首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The recent finding that the human T-cell leukemia virus type 1 (HTLV-1) encases itself in a carbohydrate-rich adhesive extracellular 'cocoon', which enables its efficient and protected transfer between cells, unveiled a new infectious entity and a novel mechanism of viral transmission. These HTLV-1 structures are observed at the surface of T cells from HTLV-1-infected patients and are reminiscent of bacterial biofilms. The virus controls the synthesis of the matrix, which surrounds the virions and attaches them to the T cell surface. We propose that, similar to bacterial biofilms, viral biofilms could represent 'viral communities' with enhanced infectious capacity and improved spread compared with 'free' viral particles, and might constitute a key reservoir for chronic infections.  相似文献   

2.
3.
4.
In this discussion, greatest emphasis has been placed upon the personal factors involved, rather than upon the mechanical aspects of creating and maintaining a group, since it is the personal factors, the authors say, that are the most often overlooked.  相似文献   

5.
6.
7.
AMP-deaminase from human liver was purified by two-step phosphocellulose chromatography, and SDS-PAG electrophoresis of the most active enzyme fraction eluted has been performed. The largest of the protein fragments revealed had a size (92 kDa) of an apparent full-size enzyme subunit, and reacted positively with antibodies produced against specific human ampd2 gene product. Three-day storage at cold room temperature modified significantly the electrophoretical pattern of the enzyme, evidencing continuous and progressive degradation of its structure. This is a first report evidencing the presence of apparent full-size form of human liver AMP-deaminase in preparation obtained from endogenous source.  相似文献   

8.
Does the Golgi apparatus proliferate by adding new material to a permanent template, or do Golgi structures form de novo by a process of self-organization? Recent work suggests that the Golgi is capable of forming de novo.  相似文献   

9.
The subcellular distributions of the precursor form and mature form of γ-glutamyltranspeptidase of rat kidney were studied by labeling the enzyme with [3H] fucose in vivo. In trans Golgi elements and basolateral membranes, γ-glutamyltranspeptidase was present as a precursor form with a single polypeptide chain. However, the brush border membranes contained the heavy and light subunits as well as precursor. These results suggest that the precursor is converted to the mature form after its transport to the brush border membranes.  相似文献   

10.
11.
Nep1-like proteins (NLPs) are a novel family of microbial elicitors of plant necrosis that induce a hypersensitive-like response in dicot plants. The spatial structure and role of these proteins are yet unknown. In a paper published in BMC Plant Biology (2008; 8:50) we have proposed that the core region of Nep1-like proteins (NLPs) belong to the Cupin superfamily. Based on what is known about the Cupin superfamily, in this addendum to the paper we discuss how NLPs could form oligomers.Key words: quaternary structure, necrosis and ethylene inducing proteins, NLPs, MpNEP1, MpNEP2, NPP1, Moniliophthora perniciosa, Phytophthora parasiticaCupins may be organized as monomers, dimers, hexamers and octamers of β-barrel domains.1 To the best of our knowledge trimers have not been detected yet. The interaction of two monomers building up a dimeric structure is basically performed by three types of interactions: hydrophobic interactions between β-strands in different subunits, salt bridges and hydrogen bonds between β-strands. In cupin dimers, the hydrophobic interactions occur between two βI strands in different subunits (Fig. 1A and B). This strand represents the central axis of rotation of the dimer as one residue in βI interacts with the corresponding residue in the other subunit (Fig. 1B). Therefore, all residues in βI must be hydrophobic, as one residue interacts with the other subunit and the next one in the sequence interacts with the interior of the protein. Charged residues in βI would disrupt such interactions. Most cupin dimers have strong hydrophobic residues such as tryptophan (W), phenylalanine (F) and methionine (M) pointing towards the own subunit (↓), while small hydrophobic residues such as leucine (L), isoleucine (I), and valine (V) point to the other subunit (↑). A particular case is leucine that interacts with other subunits, for instance, βI = liaW (positions 217–220 in Fig. 1B) and βI = LVsw of type I and II NLP consensuses, respectively. Therefore, the pattern of hydropathicity suggests that the side chain orientation is βI = l217 ↑ i218 ↓ a219 ↑ W220 ↓ d221 ↑. However we observe that just after βI there is a charged residue (aspartate D221) which would point outwards disrupting the dimer or at least making it less stable. It is interesting to observe that the requirement for a negatively charged residue at this last position is very high: 96% of all type I NLPs contains an aspartate (D) or glutamate (E) indicating an important role for it, maybe in avoiding dimerization of the NLPs. A second interesting hypothesis is as follows: several cupins are oxygenases, decarboxylases, etc. and use a negatively charged residue, such as aspartate or glutamate as proton donor.1 Now, if the alternate pattern of side chains of the residues is βI = l217 ↓ i218 ↑ a219 ↓ W220 ↑ d221 ↓, instead of the previous one, then the aspartate or glutamate residue would point to the hydrophobic pocket and would be positioned to interact with the metal ion, as in cupins with enzymatic activity. However, there are no experimental evidences that the NLPs have enzymatic activity.Open in a separate windowFigure 1(A) Three-dimensional structure prediction for type I NLP consensus, (B) Interface between two βI strands in type I NLP consensus. From the left to the right: EF-coil with the conserved residue H162, βC and βH strands (superposed) with the conserved histidines H133 and H135 in βC, H193 and leucine L195 in βH, W220 in βI and W118 in βB. The strands in the right subunit follow the same pattern but rotated.The second type of interaction is salt bridges between charged residues in different subunits. Analyzing all interacting side chains in the 1VJ2 protein (dimer), we verify that the charged side chains of N35 and E57 (numbers in original structure) are only 2.72 Å apart. In the NLPs, this corresponds to N10836% (Q10860%) at the border of βB and E13898%. The negatively charged residue D125 helps to correct the orientation of the subunits in relation to each other avoiding any disorientation. The high conservation level of these residues suggests that NLPs are dimeric structures. However, as we will see next, only hydrophobic and charged interactions are not enough to build a dimer.Garcia et al. (2007)2 have used small angle X-ray scattering (SAXS) to show that, in solution, at low concentrations (<2 mg/ml) the two copies of the NLPs of Moniliophthora perniciosa, MpNEP1 and MpNEP2, exist as dimers and monomers, respectively. The same technique showed that at higher concentrations, >5 mg/ml, both proteins exist as dimers, as is the case for PpNPP1.2 They also reported, based on electrophoresis analysis, that PpNPP1 and MpNEP1 exist as oligomers and MpNEP2 as monomers.2 However, experiments with the PpNPP1 in size exclusion chromatography using myoglobin as size standard suggest that PpNPP1 is a monomer.3 Figure 2 compares MpNEP1, MpNEP2 and PpNPP1, where the most relevant differences in sequence are marked with asterisks (*) and are possibly related to the differences in oligomeric properties between MpNEP1 and PpNPP1 with MpNEP2. These positions are methionine M27 and leucine L35, which occur only in MpNEP2, glycine G250, which occurs only in MpNEP2 and NEP1 (Fusarium oxysporum) and lysine K31, which occurs only MpNEP2, BAB04114 (Bacillus halodurans) and AAU23136 (Bacillus licheniformis). The other residues are aspartate D28, which occurs 9 times and alanine A37 which occurs 7 times of all investigated NLPs. Thus, the sequence mdHDkiakl at the start of the NLPs seems to explain the monomeric state of MpNEP2, although at higher concentrations they form dimers. Besides the weak hydrophobic interactions, dimeric cupins and bicupins (two β barrels in the same sequence building up a dimeric-like 4d-structure) are stable structures (see Fig. 1 in ref. 4). By aggregating the first β-strand in the start domain of one β-barrel to the ABIDG β-sheet of the other β-barrel, composing a big ABIDGY β-sheet (Y is the first β-strand). For instance, using the bicupin 1L3J (oxalate decarboxylase) as template, the low confidence level β-strand at position 26–33 (v in H29D30 avv) in type I NLPs corresponds to the first β-strand. Since this proceeds from both barrels they can build a stable structure (see Fig. 1 in ref. 4). The quaternary structure is related to the presence of interaction residues in the BID β-sheet of the cupin structure. These are present in the NLPs and would enable them to form dimers.Open in a separate windowFigure 2Alignment of type I NLP consensus, PpNPP1, MpNEP1 and MpNEP2. Solid line boxes are β-strands, double line boxes are α-helices. The sequence positions marked with asterisks (*) are possibly related to the differences in oligomeric properties between MpNEP1 and PpNPP1 with MpNEP2.  相似文献   

12.
Ovariolar dilatations have been used to estimate parity status in mosquitoes for over 40 years. The theoretical basis for this parity-diagnostic method, which was established for mosquitoes by Polovodova 1, has been challenged by a number of Russian researchers. The findings of this new school of researchers have elicited little response from those currently using the method outside Russia, except for a recent paper by Hoc and Charlwood2. This has stimulated Andrew Fox and Reinhart Brust to review the formation of ovariolar dilatations here, and compare what they term the Old and the New Schools. Although the basic application of Polovodova's method is unaffected by the premise of either School, a clear understanding of ovarian dynamics is needed to understand the method and its limits.  相似文献   

13.
Is gene therapy a form of eugenics?   总被引:3,自引:0,他引:3  
Harris J 《Bioethics》1993,7(2-3):178-187
If, as I believe, gene therapy is in principle ethically sound except for its possible connection with eugenics then there are two obvious ways of giving a simple and straightforward answer to a question such as this. The first is to say "yes it is, and so what?" The second is to say "no it isn't so we shouldn't worry". If we accept the first of the above definitions we might well be inclined to give the first of our two answers. If on the other hand, we accept the sort of gloss that Ruth Chadwick gives on Galton's account, "those who are genetically weak should simply be discouraged from reproducing", either by incentives or compulsory measures, we get a somewhat different flavour, and one which might incline a decent person who favours gene therapy towards the second answer.  相似文献   

14.
The WxxxE family of bacterial effector proteins is thought to manipulate host signaling pathways by directly mimicking activated cellular GTPases. In this issue of Cell Host & Microbe, Ohlson et al. (2008) reveal that the structure of one such effector, Salmonella SifA, closely resembles that of an activator of endogenous GTPases.  相似文献   

15.
Raju I  Abraham EC 《PloS one》2011,6(11):e28085

Background

Mutations of human αA-crystallin cause congenital cataract by protein aggregation. How mutations of αA-crystallin cause disease pathogenesis through protein aggregation is not well understood. To better understand the cellular events leading to protein aggregation, we transfected cataract causing mutants, R12C, R21L, R21W, R49C, R54C, R116C and R116H, of human αA-crystallin in HeLa cells and examined the formation of intracellular protein aggregates and aggresomes by confocal microscopy.

Methodology/Principal Findings

YFP-tagged human αA-wild-type (αA-wt) was sub-cloned and the mutants were generated by site-directed mutagenesis. The αA-wt and the mutants were individually transfected or co-transfected with CFP-tagged αA-wt or αB-wild-type (αB-wt) in HeLa cells. Overexpression of these mutants forms multiple small dispersed cytoplasmic aggregates as well as aggresomes. Co-expression of αB-wt with these mutants significantly inhibited protein aggregates where as co-expression with αA-wt enhanced protein aggregates which seems to be due to co-aggregation of the mutants with αA-wt. Aggresomes were validated by double immunofluorescence by co-localization of γ-tubulin, a centrosome marker protein with αA-crystallin. Furthermore, increased ubiquitination was detected in R21W, R116C and R116H as assessed by western blot analyses. Immunostaining with an ubiquitin antibody revealed that ubiquitin inclusions in the perinuclear regions were evident only in R116C transfected cells. Pulse chase assay, after cycloheximide treatment, suggested that R116C degraded faster than the wild-type control.

Conclusions/Significance

Mutants of αA-crystallin form aggregates and aggresomes. Co-expression of αA-wt with the mutants increased aggregates and co-expression of αB-wt with the mutants significantly decreased the aggregates. The mutant, R116C protein degraded faster than wild-type control and increased ubiquitination was evident in R116C expressing cells.  相似文献   

16.
17.
The noncoagulative type of pellet formation can be induced in submerged cultivation of the filamentous fungus Rhizopus nigricans. The size and constitution of the hyphal agglomerates obtained varied with changes in inoculum size and agitation speed for given media composition and cultivation conditions. The physiological state of mycelium, used for a further process of biotransformation, was estimated by following the growth kinetics, pH value and substrate utilization during submerged cultivation. Namely, differences in pellet morphology and physiology affect the ability of R. nigricans to hydroxylate progesterone at the 11α position. A repeated batch procedure revealed the best maintenance of biotransformation capacity for pellets, obtained from the growth phase of cultivation at high agitation speed and with low inoculum size.  相似文献   

18.
Genome sequencing has revealed that signal transduction in bacteria makes use of a limited number of different devices, such as two-component systems, LuxI-LuxR quorum-sensing systems, phosphodiesterases, Ser-Thr (serine-threonine) kinases, OmpR-type regulators, and sigma factor-anti-sigma factor pathways. These systems use modular proteins with a large variety of input and output domains, yet strikingly conserved transmission domains. This conservation might lead to redundancy of output function, for example, via crosstalk (i.e. phosphoryl transfer from a non-cognate sensory kinase). The number of similar devices in a single cell, particularly of the two-component type, might amount to several dozen, and most of these operate in parallel. This could bestow bacteria with cellular intelligence if the network of two-component systems in a single cell fulfils the requirements of a neural network. Testing these ideas poses a great challenge for prokaryotic systems biology.  相似文献   

19.
S Brown 《The New biologist》1991,3(5):430-438
4.5S RNA is a stable RNA of Escherichia coli, and functional homologs of the molecule apparently exist in all prokaryotes: eubacteria, archebacteria, and mycoplasma. Genetic and physiological measurements of the function of 4.5S RNA in E. coli indicate a role for this RNA in protein synthesis. A conserved domain of 4.5S RNA displays structural similarity with the eukaryotic 7S RNA that functions in protein secretion. Although complementation by eukaryotic 7S RNAs remains to be demonstrated, a number of archaebacterial 7S RNAs are able to replace 4.5S RNA for growth of E. coli, and 4.5S RNA is able to mediate a number of 7S RNA functions in vitro. Surprisingly, no effects on protein secretion in E. coli have been directly attributed to 4.5S RNA. These observations raise the question of whether molecules of similar structure necessarily perform the same function.  相似文献   

20.
What controls glycolysis in bloodstream form Trypanosoma brucei?   总被引:2,自引:0,他引:2  
On the basis of the experimentally determined kinetic properties of the trypanosomal enzymes, the question is addressed of which step limits the glycolytic flux in bloodstream form Trypanosoma brucei. There appeared to be no single answer; in the physiological range, control shifted between the glucose transporter on the one hand and aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), and glycerol-3-phosphate dehydrogenase (GDH) on the other hand. The other kinases, which are often thought to control glycolysis, exerted little control; so did the utilization of ATP. We identified potential targets for anti-trypanosomal drugs by calculating which steps need the least inhibition to achieve a certain inhibition of the glycolytic flux in these parasites. The glucose transporter appeared to be the most promising target, followed by ALD, GDH, GAPDH, and PGK. By contrast, in erythrocytes more than 95% deficiencies of PGK, GAPDH, or ALD did not cause any clinical symptoms (Schuster, R. and Holzhütter, H.-G. (1995) Eur. J. Biochem. 229, 403-418). Therefore, the selectivity of drugs inhibiting these enzymes may be much higher than expected from their molecular effects alone. Quite unexpectedly, trypanosomes seem to possess a substantial overcapacity of hexokinase, phosphofructokinase, and pyruvate kinase, making these "irreversible" enzymes mediocre drug targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号