首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five moeA mutants were generated by replacing some conserved amino acids of MoeA by site-directed mutagenesis. The mutants were assayed for the ability to restore in vivo nitrate reductase activity of the moeA mutant Escherichia coli JRG97 and in vitro Neurospora crassa nit-1 nitrate reductase activity. The replacements Asp59AlaGly60Ala, Asp259Ala, Pro298AlaPro301Ala abolished the function of MoeA in Mo-molybdopterin formation and stabilization, reflected in the inability to restore nitrate reductase activity. The replacements Gly251AlaGly252Ala reduced, and that of Pro283Ala had no effect, on nitrate reductase activity. E. coli JRG97 cells transformed with mutants that failed to restore nitrate reductase activity showed by HPLC analysis a decreased level of molybdopterin-derived dephospho FormA as compared to bacteria transformed with wild-type moeA. The effects of the amino acid replacements on MoeA function may be explained in correlation with the MoeA crystal structure.  相似文献   

2.
BACKGROUND: Molybdenum cofactor (Moco) biosynthesis is an evolutionarily conserved pathway present in archaea, eubacteria, and eukaryotes. In humans, genetic abnormalities in the biosynthetic pathway result in Moco deficiency, which is accompanied by severe neurological symptoms and death shortly after birth. The Escherichia coli MoeA and MogA proteins are involved in the final step of Moco biosynthesis: the incorporation of molybdenum into molybdopterin (MPT), the organic pyranopterin moiety of Moco. RESULTS: The crystal structure of E. coli MoeA has been refined at 2 A resolution and reveals that the highly elongated MoeA monomer consists of four clearly separated domains, one of which is structurally related to MogA, indicating a divergent evolutionary relationship between both proteins. The active form of MoeA is a dimer, and a putative active site appears to be localized to a cleft formed between domain II of the first monomer and domains III and IV of the second monomer. CONCLUSIONS: In eukaryotes, MogA and MoeA are fused into a single polypeptide chain. The corresponding mammalian protein gephyrin has also been implicated in the anchoring of glycinergic receptors to the cytoskeleton at inhibitory synapses. Based on the structures of MoeA and MogA, gephyrin is surmised to be a highly organized molecule containing at least five domains. This multidomain arrangement could provide a structural basis for its functional diversity. The oligomeric states of MoeA and MogA suggest how gephyrin could assemble into a hexagonal scaffold at inhibitory synapses.  相似文献   

3.
The molybdenum cofactor (Moco) is found in a variety of enzymes present in all phyla and comprises a family of related molecules containing molybdopterin (MPT), a tricyclic pyranopterin with a cis-dithiolene group, as the invariant essential moiety. MPT biosynthesis involves a conserved pathway, but some organisms perform additional reactions that modify MPT. In eubacteria, the cofactor is often present in a dinucleotide form combining MPT and a purine or pyrimidine nucleotide via a pyrophosphate linkage. In Escherichia coli, the MobA protein links a guanosine 5'-phosphate to MPT forming molybdopterin guanine dinucleotide. This reaction requires GTP, MgCl(2), and the MPT form of the cofactor and can efficiently reconstitute Rhodobacter sphaeroides apo-DMSOR, an enzyme that requires molybdopterin guanine dinucleotide for activity. In this paper, we present the crystal structure of MobA, a protein containing 194 amino acids. The MobA monomer has an alpha/beta architecture in which the N-terminal half of the molecule adopts a Rossman fold. The structure of MobA has striking similarity to Bacillus subtilis SpsA, a nucleotide-diphospho-sugar transferase involved in sporulation. The cocrystal structure of MobA and GTP reveals that the GTP-binding site is located in the N-terminal half of the molecule. Conserved residues located primarily in three signature sequence motifs form crucial interactions with the bound nucleotide. The binding site for MPT is located adjacent to the GTP-binding site in the C-terminal half of the molecule, which contains another set of conserved residues presumably involved in MPT binding.  相似文献   

4.
BACKGROUND: The reaction mechanism of methylglyoxal synthase (MGS) is believed to be similar to that of triosephosphate isomerase (TIM). Both enzymes utilise dihydroxyacetone phosphate (DHAP) to form an enediol(ate) phosphate intermediate as the first step of their reaction pathways. However, the second catalytic step in the MGS reaction pathway is characterized by the elimination of phosphate and collapse of the enediol(ate) to form methylglyoxal instead of reprotonation to form the isomer glyceraldehyde 3-phosphate. RESULTS: The crystal structure of MGS bound to formate and substoichiometric amounts of phosphate in the space group P6522 has been determined at 1.9 A resolution. This structure shows that the enzyme is a homohexamer composed of interacting five-stranded beta/alpha proteins, rather than the hallmark alpha/beta barrel structure of TIM. The conserved residues His19, Asp71, and His98 in each of the three monomers in the asymmetric unit bind to a formate ion that is present in the crystallization conditions. Differences in the three monomers in the asymmetric unit are localized at the mouth of the active site and can be ascribed to the presence or absence of a bound phosphate ion. CONCLUSIONS: In agreement with site-directed mutagenesis and mechanistic enzymology, the structure suggests that Asp71 acts as the catalytic base. Further, Asp20 and Asp101 are involved in intersubunit salt bridges. These salt bridges may provide a pathway for transmitting allosteric information.  相似文献   

5.
Rifamycin SV contains one amide nitrogen atom at its C(7)N moiety. Earlier labeling studies suggested that nitrogen might be incorporated from a pathway involved in a molybdenum-dependent nitrate reductase. However, no genetic evidence is available thus far. The structural gene moeA, which is involved in molybdopterin synthesis in various organisms, has been cloned from rifamycin SV-producing Amycolatopsis mediterranei strain U32. The amino acid sequence deduced from the moeA gene showed significant similarity to members of the MoeA protein family and contains all the structural features that are highly conserved in the putative functional domains of MoeA proteins. Southern hybridization showed that there is only one moeA gene in the A. mediterranei genome. To further investigate the possible physiological function of the moeA gene, a double crossover gene replacement was achieved by inserting an aparmycin resistance gene into moeA in the A. mediterranei U32 chromosome. Phenotype analysis showed that the moeA gene is required for A. mediterranei growth in a minimal medium with nitrate as sole nitrogen source, possibly because nitrate reductase activity is diminished due to disruption of the moeA gene. Compared to the wild type strain, moeA-disrupted mutants lost 95% of their rifamycin SV production capacity in complex fermentation media. The results demonstrate that the moeA gene is necessary for rifamycin SV production in A. mediterranei, and that the nitrogen assimilation pathway involved in nitrate reductase is the major pathway for the genesis of the amide nitrogen atom in the rifamycin SV molecule.  相似文献   

6.
7.
Escherichia coli spheroplast protein y (EcSpy) is a small periplasmic protein that is homologous with CpxP, an inhibitor of the extracytoplasmic stress reponse. Stress conditions such as spheroplast formation induce the expression of Spy via the Cpx or the Bae two‐component systems in E. coli, though the function of Spy is unknown. Here, we report the crystal structure of EcSpy, which reveals a long kinked hairpin‐like structure of four α‐helices that form an antiparallel dimer. The dimer contains a curved oval shape with a highly positively charged concave surface that may function as a ligand binding site. Sequence analysis reveals that Spy is highly conserved over the Enterobacteriaceae family. Notably, three conserved regions that contain identical residues and two LTxxQ motifs are placed at the horizontal end of the dimer structure, stablizing the overall fold. CpxP also contains the conserved sequence motifs and has a predicted secondary structure similar to Spy, suggesting that Spy and CpxP likely share the same fold.  相似文献   

8.
The crystal structure of Escherichia coli MoaB was determined by multiwavelength anomalous diffraction phasing and refined at 1.6-A resolution. The molecule displayed a modified Rossman fold. MoaB is assembled into a hexamer composed of two trimers. The monomers have high structural similarity with two proteins, MogA and MoeA, from the molybdenum cofactor synthesis pathway in E. coli, as well as with domains of mammalian gephyrin and plant Cnx1, which are also involved in molybdopterin synthesis. Structural comparison between these proteins and the amino acid conservation patterns revealed a putative active site in MoaB. The structural analysis of this site allowed to advance several hypothesis that can be tested in further studies.  相似文献   

9.
YhaK is a protein of unknown function found in low abundance in the cytosol of Escherichia coli. DNA array studies have revealed that YhaK is strongly up-regulated by nitroso-glutathione (GSNO) and also displays a 12-fold increase in expression during biofilm growth of E. coli 83972 and VR50 in human urine. We have determined the YhaK crystal structure and demonstrated that in vitro YhaK is a good marker for monitoring oxidative stresses in E. coli. The YhaK protein structure shows a bicupin fold where the two cupin domains are crosslinked with one intramolecular disulfide bond (Cys10 to Cys204). We found that the third cysteine in YhaK, Cys122, is oxidized to a sulfenic acid. Two chloride ions are found in the structure, one close to the reactive Cys122, and the other on a hydrophobic surface close to a symmetry-related molecule. There are major structural differences at the N-terminus of YhaK compared with similar structures that also display the bicupin fold (YhhW and hPirin). YhaK showed no quercetinase and peroxidase activity. However, reduced YhaK was very sensitive to reactive oxygen species (ROS). The complete, functional E. coli glutaredoxin or thioredoxin systems protected YhaK from oxidation. E. coli thioredoxin reductase and NADPH produced ROS and caused oxidation and oligomerization of reduced YhaK. Taken together, we propose that YhaK is the first of a new sub-class of bicupins that lack the canonical cupin metal-binding residues of pirins and may be involved in chloride binding and/or sensing of oxidative stress in enterobacteria.  相似文献   

10.
Leucyl/phenylalanyl-tRNA-protein transferase (L/F-transferase) is an N-end rule pathway enzyme, which catalyzes the transfer of Leu and Phe from aminoacyl-tRNAs to exposed N-terminal Arg or Lys residues of acceptor proteins. Here, we report the 1.6 A resolution crystal structure of L/F-transferase (JW0868) from Escherichia coli, the first three-dimensional structure of an L/F-transferase. The L/F-transferase adopts a monomeric structure consisting of two domains that form a bilobate molecule. The N-terminal domain forms a small lobe with a novel fold. The large C-terminal domain has a highly conserved fold, which is observed in the GCN5-related N-acetyltransferase (GNAT) family. Most of the conserved residues of L/F-transferase reside in the central cavity, which exists at the interface between the N-terminal and C-terminal domains. A comparison of the structures of L/F-transferase and the bacterial peptidoglycan synthase FemX, indicated a structural homology in the C-terminal domain, and a similar domain interface region. Although the peptidyltransferase function is shared between the two proteins, the enzymatic mechanism would differ. The conserved residues in the central cavity of L/F-transferase suggest that this region is important for the enzyme catalysis.  相似文献   

11.
The Hfq protein was discovered in Escherichia coli in the early seventies as a host factor for the Qbeta phage RNA replication. During the last decade, it was shown to be involved in many RNA processing events and remote sequence homology indicated a link to spliceosomal Sm proteins. We report the crystal structure of the E.coli Hfq protein showing that its monomer displays a characteristic Sm-fold and forms a homo-hexamer, in agreement with former biochemical data. Overall, the structure of the E.coli Hfq ring is similar to the one recently described for Staphylococcus aureus. This confirms that bacteria contain a hexameric Sm-like protein which is likely to be an ancient and less specialized form characterized by a relaxed RNA binding specificity. In addition, we identified an Hfq ortholog in the archaeon Methanococcus jannaschii which lacks a classical Sm/Lsm gene. Finally, a detailed structural comparison shows that the Sm-fold is remarkably well conserved in bacteria, Archaea and Eukarya, and represents a universal and modular building unit for oligomeric RNA binding proteins.  相似文献   

12.
Escherichia coli is a valuable commercial host for the production of heterologous proteins. We used elementary mode analysis to identify all possible genetically independent pathways for the production of three specific recombinant proteins, green fluorescent protein, savinase and an artificial protein consisting of repeating units of a five-amino-acid cassette. Analysis of these pathways led to the identification of the most efficient pathways for the production of each of these proteins. The results indicate that the amino acid composition of expressed proteins has a profound effect on the number and identity of possible pathways for the production of these proteins. We show that several groups of elementary modes produce the same ratio of biomass and recombinant protein. The pattern of occurrence of these modes is dependent on the amino acid composition of the specific foreign protein produced. These pathways are formed as systemic combinations of other pathways that produce biomass or foreign protein alone after the elimination of fluxes in specific internal reversible reactions or the reversible carbon dioxide exchange reaction. Since these modes represent pathway options that enable the cell to produce biomass and protein without utilizing these reactions, removal of these reactions would constrain the cells to utilize these modes for producing biomass and foreign protein at constant ratios.  相似文献   

13.
14.
YciF is a protein that is up-regulated when bacteria experience stress conditions, and is highly conserved in a range of bacterial species. YciF has no known structure or biochemical function. To learn more about its potential molecular function and its role in the bacterial stress response, we solved the crystal structure of YciF at 2.0 Angstrom resolution by the multiple wavelength anomalous diffraction (MAD) technique. YciF is a dimer in solution, and forms a homodimer in the crystal asymmetric unit. The two monomers form a dimer with a molecular twofold axis, with a significant burial of solvent-accessible surface area. The protein is an all-alpha protein composed of five helices: a four-helix bundle, and a short additional helix at the dimer interface. The protein is structurally similar to portions of the diiron-containing proteins, rubrerythrin and the Bacillus anthracis Dlp-2.  相似文献   

15.
O'Reilly M  Watson KA  Johnson LN 《Biochemistry》1999,38(17):5337-5345
Acarbose is a naturally occurring pseudo-tetrasaccharide. It has been used in conjunction with other drugs in the treatment of diabetes where it acts as an inhibitor of intestinal glucosidases. To probe the interactions of acarbose with other carbohydrate recognition enzymes, the crystal structure of E. coli maltodextrin phosphorylase (MalP) complexed with acarbose has been determined at 2.95 A resolution and refined to crystallographic R-values of R (Rfree) = 0.241 (0.293), respectively. Acarbose adopts a conformation that is close to its major minimum free energy conformation in the MalP-acarbose structure. The acarviosine moiety of acarbose occupies sub-sites +1 and +2 and the disaccharide sub-sites +3 and +4. (The site of phosphorolysis is between sub-sites -1 and +1.) This is the first identification of sub-sites +3 and +4 of MalP. Interactions of the glucosyl residues in sub-sites +2 and +4 are dominated by carbohydrate stacking interactions with tyrosine residues. These tyrosines (Tyr280 and Tyr613, respectively, in the rabbit muscle phosphorylase numbering scheme) are conserved in all species of phosphorylase. A glycerol molecule from the cryoprotectant occupies sub-site -1. The identification of four oligosaccharide sub-sites, that extend from the interior of the phosphorylase close to the catalytic site to the exterior surface of MalP, provides a structural rationalization of the substrate selectivity of MalP for a pentasaccharide substrate. Crystallographic binding studies of acarbose with amylases, glucoamylases, and glycosyltranferases and NMR studies of acarbose in solution have shown that acarbose can adopt two different conformations. This flexibility allows acarbose to target a number of different enzymes. The two alternative conformations of acarbose when bound to different carbohydrate enzymes are discussed.  相似文献   

16.
The crystal structure of a conserved hypothetical protein from Escherichia coli has been determined using X-ray crystallography. The protein belongs to the Cluster of Orthologous Group COG1553 (National Center for Biotechnology Information database, NLM, NIH), for which there was no structural information available until now. Structural homology search with DALI algorism indicated that this protein has a new fold with no obvious similarity to those of other proteins with known three-dimensional structures. The protein quaternary structure consists of a dimer of trimers, which makes a characteristic cylinder shape. There is a large closed cavity with approximate dimensions of 16 Å × 16 Å × 20 Å in the center of the hexameric structure. Six putative active sites are positioned along the equatorial surface of the hexamer. There are several highly conserved residues including two possible functional cysteines in the putative active site. The possible molecular function of the protein is discussed.  相似文献   

17.
18.
19.
Sequence homologs of the small MutS-related (Smr) domain, the C-terminal endonuclease domain of MutS2, also exist as stand-alone proteins. In this study, we report the crystal structure of a proteolyzed fragment of YdaL (YdaL??-???), a stand-alone Smr protein from Escherichia coli. In this structure, residues 86-170 assemble into a classical Smr core domain and are embraced by an N-terminal extension (residues 40-85) with an α/β/α fold. Sequence alignment indicates that the N-terminal extension is conserved among a number of stand-alone Smr proteins, suggesting structural diversity among Smr domains. We also discovered that the DNA binding affinity and endonuclease activity of the truncated YdaL??-??? protein were slightly lower than those of full-length YdaL?-???, suggesting that residues 1-38 may be involved in DNA binding.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号