首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
HIV-tat protein, like TNF, activates a wide variety of cellular responses, including NF-kappa B, AP-1, c-Jun N-terminal kinase (JNK), and apoptosis. Whether HIV-tat transduces these signals through the same mechanism as TNF is not known. In the present study we investigated the role of the T cell-specific tyrosine kinase p56lck in HIV-tat and TNF-mediated cellular responses by comparing the responses of Jurkat T cells with JCaM1 cells, an isogeneic lck-deficient T cell line. Treatment with HIV-tat protein activated NF-kappa B, degraded I kappa B alpha, and induced NF-kappa B-dependent reporter gene expression in a time-dependent manner in Jurkat cells but not in JCaM1 cells, suggesting the critical role of p56lck kinase. These effects were specific to HIV-tat, as activation of NF-kappa B by PMA, LPS, H2O2, and TNF was minimally affected. p56lck was also found to be required for HIV-tat-induced but not TNF-induced AP-1 activation. Similarly, HIV-tat activated the protein kinases JNK and mitogen-activated protein kinase kinase in Jurkat cells but not in JCaM1 cells. HIV-tat also induced cytotoxicity, activated caspases, and reactive oxygen intermediates in Jurkat cells, but not in JCaM1 cells. HIV-tat activated p56lck activity in Jurkat cells. Moreover, the reconstitution of JCaM1 cells with p56lck tyrosine kinase reversed the HIV-tat-induced NF-kappa B activation and cytotoxicity. Overall, our results demonstrate that p56lck plays a critical role in the activation of NF-kappa B, AP-1, JNK, and apoptosis by HIV-tat protein but has minimal or no role in activation of these responses by TNF.  相似文献   

3.
4.
This study demonstrates that human immunodeficiency virus type 1 (HIV-1) Tat protein amplifies the activity of tumor necrosis factor (TNF), a cytokine that stimulates HIV-1 replication through activation of NF-kappa B. In HeLa cells stably transfected with the HIV-1 tat gene (HeLa-tat cells), expression of the Tat protein enhanced both TNF-induced activation of NF-kappa B and TNF-mediated cytotoxicity. A similar potentiation of TNF effects was observed in Jurkat T cells and HeLa cells treated with soluble Tat protein. TNF-mediated activation of NF-kappa B and cytotoxicity involves the intracellular formation of reactive oxygen intermediates. Therefore, Tat-mediated effects on the cellular redox state were analyzed. In both T cells and HeLa cells HIV-1 Tat suppressed the expression of Mn-dependent superoxide dismutase (Mn-SOD), a mitochondrial enzyme that is part of the cellular defense system against oxidative stress. Thus, Mn-SOD RNA protein levels and activity were markedly reduced in the presence of Tat. Decreased Mn-SOD expression was associated with decreased levels of glutathione and a lower ratio of reduced:oxidized glutathione. A truncated Tat protein (Tat1-72), known to transactivate the HIV-1 long terminal repeat (LTR), no longer affected Mn-SOD expression, the cellular redox state or TNF-mediated cytotoxicity. Thus, our experiments demonstrate that the C-terminal region of HIV-1 Tat is required to suppress Mn-SOD expression and to induce pro-oxidative conditions reflected by a drop in reduced glutathione (GSH) and the GSH:oxidized GSH (GSSG) ratio.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
We have used a specific phosphatase inhibitor, okadaic acid, to examine the role of two phosphatases, PP1 and PP2A, in the induction of NF-kappa B and the long terminal repeat of the human immunodeficiency virus type 1 (HIV-LTR). Treatment of Jurkat cells with okadaic acid induced NF-kappa B in nuclear extracts. The rate of induction by okadaic acid was delayed compared to the induction of NF-kappa B by phorbol myristate acetate (PMA). The induction of NF-kappa B by okadaic acid was enhanced by cycloheximide or phytohemagglutinin (PHA). In contrast to PMA, okadaic acid appeared to induce NF-kappa B independently of protein kinase C (PKC). That the NF-kappa B induced by okadaic acid was functional was demonstrated by the marked increase in CAT activity that occurred in Jurkat, BJA-B, and U251 cells that were transfected with HIV-LTR-CAT and treated with okadaic acid. The increase in CAT activity triggered by okadaic acid was dependent on the presence of the NF-kappa B sites in the long terminal repeat of HIV as assessed by deletion and mutation analysis. Similarly to its effect on the induction of NF-kappa B, PHA added together with okadaic acid resulted in a further increase in CAT activity. Somewhat surprisingly, the addition of PMA inhibited the increase in CAT activity in response to okadaic acid, which suggests that the activation of PKC may also induce inhibitory factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
NF-kappa B plays a key role in the production of cytokines in inflammatory diseases. The effects of a novel T cell-specific NF-kappa B inhibitor, SP100030, were evaluated in cultured Jurkat cells and in murine collagen-induced arthritis (CIA). Chemical libraries were screened for NF-kappa B-inhibitory activity. SP100030, a compound identified in this process, inhibited NF-kappa B activation in PMA/PHA-activated Jurkat cells by EMSA at a concentration of 1 microM. Jurkat cells and the monocytic cell line THP-1 were transfected with an NF-kappa B promotor/luciferase construct and activated. SP100030 inhibited luciferase production in the Jurkat cells (IC50 = 30 nM). ELISA and RT-PCR confirmed that IL-2, IL-8, and TNF-alpha production by activated Jurkat and other T cell lines were inhibited by SP100030. However, cytokine expression was not blocked by the compound in THP-1 cells, fibroblasts, endothelial cells, or epithelial cells. Subsequently, DBA/1J mice were immunized with type II collagen. Treatment with SP100030 (10 mg/kg/day i.p. beginning on day 21) significantly decreased arthritis severity from onset of clinical signs to the end of the study on day 34 (arthritis score, 5.6 +/- 1.7 for SP100030 and 9.8 +/- 1.5 for control; p < 0.001). Histologic evaluation demonstrated a trend toward improvement in SP100030-treated animals. EMSA of arthritic mouse ankles in CIA showed that synovial NF-kappa B binding was suppressed in the SP100030-treated mice. SP100030 inhibits NF-kappa B activation in T cells, resulting in reduced NF-kappa B-regulated gene expression and decreased CIA. Its selectivity for T cells could provide potent immunosuppression with less toxicity than other NF-kappa B inhibitors.  相似文献   

7.
CD47 has been implicated in both positive and negative regulation of T cells as well as in T cell death. To clarify the role of CD47 in T cell function, we have studied the mechanism of T cell death in response to CD47 ligands, including mAb 1F7, thrombospondin-1, and a CD47 agonist peptide derived from it. CD47(-/-) Jurkat T cells (JINB8) were resistant to killing by all three ligands, indicating the essential role of CD47. Primary human T cells were also killed by CD47 ligands, but only after activation with anti-CD3. CD47-mediated cell death occurred without active caspases, DNA fragmentation, or Bcl-2 degradation. Pretreatment of Jurkat and primary T cells with pertussis toxin (PTX) prevented CD47-mediated death, indicating the involvement of G((i)alpha). Pretreatment of T cells with 8-bromo cAMP, forskolin, or 3-isobutyl-1-methylxanthine prevented the CD47-mediated apoptosis, and 1F7 dramatically reduced intracellular cAMP levels, an effect reversed with PTX. H89 and protein kinase A (PKA) inhibitor peptide, a specific PKA inhibitor, prevented rescue of T cells by PTX, 8-bromo cAMP, and forskolin, indicating a direct role for one or more PKA substrates. Thus, CD47-mediated killing of activated T cells occurs by a novel pathway involving regulation of cAMP levels by heterotrimeric G((i)alpha) with subsequent effects mediated by PKA.  相似文献   

8.
Activation of protein kinase C (PKC) prevents apoptosis in certain cells; however, the mechanisms are largely unknown. Inhibitors of apoptosis (IAP) family members, including NAIP, cIAP-1, cIAP-2, XIAP/hILP, survivin, and BRUCE, block apoptosis by binding and potently inhibiting caspases. Activation of NF-kappa B contributes to cIAP-2 induction; however, the cellular mechanisms regulating cIAP-2 expression have not been entirely defined. In this study, we examined the role of the PKC and NF-kappa B pathways in the regulation of cIAP-2 in human colon cancers. We found that cIAP-2 mRNA levels were markedly increased in human colon cancer cells by treatment with the phorbol ester, phorbol-12-myristate-13-acetate (PMA), or bryostatin 1. Inhibitors of the Ca2+-independent, novel PKC isoforms, but not inhibitors of MAPK, PI3-kinase, or PKA, blocked PMA-stimulated cIAP-2 mRNA expression, suggesting a role of PKC in PMA-mediated cIAP-2 induction. Pretreatment with the PKC delta-selective inhibitor rottlerin or transfection with an antisense PKC delta oligonucleotide inhibited PMA-induced cIAP-2 expression, whereas cotransfection with a PKC delta plasmid induced cIAP-2 promoter activity, which, taken together, identifies a role for PKC delta in cIAP-2 induction. Treatment with the proteasome inhibitor, MG132 or inhibitors of NF-kappa B (e.g. PDTC and gliotoxin), decreased PMA-induced up-regulation of cIAP-2. PMA-induced NF-kappa B activation was blocked by either GF109203x, MG132, PDTC, or gliotoxin. Moreover, overexpression of PKC delta-induced cIAP-2 promoter activity and increased NF-kappa B transactivation, suggesting regulation of cIAP-2 expression by a PKC delta/NF-kappa B pathway. In conclusion, our findings demonstrate a role for a PKC/NF-kappa B-dependent pathway in the regulation of cIAP-2 expression in human colon cancer cells. These data suggest a novel mechanism for the anti-apoptotic function mediated by the PKC delta/NF-kappa B/cIAP-2 pathway in certain cancers.  相似文献   

9.
10.
Herpes simplex virus type 1 (HSV-1) infection induces expression of the human immunodeficiency virus type 1 (HIV-1) provirus in the chronically infected T-cell line ACH-2. The HSV-1-mediated induction correlates with the appearance of two NF-kappa B-specific proteins of 55 and 85 kDa in the nucleus and with the binding of 50-kDa nuclear protein to the LBP-1 binding site of the untranslated leader sequence of the HIV-1 long terminal repeat. The HSV-1-induced LBP-1 binding protein, designated HLP-1, is present exclusively in HSV-1-infected, but not in phorbol-12-myristate-13-acetate- or tumor necrosis factor alpha-treated ACH-2 cells. Both the NF-kappa B and LBP-1 target sequences, when inserted either alone or together 5' of a heterologous minimal promoter (thymidine kinase), confer inducibility by HSV-1 infection in a transient transfection assay. Thus, it appears that the HSV-1-mediated activation of HIV-1 provirus is brought about by the binding of both NF-kappa B and HLP-1 specific proteins to two distinct regions of HIV-1 long terminal repeat.  相似文献   

11.
The mechanisms by which phorbol 12-myristate 13-acetate (PMA) and cAMP attenuate the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns 4,5-P2) induced by ligation of the T-cell antigen receptor complex (TCR) was studied in the human Jurkat T-cell line. It has previously been shown that stimulation of Jurkat cells with antibodies to CD3, components of the TCR, elicits a rapid and transient phosphorylation of phospholipase C (PLC)-gamma 1, the predominant PLC isozyme in Jurkat cells, at multiple tyrosine residues and that such tyrosine phosphorylation leads to activation of PLC-gamma 1. Prior incubation of Jurkat cells with PMA or forskolin, which increases intracellular cAMP concentrations, prevented tyrosine phosphorylation of PLC-gamma 1 as well as the hydrolysis of PtdIns 4,5-P2 induced by ligation of CD3. Dose-response curves of PMA and of forskolin for the inhibition of PLC-gamma 1 tyrosine phosphorylation and of PtdIns 4,5-P2 hydrolysis were similar. These results suggest that the inhibition of PtdIns 4,5-P2 hydrolysis by PMA and cAMP is attributable to reduced tyrosine phosphorylation of PLC-gamma 1. Treatment of Jurkat cells with PMA or forskolin stimulated the phosphorylation of PLC-gamma 1 at serine 1248. PMA treatment also elicited the phosphorylation of PLC-gamma 1 at an unidentified serine site. Phosphopeptide map analysis indicated that the sites of PLC-gamma 1 phosphorylated in Jurkat cells treated with PMA and forskolin are the same as those phosphorylated in vitro by protein kinase C (PKC) and cAMP-dependent protein kinase (PKA), respectively. Stimulation of Jurkat cells with antibodies to CD3 also elicited phosphorylation of PLC-gamma 1 at serine 1248 and at the unidentified serine site phosphorylated in PLC-gamma 1 from PMA-treated cells. Thus, phosphorylation of PLC-gamma 1 by PKC or PKA at serine 1248 may modulate the interaction of PLC-gamma 1 with the protein tyrosine kinase or the protein tyrosine phosphatase; this altered interaction may, at least in part, be responsible for the decreased tyrosine phosphorylation of PLC-gamma 1 seen in PMA- and forskolin-treated Jurkat cells. Furthermore, in the absence of PMA, activation of PKC by diacylglycerol provides a negative feedback signal responsible for reducing the phosphotyrosine contents of PLC-gamma 1.  相似文献   

12.
We have previously reported that infection with herpes simplex virus type 1 (HSV-1) activates expression of the human immunodeficiency virus type 1 (HIV-1) provirus in T cells. Activation of the HIV-1 provirus correlated with the activation of binding of 55- and 85-kDa proteins to the kappa B enhancer and binding of the 50-kDa HLP-1 protein to the LBP-1 sequences of the HIV-1 long terminal repeat. Further examination of this system has shown that the inhibition of HSV-1 replication by the antiviral drug acyclovir does not inhibit HSV-1-mediated induction of HIV-1 provirus. Surprisingly, the NF-kappa B and HLP-1 binding activities were substantially inhibited in acyclovir-treated cells. In the transient-transfection assay, ICP0, but not ICP4, activated the HIV-1 long terminal repeat promoter region and the effect of ICP0 was greatly enhanced in the presence of the NF-kappa B binding proteins, suggesting that induction of the HIV-1 provirus involves cooperation between the HSV-1-activated cellular factor, NF-kappa B, and the virus-encoded transactivator, ICP0.  相似文献   

13.
14.
15.
16.
Y Su  W Popik    P M Pitha 《Journal of virology》1995,69(1):110-121
We have examined the feasibility of using interferon (IFN) gene transfer as a novel approach to anti-human immunodeficiency virus type 1 (HIV-1) therapy in this study. To limit expression of a transduced HIV-1 long terminal repeat (LTR)-IFNA2 (the new approved nomenclature for IFN genes is used throughout this article) hybrid gene to the HIV-1-infected cells, HIV-1 LTR was modified. Deletion of the NF-kappa B elements of the HIV-1 LTR significantly inhibited Tat-mediated transactivation in T-cell lines, as well as in a monocyte line, U937. Replacement of the NF-kappa B elements in the HIV-1 LTR by a DNA fragment derived from the 5'-flanking region of IFN-stimulated gene 15 (ISG15), containing the IFN-stimulated response element, partially restored Tat-mediated activation of LTR in T cells as well as in monocytes. Insertion of this chimeric promoter (ISG15 LTR) upstream of the human IFNA2 gene directed high levels of IFN synthesis in Tat-expressing cells, while this promoter was not responsive to tumor necrosis factor alpha-mediated activation. ISG15-LTR-IFN hybrid gene inserted into the retrovirus vector was transduced into Jurkat and U937 cells. Selected transfected clones produced low levels of IFN A (IFNA) constitutively, and their abilities to express interleukin-2 and interleukin-2 receptor upon stimulation with phytohemagglutinin and phorbol myristate acetate were retained. Enhancement of IFNA synthesis observed upon HIV-1 infection resulted in significant inhibition of HIV-1 replication for a period of at least 30 days. Virus isolated from IFNA-producing cells was able to replicate in the U937 cells but did not replicate efficiently in U937 cells transduced with the IFNA gene. These results suggest that targeting IFN synthesis to HIV-1-infected cells is an attainable goal and that autocrine IFN synthesis results in a long-lasting and permanent suppression of HIV-1 replication.  相似文献   

17.
Replication of the human immunodeficiency virus type 1 (HIV-1) is inhibited by interferons (IFNs), and the IFN-inducible protein kinase PKR is thought to mediate this effect by regulating protein synthesis. Here we report that ectopic expression of dominant negative PKR mutants in Jurkat cells induces HIV-1 replication. Specifically, expression of CD4 is upregulated by the PKR mutants, and this correlates with an induction of HIV-1 binding and proviral DNA synthesis upon HIV-1 infection. Moreover, activation of NF-kappaB was induced by an RNA binding-defective mutant of PKR. Thus, it appears that PKR, in addition to translational control, is involved in HIV-1 replication by modulating virus binding through the regulation of CD4 expression and virus gene expression through the activation of NF-kappaB.  相似文献   

18.
This study was conducted on human Jurkat T cell lines to elucidate the role of EPA and DHA, n-3 PUFA, in the modulation of two mitogen-activated protein (MAP) kinases, that is, extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). The n-3 PUFA alone failed to induce phosphorylation of ERK1/ERK2. We stimulated the MAP kinase pathway with anti-CD3 antibodies and phorbol 12-myristate 13-acetate (PMA), which act upstream of the MAP kinase (MAPK)/ERK kinase (MEK) as U0126, an MEK inhibitor, abolished the actions of these two agents on MAP kinase activation. EPA and DHA diminished the PMA- and anti-CD3-induced phosphorylation of ERK1/ERK2 in Jurkat T cells. In the present study, PMA acts mainly via protein kinase C (PKC) whereas anti-CD3 antibodies act via PKC-dependent and -independent mechanisms. Furthermore, DHA and EPA inhibited PMA-stimulated PKC enzyme activity. EPA and DHA also significantly curtailed PMA- and ionomycin-stimulated T cell blastogenesis. Together these results suggest that EPA and DHA modulate ERK1/ERK2 activation upstream of MEK via PKC-dependent and -independent pathways and that these actions may be implicated in n-3 PUFA-induced immunosuppression.  相似文献   

19.
Peripheral homeostasis and tolerance requires the suppression or removal of excessive or harmful T lymphocytes. This can occur either by apoptosis through active antigen-induced death or cytokine withdrawal. Alternatively, T cell activation can be suppressed by agents that activate the cAMP-dependent protein kinase (PKA) signaling pathway, such as prostaglandin E2. Stimulation of PKA inhibits lymphocyte proliferation and immune effector functions. Here we have investigated the mechanism by which activation of PKA induces inhibition of proliferation in human leukemic T cell lines. Using a variety of agents that stimulate PKA, we can arrest Jurkat and H9 leukemic T cells in the G(1) phase of the cell cycle, whereas cell viability is hardly affected. This G(1) arrest is associated with an inhibition of cyclin D/Cdk and cyclin E/Cdk kinase activity. Interestingly, expression of cyclin D3 is rapidly reduced by PKA activation, whereas expression of the Cdk inhibitor p27(kip1) is induced. Ectopic expression of cyclin D3 can override the growth suppression induced by PKA activation to some extent, indicating that growth inhibition of leukemic T cells by PKA activation is partially dependent on down-regulation of cyclin D3 expression. Taken together our data suggest that immunosuppression by protein kinase A involves regulation of both cyclin D3 and p27(kip1) expression.  相似文献   

20.
Stimulation of the protein kinase A (PKA) signalling pathway exerts an inhibitory effect on the proliferation of numerous cells, including T lymphocytes. In CD4+ T helper cells, stimulation of PKA leads to suppression of interleukin 2 (IL-2) induction, while induction of the genes coding for the lymphokines IL-4 and IL-5 is enhanced. We show that the differential effect of PKA activity on induction of the IL-2 and IL-4 genes is mediated through their promoters. One major target of the suppressive effect of PKA is the kappa B site in the IL-2 promoter. A kappa B site is missing in the IL-4 promoter. Mutations preventing factor binding to the IL-2 kappa B site result in a loss of PKA-mediated suppression of IL-2 promoter activity. Furthermore, activation of the PKA signalling pathway impairs the inducible activity of multiple kappa B sites of the IL-2 promoter, but not of other factor binding sites. The reduction in activity of kappa B sites in activated and PKA-stimulated T cells is accompanied by changes in the concentration and DNA binding of Rel/NF-kappa B factors. Stimulation of the PKA pathway in Jurkat T cells with the PKA activator forskolin leads to an increase in synthesis of c-Rel and p105/p50, while synthesis of p65/RelA remains unchanged. However, nuclear translocation and DNA binding of p65 is distinctly impaired, probably due to a retarded degradation of I kappa B-alpha. In a similar way, stimulation of the PKA signalling pathway inhibits nuclear translocation of p65 and generation of nuclear kappa B complexes in peripheral T lymphocytes from murine lymph nodes. These results indicate that PKA-mediated suppression of NF-kappa B activity plays an important role in the control of activation of peripheral T lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号