cbb3 is an isoenzyme in the family of cytochrome c oxidases. This protein purified from Pseudomonas stutzeri displays a cyanide-sensitive nitric oxide reductase activity (Vmax=100+/-9 mol NO x mol cbb3(-1) x min(-1) and Km=12+/-2.5 microm), which is lost upon denaturation. This enzyme is only partially reduced by ascorbate, and readily re-oxidized by NO under anaerobic conditions at a rate consistent with the turnover number for NO consumption. As shown by transient spectroscopy experiments and singular value decomposition (SVD) analysis, these results suggest that the cbb3-type cytochromes, sharing structural features with bacterial nitric oxide reductases, are the enzymes retaining the highest NO reductase activity within the heme-copper oxidase superfamily.  相似文献   

19.
Abstract: Pseudomonas nautica grown anaerobically is capable of simultaneously utilizing oxygen and nitrate or its reduced products (nitrite and nitrous oxide). Evidence for this 'co-respiration' came from kinetic studies on oxygen consumption depending on oxygen concentration and from spectral studies which revealed changes in the cytochromes composition of the electron transport chain under aerobic or anaerobic conditions. A constitutive o -type cytochrome oxidase was detected either aerobically or anaerobically with an apparent K m for O2 evaluated at 315 μM. Two oxidases were induced only in anaerobic conditions. One of these two enzymes identified as a cd -type cytochrome oxidase shows a relatively high affinity for oxygen with an apparent K m value of 25 μM.  相似文献   

20.
R C Bray  S Gutteridge 《Biochemistry》1982,21(23):5992-5999
The effect of using [17O]water (24-50% enriched) as solvent on the Mo(V) electron paramagnetic resonance spectra of different reduced forms of xanthine oxidase has been investigated. All the Mo(V) signals are affected. Procedures are described, based on the use of difference spectral techniques, that facilitate interpretation of such spectra. The number of coupled oxygen atoms may be determined by estimation of the fraction of the spectrum that remains unchanged by the isotope at a known enrichment. For a species having two coupled oxygen atoms, the use of two different isotope enrichments permits elimination from the difference spectra of the contribution of the two singly substituted species. From the application of these methods, it is concluded that not only the strength of the hyperfine coupling of oxygen ligands of molybdenum but also their number and their exchangeability with the solvent vary from one reduced form of the enzyme to another. The inhibited species from active xanthine oxidase has been studied in the most detail. It has two weakly coupled oxygen atoms [A(17O)av = 0.1-0.2 mT] that do not exchange with the solvent. A cyclic structure is proposed for this species in which two oxygen ligands of molybdenum are bonded to the carbon of the formaldehyde or other alcohol or aldehyde molecule that reacted in producing the signal. Structures of the other signal-giving species from active xanthine oxidase (Very Rapid and Rapid types 1 and 2) are discussed, as is corresponding information on species from the desulfo enzyme and from sulfite oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号