首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specialised blend films have been prepared by blending 1% w/v konjac glucomannan aqueous with 1% w/v chitosan solution in acetate solution and drying at room temperature for 24 h. The condensed state structure and miscibility of the blend films were studied by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, and wide-angle X-ray diffraction. The results indicated that the blend film obtained from an 80/20 mixing ratio of konjac glucomannan and chitosan derivate showed the highest miscibility and blend homogeneity, and that strong intermolecular hydrogen bonds took place between the amino groups of chitosan and the hydroxyl groups of konjac glucomannan; thus the tensile strength also achieved its maximum in this ratio. The cell morphologies on the pure and blend films were examined by light microscopy and cell viability was studied by using MTT assay. The results showed that the particular blend film was more suitable for the cell culture than the pure konjac glucomannan film, and that the cells cultured on this blend film had greater spreading coefficients than that of the pure konjac glucomannan film. As a result of the good mechanical properties, miscibility and biocompatibility, the blend film is a promising biomaterial matrix.  相似文献   

2.
Films from waterborne polyurethane (WPU) and carboxymethylated guar gum (CMGG) with different contents (20–80 wt%) were prepared through solution casting method, and then were crosslinked with calcium chloride. The effect of CMGG content on the miscibility, morphology and physical properties of the blend films is investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, density measurements, differential scanning calorimetry, dynamic mechanical thermal analysis, thermogravimetric analysis, water sensitivity measurements, solvent-swelling and tensile tests. The results reveal that the uncrosslinked films exhibit good miscibility when CMGG content is lower than 60 wt%, whereas typical “sea-island” structure occurs when the CMGG content further increases. After crosslinking with calcium ion, the blend films form a relatively dense architecture, which leads to better miscibility, higher storage modulus and thermal stability. The crosslinked films also exhibit better tensile strength (11.6–56.5 MPa) and solvent-resistance than that of the uncrosslinked films over the entire composition range. A model describing the configuration of Ca2+-chelating structure was proposed to illustrate the different structures of the two series of the blend films.  相似文献   

3.
In this work, a series of glycerol-plasticized pea starch/konjac glucomannan (ST/KGM) blend films was prepared by a casting and solvent evaporation method. The structure, thermal behavior, and mechanical properties of the films were investigated by means of Fourier Transform Infrared Spectroscopy, wide-angle X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, and tensile testing. The results indicated that strong hydrogen bonding formed between macromolecules of starch (ST) and konjac glucomannan (KGM), resulting in a good miscibility between ST and KGM in the blends. Compared with the neat ST, the tensile strength of the blend films were enhanced significantly from 7.4 to 68.1 MPa with an increase of KGM content from 0 to 70 wt%. The value of elongation at break of the blend films was higher than that of ST and reached a maximum value of 59.0% when the KGM content was 70 wt% and 20% of glycerol as plasticizer. The incorporation of KGM into the ST matrix also led to an increase of moisture uptake for the ST-based materials. The structure and properties of pea starch-based films were modified and improved by blending with KGM.  相似文献   

4.
Nanocrystalline cellulose (NCC) reinforced chitosan-based biodegradable films were prepared by solution casting. The NCC content in the films was varied from 1 to 10% (dry wt. basis). It was found that the tensile strength (TS) of the nanocomposite films with 5% (w/w) NCC content was optimum with an improvement of 26% compared to the control chitosan films. Incorporation of NCC also significantly improved barrier properties. Water vapor permeability (WVP) of the chitosan/NCC films was decreased by 27% for the optimum 5% (w/w) NCC content. Swelling studies revealed a decrease in water uptake of the NCC-reinforced chitosan films. Analyses of thermal properties showed no significant effect of NCC whereas X-ray diffraction studies confirmed the appearance of crystalline peaks in the nanocomposite films. Surface morphology of the films was investigated by scanning electron microscopy and it was found that NCC was dispersed homogenously into chitosan matrix.  相似文献   

5.
The aim of this study was to develop a new inorganic-organic hybrid film. Nanohydroxyapaptite (nHAP) particles as the inorganic phase was mixed with cellulose in 7 wt.% NaOH/12 wt.% urea aqueous solution with cooling to prepare a blend solution, and then inorganic-organic hybrid films were fabricated by coagulating with Na2SO4 aqueous solution. The structure and properties of the hybrid films were characterized by high resolution transmitting electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), thermo-gravimetric analysis (TGA), Fourier transform infra-red (FT-IR) spectra, wide angle X-ray diffraction (WAXD) and tensile testing. The results revealed that the HAP nanoparticles with mean diameter of about 30 nm were uniformly dispersed and well immobilized in the hybrid film as a result of the role of the nano-and micropores in the cellulose substrate. A strong interaction existed between HAP and cellulose matrix, and their thermal stability and mechanical strength were improved as a result of good miscibility. Furthermore, the results of 293T cell viability assay indicated that the HAP/cellulose films had excellent biocompatibility and safety, showing potential applications in biomaterials.  相似文献   

6.
Lu Y  Larock RC 《Biomacromolecules》2007,8(10):3108-3114
A series of new waterborne polyurethane (PU)/acrylic hybrid latexes have been successfully synthesized by the emulsion polymerization of acrylic monomers (butyl acrylate and methyl methacrylate) in the presence of a soybean oil-based waterborne PU dispersion using potassium persulfate as an initiator. The waterborne PU dispersion has been synthesized by a polyaddition reaction of toluene 2,4-diisocyanate and a soybean oil-based polyol (SOL). The resulting hybrid latexes, containing 15-60 wt % SOL as a renewable resource, are very stable and exhibit uniform particle sizes of 125 +/- 20 nm as determined by transmittance electronic microscopy. The structure, thermal, and mechanical properties of the resulting hybrid latex films have been investigated by Fourier transform infrared spectroscopy, solid state 13C NMR spectroscopy, dynamic mechanical analysis, extraction, and mechanical testing. Grafting copolymerization of the acrylic monomers onto the PU network occurs during the emulsion polymerization, leading to a significant increase in the thermal and mechanical properties of the resulting hybrid latexes. This work provides a new way of utilizing renewable resources to prepare environmentally friendly hybrid latexes with high performance for coating applications.  相似文献   

7.
Regulation of the structural equilibrium of G-quadruplex-forming sequences located in the promoter regions of oncogenes by the binding of small molecules has shown potential as a new avenue for cancer chemotherapy. In this study, microcalorimetry (isothermal titration calorimetry and differential scanning calorimetry), electronic spectroscopy (ultraviolet-visible and circular dichroism), and molecular modeling were used to probe the complex interactions between a cationic porphryin mesotetra (N-methyl-4-pyridyl) porphine (TMPyP4) and the c-MYC PU 27-mer quadruplex. The stoichiometry at saturation is 4:1 mol of TMPyP4/c-MYC PU 27-mer G-quadruplex as determined by isothermal titration calorimetry, circular dichroism, and ultraviolet-visible spectroscopy. The four independent TMPyP4 binding sites fall into one of two modes. The two binding modes are different with respect to affinity, enthalpy change, and entropy change for formation of the 1:1 and 2:1, or 3:1 and 4:1 complexes. Binding of TMPyP4, at or near physiologic ionic strength ([K(+)] = 0.13 M), is described by a "two-independent-sites model." The two highest-affinity sites exhibit a K(1) of 1.6 x 10(7) M(-1) and the two lowest-affinity sites exhibit a K(2) of 4.2 x 10(5) M(-1). Dissection of the free-energy change into the enthalpy- and entropy-change contributions for the two modes is consistent with both "intercalative" and "exterior" binding mechanisms. An additional complexity is that there may be as many as six possible conformational quadruplex isomers based on the sequence. Differential scanning calorimetry experiments demonstrated two distinct melting events (T(m)1 = 74.7 degrees C and T(m)2 = 91.2 degrees C) resulting from a mixture of at least two conformers for the c-MYC PU 27-mer in solution.  相似文献   

8.
Films formed by blending of two polymers usually have modified physical and mechanical properties compared to films made of the individual components. Our preliminary studies indicated that incorporation of chitosan in polyethylene oxide (PEO) films may provide additional functionality to the PEO films and may decrease their tendency to spherulitic crystallization. The objective of this study was to determine the correlation between chitosan/PEO weight ratio and the physical, mechanical, and antibacterial properties of corresponding films. Films with chitosan/PEO weight ratios from 100/0 to 50/50 in 10% increments were characterized by measuring thickness, puncture strength (PS), tensile strength (TS), elongation at break (%E), water vapor permeability (WVP), and water solubility (WS). Additionally, the films were examined by polarized microscopy, wide-angle X-ray diffraction (WAXD), and Fourier transform infrared (FTIR) spectroscopy, and their antibacterial properties were tested against Escherichia coli. The chitosan fraction contributes to antimicrobial effect of the films, decreases tendency to spherulitic crystallization of PEO, and enhances puncture and tensile strength of the films, while addition of the PEO results in thinner films with lower water vapor permeability. Films with 90/10 blend ratio of chitosan/PEO showed the most satisfactory PS, TS, %E, and antibacterial properties of all tested ratios.  相似文献   

9.
Preparation and properties of alginate/carboxymethyl chitosan blend fibers   总被引:5,自引:0,他引:5  
Alginate/carboxymethyl chitosan blend fibers, prepared by spinning their mixture solution through a viscose-type spinneret into a coagulating bath containing aqueous CaCl2, were studied for structure and properties with the aid of infrared spectroscopy (IR), X-ray diffraction (XRD) and scanning electron micrography (SEM). The analyses indicated a good miscibility between alginate and carboxymethyl chitosan, because of the strong interaction from the intermolecular hydrogen bonds. The best values of the dry tensile strength and breaking elongation were obtained when carboxymethyl chitosan content was 30 and 10 wt%, respectively. The wet tensile strength and breaking elongation decreased with the increase of carboxymethyl chitosan content. Introduction of CM-chitosan in the blend fiber improved water-retention properties of blend fiber compared to pure alginate fiber. Antibacterial fibers, obtained by treating the fibres with aqueous solution of N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride and silver nitrate, respectively, exhibited good antibacterial activity to Staphylococcus aureus.  相似文献   

10.
Wang SF  Shen L  Zhang WD  Tong YJ 《Biomacromolecules》2005,6(6):3067-3072
Biopolymer chitosan/multiwalled carbon nanotubes (MWNTs) nanocomposites have been successfully prepared by a simple solution-evaporation method. The morphology and mechanical properties of the chitosan/MWNTs nanocomposites have been characterized with field emission scanning electron microscopy (SEM), bright field transmission electron microscopy (TEM), optical microscopy (OM), wide-angle X-ray diffraction (XRD), and tensile as well as nanoindentation tests. The MWNTs were observed to be homogeneously dispersed throughout the chitosan matrix. When compared with neat chitosan, the mechanical properties, including the tensile modulus and strength, of the nanocomposites are greatly improved by about 93% and 99%, respectively, with incorporation of only 0.8 wt % of MWNTs into the chitosan matrix.  相似文献   

11.
Films were prepared from guar gum and locust bean gum galactomannans. In addition, enzymatic modification was applied to guar gum to obtain structurally different galactomannans. Cohesive and flexible films were formed from galactomannans plasticized with 20-60% (w/w of polymer) glycerol or sorbitol. Galactomannans with lower galactose content (locust bean gum, modified guar gum) produced films with higher elongation at break and tensile strength. The mechanical properties of films were improved statistically significantly by decreasing the degree of polymerization of guar gum with mannanase treatments (4 h) of 2 and 10 nkat/g, whereas 50 nkat/g produced films with low elongation at break and tensile strength. Galactomannans with approximately 6 galactose units per 10 mannose backbone units resulted in films with 2 peaks in loss modulus spectra, whereas films from galactomannans with approximately 2 galactose groups per 10 mannose units behaved as a single phase in dynamic mechanical analysis.  相似文献   

12.
The detection of phase separation and identification of miscibility in biopolymer blends is an important aspect for the improvement of their physical properties. In this article, the phase separation in blends of poly(3-hydroxybutyrate) (PHB) with poly(L-lactic acid) (PLA) and poly(epsilon-caprolactone) (PCL), respectively, has been studied as a function of the blend composition by FT-IR imaging spectroscopy. For both polymer blend systems, a miscibility gap has been found around the 50:50% (w/w) composition of the two components. Furthermore, the separating phases have been identified as blends of the two polymer components and their compositions could be determined from calibrations based on the spectra of the blends in the compositional range of miscibility. The data derived from FT-IR spectroscopic imaging were corroborated by additional DSC analyses and mechanical stress-strain measurements of polymer blend films, which exhibited a characteristic fracture behavior as a function of PHB composition.  相似文献   

13.
Aqueous cold-set gels from mixtures of agarose and sodium gellan have been characterised structurally and mechanically using optical and electron microscopy, turbidity measurements, differential scanning calorimetry, mechanical spectroscopy and compression testing. Consistent with expectations for charged–uncharged polymer combinations at low ionic strength there is no liquid–liquid demixing in sols prior to gelation, and although transmission electron microscopy reveals heterogeneities in gel microstructures at the higher polymer concentrations, these are small in extent, and are unlikely to arise from normal segregative demixing. Overall, ‘molecularly’ interpenetrating networks (IPNs) are indicated, in which the gellan and agarose architectures pass through one another on a distance scale comparable to their pore sizes. At concentrations greater than 2% w/w gellan, where gellan is the first gelling species, and when the agarose concentration is greater than 0.5% w/w, the composite modulus falls below that expected for the agarose alone. At 0.5% w/w agarose, on the other hand, modulus contributions from the components are much closer to additive. These findings are reflected in the results of large deformation compression testing where breaking stresses show similar trends.  相似文献   

14.
Chitosan/bamboo charcoal composite films were prepared by blending chitosan with either virgin bamboo charcoal or bamboo charcoal modified by nitric acid oxidation to provide more hydrophilic regions on the bamboo charcoal surface. Investigation of the physical properties of these composite films revealed that the tensile strength and Young’s modulus of the chitosan films were enhanced in a dose-dependent manner by the inclusion of modified bamboo charcoal at up to 1% (w/w), whilst the elongation at break was increased by inclusion of modified bamboo charcoal at up to 0.5% (w/w). In contrast, chitosan composites with virgin bamboo charcoal at up to 0.5% or 1.0% (w/w) showed no enhancement of the tensile strength or Young’s modulus, respectively, and both parameters were reduced with higher levels of virgin bamboo charcoal. Oil, and especially water, absorption of the composite films displayed a marked and dose-dependent increase compared to those of the pure chitosan film.  相似文献   

15.
Cao X  Dong H  Li CM 《Biomacromolecules》2007,8(3):899-904
New nanocomposite films were prepared from a suspension of cellulose nanocrystals as the filler and a polycaprolactone-based waterborne polyurethane (WPU) as the matrix. The cellulose nanocrystals, prepared by acid hydrolysis of flax fiber, consisted of slender rods with an average length of 327 +/- 108 nm and diameter of 21 +/- 7 nm, respectively. After the two aqueous suspensions were mixed homogeneously, the nanocomposite films were obtained by casting and evaporating. The morphology, thermal behavior, and mechanical properties of the films were investigated by means of attenuated total reflection Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and tensile testing. The results indicated that the cellulose nanocrystals could disperse in the WPU uniformly and resulted in an improvement of microphase separation between the soft and hard segments of the WPU matrix. The films showed a significant increase in Young's modulus and tensile strength from 0.51 to 344 MPa and 4.27 to 14.86 MPa, respectively, with increasing filler content from 0 to 30 wt %. Of note is that the Young's modulus increased exponentially with the filler up to a content of 10 wt %. The synergistic interaction between fillers and between the filler and WPU matrix played an important role in reinforcing the nanocomposites. The superior properties of the new nanocomposite materials could have great potential applications.  相似文献   

16.
Glycerol-plasticized pea starch/α-zirconium phosphate (PS/ZrP) nanocomposite films with different loading levels of α-zirconium phosphate (α-ZrP) were prepared by a casting and solvent evaporation method. The effects of the α-ZrP on the structure and properties of the PS/ZrP films were characterized by Fourier transform infrared (FT-IR) spectroscopy, wide-angle X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and tensile testing. The results indicated that hydrogen bonds formed between pea starch (PS) and α-ZrP, which improved the compatibility between PS and α-ZrP. Compared with the neat PS, the tensile strength (σb) and elongation at break (εb) of the PS/ZrP nanocomposite films were significantly enhanced with an increase in α-ZrP content. The maximum values of σb and εb reached 9.44 MPa and 47.5%, respectively, at 0.3% α-ZrP and 25% glycerol as plasticizer. The moisture uptake of the nanocomposite films, measured in an environment with 92% relative humidity, was reduced by the addition of α-ZrP. The structure and properties of pea starch-based films were modified and improved by the incorporation of α-ZrP.  相似文献   

17.
Films of acid-hydrolyzed hydroxypropylated pea starch with average molecular weight M w ranging from 3.3 x 10 (4) g/mol to 1.6 x 10 (6) g/mol were prepared from 25% (w/w) solution by casting. The structure of the films was investigated by means X-ray diffraction and calorimetry, evidencing a B-type crystalline structure. In similar drying conditions, 25 degrees C and 40% of relative humidity, the crystallinity varied from 24% for the low molecular weight (A5) to almost none for the highest molecular weight (A160). The influence of the drying temperature was also investigated. A reduction of the crystallinity from 16% to almost none was found when increasing temperature from 25 to 65 degrees C. The glass transition temperature ( T g) at different water contents was determined. The difference of T g between the first and the second scan was interpreted by changes in the water distribution between phases into the B-type crystalline structure. Mechanical properties of the films determined by tensile tests and by DMTA in the glassy state showed no effect of the average molecular weight or of crystallinity. In contrast, thermomechanical experiments by DMTA showed that the average molecular weight of the sample influenced the mechanical relaxation and the moduli in the rubbery state.  相似文献   

18.
Starch/poly(butylene adipate-co-terephthalate) films were obtained by one-step reactive extrusion using maleic anhydride (MA) and citric acid (CA) as compatibilizers. The mechanical, structural, optical and barrier properties of the films were analyzed when glycerol (GLY), CA and MA were added to the starch/PBAT (55:45, w/w) according to mixture design. FTIR analysis showed that CA and MA were able to promote esterification/transesterification reactions and that CA induced them more efficiently. When a greater proportion of compatibilizer (1.5 wt%) was used, the resulting films were more opaque and had a greater tensile strength. A greater proportion of GLY (10.0%, w/w) improved the elongation at the break of the films. The barrier properties to water vapor of the films were improved by high levels of CA (1.5 wt%) and intermediate levels of GLY (9.25 wt%). The inclusion of compatibilizers resulted in blends with improved properties, representing a potential replacement for non-biodegradable films.  相似文献   

19.
Starch/poly(vinyl alcohol) (PVA) films were prepared with calcium chloride (CaCl(2)) as the plasticizer. The micro morphology of pure starch/PVA film and CaCl(2) plasticized starch/PVA film was observed by scanning electron microscope. The interaction between CaCl(2) and starch/PVA molecules was investigated by Fourier transform infrared spectroscopy. The influence of CaCl(2) on the crystalline, thermal and mechanical properties of starch/PVA films was studied by X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and tensile testing, respectively. The results indicated that CaCl(2) could interact with starch and PVA molecules and then effectively destroy the crystals of starch and PVA. Starch/PVA films plasticized with CaCl(2) became soft and ductile, with lower tensile strength and higher elongation at break compared with pure starch/PVA film. The water content of starch/PVA film would increase with the addition of CaCl(2). This is an important cause of the plasticization of CaCl(2) on starch/PVA film.  相似文献   

20.
Electroless metal deposition is a simple and convenient technique to fabricate metallic films and to provide isotropic metal functionalization of 3D structures with complex geometries. In this work, we describe the synthesis of silver coatings by means of a modified Tollens reaction and their use as optical coating. The chemical composition of the metallization bath is here addressed to optimize the metal coating deposition. The synthesis parameters have been tailored in order to deposit very smooth films which were characterized by scanning electron microscopy, atomic force microscopy, and optical spectroscopy. 2D diffraction gratings and sinusoidal plasmonic gratings were produced with the proposed method. Optical characterization confirmed the plasmonic activities of the resultant structures, proving the efficiency of the described method for optical applications. Thermal annealing was found to improve the surface roughness of the coating and therefore the optical properties of the plasmonic gratings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号