首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult frog skin transports Na+ from the apical to the basolateral side across the skin. Antidiuretic hormone (ADH) is involved in the regulation of Na+ transport in both mammals and amphibians. We investigated the effect of arginine vasotocin (AVT), the ADH of amphibians, on the short-circuit current (SCC) across intact skin and on the basolateral Na+/K+-pump current across apically nystatin-permeabilized skin of the tree frog, Hyla japonica, in which the V2-type ADH receptor is expressed in vitro. In intact skin, 1 pM AVT had no effect on the SCC, but 10 nM AVT was sufficient to stimulate the SCC since 10 nM and 1 μM of AVT increased the SCC 3.2- and 3.4-fold, respectively (> 0.9). However, in permeabilized skin, AVT (1 μM) decreased the Na+/K+-pump current to 0.79 times vehicle control. Similarly, 500 μM of 8Br-cAMP increased the SCC 3.2-fold, yet 1 mM of 8Br-cAMP decreased the Na+/K+-pump current to 0.76 times vehicle control. Arachidonic acid (10−5 M) tended to decrease the Na+/K+-pump current. To judge from these in vitro experiments, AVT has the potential to inhibit the basolateral Na+/K+-pump current via the V2-type receptor/cAMP pathway in the skin of the tree frog.  相似文献   

2.
Recently (Agalakova and Gusev in J Comp Physiol 179:443–450, 2009), we demonstrated that the activity of K–Cl cotransport (KCC) in frog red blood cells is inhibited under stimulation of protein kinase C (PKC) with phorbol ester PMA (12-myristate-13-acetate). Present work was performed to uncover possible implication of protein kinases and protein phosphatases (PPs) in the regulation of baseline and volume-dependent KCC activity in these cells. K+ influx was estimated as 86Rb uptake by the cells in isotonic or hypotonic media in the presence of ouabain, K+ efflux was determined as the difference between K+ loss by the cells incubated in parallel in isotonic or hypotonic K+-free Cl- and NO3 -media. Swelling of the cells in hypotonic medium was accompanied by approximately 50% activation of Cl-dependent K+ influx and efflux. Protein tyrosine kinase (PTK) inhibitor genistein (0.1 mM) stably and considerably (up to 89%) suppressed both baseline and volume-dependent KCC activity in each direction. Other PTK blockers (tyrphostin 23 and quercetin) had no influence on KCC activity in frog erythrocytes. PKC inhibitor chelerythrine (20 μM) and both PP inhibitors, fluoride (5 mM) and okadaic acid (1 μM), reduced KCC activity by 25–70%. Neither basal nor swelling-activated KCC in frog erythrocytes was affected by PKC inhibitor staurosporine (1 μM). Based on the previous and present results, we can suggest that the main role in the maintenance of basal and volume-dependent KCC activity in frog erythrocytes belongs to PTKs and PPs, whereas PKC is a negative regulator of this ion system.  相似文献   

3.
Effect of endothelin-1 and chemically induced hypoxia on Na+−K+−Cl cotransport activity in cultured rat brain capillary endothelial cells was examined by using86Rb+ as a tracer for K+; bumetanide-sensitive K+ uptake was defined as Na+−K+−Cl cotransport activity. Endothelin-1, phorbol 12-myristate 13-acetate (PMA), or thapsigargin increased Na+−K+−Cl cotransport activity. A protein kinase C inhibitor, bisindolylmaleimide, inhibited PMA- and endothelin-1- (but not thapsigargin-) induced Na+−K+−Cl cotransport activity, indicating the presence of both protein kinase C-dependent regulatory mechanisms and protein kinase C-independent mechanisms which involve intracellular Ca2+. Oligomycin, sodium azide, or antimycin A increased Na+−K+−Cl cotransport activity by 80–200%. Oligomycin-induced Na+−K+−Cl cotransport activity was reduced by an intracellular Ca2+ chelator (BAPTA/AM) but not affected by bisindolylmaleimide, suggesting the involvement of intracellular Ca2+, and not protein kinase C, in hypoxia-induced Na+−K+−Cl cotransport activity. Portions were presented at “27th Annual Meeting, The American Society for Neurochemistry” Philadelphia, Pennsylvania, March 2–6, 1996.  相似文献   

4.
An in-depth understanding of the mechanisms underlying regulatory volume behavior in corneal epithelial cells has been in part hampered by the lack of adequate methodology for characterizing this phenomenon. Accordingly, we developed a novel approach to characterize time-dependent changes in relative cell volume induced by anisosmotic challenges in calcein-loaded SV40-immortalized human corneal epithelial (HCE) cells with a fluorescence microplate analyzer. During a hypertonic challenge, cells shrank rapidly, followed by a temperature-dependent regulatory volume increase (RVI), τc = 19 min. In contrast, a hypotonic challenge induced a rapid (τc = 2.5 min) regulatory volume decrease (RVD). Temperature decline from 37 to 24°C reduced RVI by 59%, but did not affect RVD. Bumetanide (50 μM), ouabain (1 mM), DIDS (1 mM), EIPA (100 μM), or Na+-free solution reduced the RVI by 60, 61, 39, 32, and 69%, respectively. K+, Cl channel and K+-Cl cotransporter (KCC) inhibition obtained with either 4-AP (1 mM), DIDS (1 mM), DIOA (100 μM), high K+ (20 mM) or Cl-free solution, suppressed RVD by 42, 47, 34, 52 and 58%, respectively. KCC activity also affects steady-state cell volume, since its inhibition or stimulation induced relative volume alterations under isotonic conditions. Taken together, K+ and Cl channels in parallel with KCC activity are important mediators of RVD, whereas RVI is temperature-dependent and is essentially mediated by the Na+-K+-2Cl cotransporter (Na+-K+-2Cl) and the Na+-K+ pump. Inhibition of K+ and Cl channels and KCC but not Na+-K+-2Cl affect steady-state cell volume under isotonic conditions. This is the first report that KCC activity is required for HCE cell volume regulation and maintenance of steady-state cell volume.  相似文献   

5.
This study was undertaken to evaluate the effects of various metabolic blockers on the Na-K-pump activity and ATP content of frog erythrocytes. To eliminate K-C1 cotransport, the frog erythrocytes were incubated in nitrate media at 20 °C. Incubation of the red cells in a glucose-free medium for 2 h had no effect on cell ATP content and K+ influx measured as 86Rb uptake for 60 min. The Na+-K+-pump activity was also unchanged in the frog erythrocytes incubated in a glucose-free medium containing 10 mM 2-deoxy-D-glucose or adenosine. Unexpectedly, the treatment of red cells with 1–2 mM glycolytic blocker iodoacetate produced a 2-fold increase in the ouabain-sensitive K+ influx. The cell ATP content declined by 9.4% after 2 h of cell incubation with iodoacetate. Incubation of the red cells for 90 min in the presence of 2 mM cyanide, 0.01 mM antimycin A or 5 mM azide resulted in a significant reduction in K+ influx by about 50%, 45% and 32%, respectively. The cell ATP content diminished over 60 min and 120 min of cell incubation with 2 mM cyanide by 15.6% and 31.7% of control levels, respectively. In time-course experiments, a 50% reduction in the K+ influx was observed when the frog erythrocytes were incubated for only 30 min in the presence of 2 mM cyanide. In contrast, 0.01–0.10 mM rotenone, a site I inhibitor, and 0.01 mM carbonyl cyanide m-chlorophenylhydrazone, an uncoupler of oxidative phosphorylation were without effect on K+ influx into frog erythrocytes. These results indicate that about one-half of the Na+ -K+-pump activity in frog erythrocytes is tightly functionally coupled to cytochromes via a separate “membrane-associated” ATP pool. Accepted: 12 July 1997  相似文献   

6.
In carp erythrocytes, noradrenaline (10-6 mol·l-1) induces a 30- to 40-fold activation of Na+/H+ exchange (the ethylisopropylamiloride-inhibited component of the 22Na influx) and a fourfold stimulation of the Na+, K+ pump (ouabain-inhibited component of 86Rb influx). In both cases the effect of noradrenaline is blocked by propranolol but not phentolamine and is imitated by forskolin. An activator of protein kinase C (-phorbol 12-myristate, 13-acetate) increases Na+/H+ exchange by 10 times and decreases the Na+, K+ pump activity by 20–30 percent. In the presence of ethylisopropylamiloride the increment of the Na+, K+ pump activity induced by noradrenaline is reduced by 35–45 percent, indicating the existence of a Na+/H+ exchange-independent mechanism of the Na+, K+ pump regulation by -adrenergic catecholamines. Hypertonic shrinkage of carp erythrocytes results in a 40- to 80-fold activation of Na+/H+ exchange, whereas hypotonic swelling induces an increase in the rate of 86Rb+ efflux which is inhibited by furosemide by about 30–40 percent. The rate of pH0 recovery in response to acidification or alkalinization in rat erythrocytes is approximately 15 times as fast as in carp erythrocytes. Unlike in rat erythrocytes, valinomycin does not cause an alkalinization of incubation medium in carp erythrocytes indicating the absence of conductive pathway in the operation of anion transporter protein. A scheme is suggested which describes the interrelation of Na+/H+ exchange, Na+, K+ pump and a non-identified system providing for K+ efflux in cell swelling, regulation of cell volume and cytoplasmic pH in fish erythrocytes under conditions of deep hypoxia and high activity.Abbreviations cAMP cyclic adenosine monophosphate - CCCP carbonylcyamide m-chlorophenylhydrazone - DMSO dimethylsulphoxide - EIPA ethylisopropylamiloride - NA noradrenaline - PMA -phorbol 12-myristate, 13-acetate - RVD regulatory volume decrease - RVI regulatory volume increase  相似文献   

7.
We have explored the possible mechanisms by which mineralocorticoid (MR) and glucocorticoid (GR) receptors regulate the response to freshwater transfer in the gills of the euryhaline killifish Fundulus heteroclitus. Killifish were implanted with RU486 (GR antagonist) or spironolactone (MR antagonist) at doses of 0.1–1.0 mg g−1, and subsequently transferred from 10‰ brackish water to freshwater. Compared to brackish water sham fish, mRNA expression of CFTR and NKCC1 decreased in the gills of sham fish transferred to freshwater, whereas Na+,K+–ATPase α1a mRNA expression and α protein abundance, as well as cell proliferation (detected using BrdU) increased. Spironolactone inhibited the normal increase in cell proliferation and Na+,K+-ATPase expression after freshwater transfer. RU486 increased plasma cortisol levels and may have slightly inhibited Na+,K+–ATPase activity, but did not change α 1a expression. RU486 had no effect on cell proliferation in the non-lamellar region of the gills, but increased proliferation in the lamellar region. Neither antagonist inhibited the suppression of CFTR or NKCC1 expression after freshwater transfer. Glucocorticoid receptor expression was reduced in all sham and antagonist treatments compared to untreated controls, but no other consistent differences were observed. The effects of spironolactone suggest that MR is important for regulating ion transport in killifish gills after freshwater transfer.  相似文献   

8.
Summary Bidirectional transepithelial K+ flux measurements across high-resistance epithelial monolayers of MDCK cells grown upon millipore filters show no significant net K+ flux.Measurements of influx and efflux across the basal-lateral and apical cell membranes demonstrate that the apical membranes are effectively impermeable to K+.K+ influx across the basal-lateral cell membranes consists of an ouabain-sensitive component, an ouabain-insensitive component, an ouabain-insensitive but furosemide-sensitive component, and an ouabain-and furosemide-insensitive component.The action of furosemide upon K+ influx is independent of (Na+–K+)-pump inhibition. The furosemide-sensitive component is markedly dependent upon the medium K+, Na+ and Cl content. Acetate and nitrate are ineffective substitutes for Cl, whereas Br is partially effective. Partial Cl replacement by NO3 gives a roughly linear increase in the furosemide-sensitive component. Na+ replacement by choline abolishes the furosemide-sensitive component, whereas Li+ is a partially effective replacement. Partial Na+ replacement with choline gives an apparent affinity of 7mm Na, whereas variation of the external K+ content gives an affinity of the furosemide-sensitive component of 1.0mm.Furosemide inhibition is of high affinity (K 1/2=3 m). Piretanide, ethacrynic acid, and phloretin inhibit the same component of passive K+ influx as furosemide; amiloride, 4,-aminopyridine, and 2,4,6-triaminopyrimidine partially so. SITS was ineffective.Externally applied furosemide and Cl replacement by NO 3 inhibit K+ efflux across the basal-lateral membranes indicating that the furosemide-sensitive component consists primarily of KK exchange.  相似文献   

9.
Pathways of K+ movement across the erythrocyte membrane of frog Rana temporaria were studied using 86Rb as a tracer. The K+ influx was significantly blocked by 0.1 mmol·l-1 ouabain (by 30%) and 1 mmol·l-1 furosemide (by 56%) in the red cells incubated in saline at physiological K+ concentration (2.7 mmol·l-1). Ouabain and furosemide had an additive effect on K+ transport in frog red cells. The ouabain-sensitive and furosemide-sensitive components of K+ influx saturated as f(K+)e with apparent K m values for external K e + concentration of 0.96±0.11 and 4.6±0.5 mmol·l-1 and V max of 0.89±0.04 and 2.8±0.4 mmol·l cells-1·h-1, respectively. The residual ouabain-furosemide-resistant component was also a saturable function of K e + medium concentration. Total K+ influx was significantly reduced when frog erythrocytes were incubated in NO - 3 medium. Furosemide did not affect K+ transport in frog red cells in NO 3 - media. At the same K e + concentration the ouabain-furosemide-insensitive K+ influx in Cl- medium was significantly greater than that in NO - 3 medium. We found no inhibitory effect of 1 mmol·l-1 furosemide on Na+ influx in frog red cells in Cl- medium. K+ loss from the frog erythrocytes in a K+-free medium was significantly reduced (mean 58%) after replacement of Cl- with NO - 3 . Furosemide (0.5 mmol·l-1) did not produce any significant reduction in the K+ loss in both media. The Cl--dependent component of K+ loss from frog red cells was 5.7±1.2 mmol·l-1·h-1. These results indicate that about two-thirds of the total K+ influx in frog erythrocytes is mediated by a K–Cl cotransport which is only partially blocked by furosemide.Abbreviations DMSO dimethyl sulphoxide - K e + external concentration of K+ - K m apparent Michaelis constant for external - K+ K e + at V max/2 - RBC red blood cell(s) - V max maximal velocity of the unidirectional K+ influx - TRIS tris(hydroxymethyl)aminomethane  相似文献   

10.
It is generally assumed that respiratory complexes exclusively use protons to energize the inner mitochondrial membrane. Here we show that oxidation of NADH by submitochondrial particles (SMPs) from the yeast Yarrowia lipolytica is coupled to protonophore-resistant Na+ uptake, indicating that a redox-driven, primary Na+ pump is operative in the inner mitochondrial membrane. By purification and reconstitution into proteoliposomes, a respiratory NADH dehydrogenase was identified which coupled NADH-dependent reduction of ubiquinone (1.4 μmol min−1 mg−1) to Na+ translocation (2.0 μmol min−1 mg−1). NADH-driven Na+ transport was sensitive towards rotenone, a specific inhibitor of complex I. We conclude that mitochondria from Y. lipolytica contain a NADH-driven Na+ pump and propose that it represents the complex I of the respiratory chain. Our study indicates that energy conversion by mitochondria does not exclusively rely on the proton motive force but may benefit from the electrochemical Na+ gradient established by complex I. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
To examine the involvement of Na+,K+,2Cl cotransport in monovalent ion fluxes in vascular smooth muscle cells (VSMC), we compared the effect of bumetanide on 86Rb, 36Cl and 22Na uptake by quiescent cultures of VSMC from rat aorta. Under basal conditions, the values of bumetanide-sensitive (BS) inward and outward 86Rb fluxes were not different. Bumetanide decreased basal 86Rb uptake by 70–75% with a K i of ∼0.2–0.3 μm. At concentrations ranging up to 1 μm, bumetanide did not affect 36Cl influx and reduced it by 20–30% in the range from 3 to 100 μm. In contrast to 86Rb and 36Cl influx, bumetanide did not inhibit 22Na uptake by VSMC. BS 86Rb uptake was completely abolished in Na+- or Cl-free media. In contrast to 86Rb, basal BS 36Cl influx was not affected by Na+ o and K+ o . Hyperosmotic and isosmotic shrinkage of VSMC increased 86Rb and 36Cl influx to the same extent. Shrinkage-induced increments of 86Rb and 36Cl uptake were completely abolished by bumetanide with a K i or ∼0.3 μm. Shrinkage did not induce BS 86Rb and 36Cl influx in (Na+ or Cl)- and (Na+ or K+)-depleted media, respectively. In the presence of an inhibitor of Na+/H+ exchange (EIPA), neither hyperosmotic nor isosmotic shrinkage activated 22Na influx. Bumetanide (1 μm) did not modify basal VSMC volume and intracellular content of sodium, potassium and chloride but abolished the regulatory volume increase in isosmotically-shrunken VSMC. These data demonstrate the absence of the functional Na+,K+,2Cl cotransporter in VSMC and suggest that in these cells basal and shrinkage-induced BS K+ influx is mediated by (Na+ o + Cl o )-dependent K+/K+ exchange and Na+ o -dependent K+,Cl cotransport, respectively. Received: 30 January 1996/Revised: 20 May 1996  相似文献   

12.
It is known that permeability of the inner mitochondrial membrane is low to most univalent cations (K+, Na+, H+) but high to Tl+. Swelling, state 4, state 3, and 2,4-dinitrophenol (DNP)-stimulated respiration as well as the membrane potential (ΔΨmito) of rat liver mitochondria were studied in media containing 0–75 mM TlNO3 either with 250 mM sucrose or with 125 mM nitrate salts of other monovalent cations (KNO3, or NaNO3, or NH4NO3). Tl+ increased permeability of the inner mitochondrial membrane to K+, Na+, and H+, that was manifested as stimulation of the swelling of nonenergized and energized mitochondria as well as via an increase of state 4 and dissipation of ΔΨmito. These effects of Tl+ increased in the order of sucrose <K+ <Na+ ≤ NH4+. They were stimulated by inorganic phosphate and decreased by ADP, Mg2+, and cyclosporine A. Contraction of energized mitochondria, swollen in the nitrate media, was markedly inhibited by quinine. It suggests participation of the mitochondrial K+/H+ exchanger in extruding of Tl+-induced excess of univalent cations from the mitochondrial matrix. It is discussed that Tl+ (like Cd2+ and other heavy metals) increases the ion permeability of the inner membrane of mitochondria regardless of their energization and stimulates the mitochondrial permeability transition pore in low conductance state. The observed decrease of state 3 and DNP-stimulated respiration in the nitrate media resulted from the mitochondrial swelling rather than from an inhibition of respiratory enzymes as is the case with the bivalent heavy metals.  相似文献   

13.
UV irradiation has multiple effects on mammalian cells, including modification of ion channel function. The present study was undertaken to investigate the response of membrane currents in guinea-pig ventricular myocytes to the type A (355, 380 nm) irradiation commonly used in Ca2+ imaging studies. Myocytes configured for whole-cell voltage clamp were generally held at −80 mV, dialyzed with K+-, Na+-free pipette solution, and bathed with K+-free Tyrode’s solution at 22°C. During experiments that lasted for ≈ 35 min, UVA irradiation caused a progressive increase in slowly-inactivating inward current elicited by 200-ms depolarizations from −80 to −40 mV, but had little effect on background current or on L-type Ca2+ current. Trials with depolarized holding potential, Ca2+ channel blockers, and tetrodotoxin (TTX) established that the current induced by irradiation was late (slowly-inactivating) Na+ current (INa). The amplitude of the late inward current sensitive to 100 μM TTX was increased by 3.5-fold after 20–30 min of irradiation. UVA modulation of late INa may (i) interfere with imaging studies, and (ii) provide a paradigm for investigation of intracellular factors likely to influence slow inactivation of cardiac INa.  相似文献   

14.
15.
Blocking either the Na+ channel or the Na+/H+ exchanger (NHE) has been shown to reduce Na+ and Ca2+ overload during myocardial ischemia and reperfusion, respectively, and to improve post-ischemic contractile recovery. The effect of combined blockade of both Na+ influx routes on ionic homeostasis is unknown and was tested in this study. [Na+]i, pHi and energy-related phosphates were measured using simultaneous 23Na- and 31P-NMR spectroscopy in isolated rat hearts. Eniporide (3 μM) and/or lidocaine (200 μM) were administered during 5 min prior to 40 min of global ischemia and 40 min of drug free reperfusion to block the NHE and the Na+ channel, respectively. Lidocaine reduced the rise in [Na+]i during the first 10 min of ischemia, followed by a rise with a rate similar to the one found in untreated hearts. Eniporide reduced the ischemic Na+ influx during the entire ischemic period. Administration of both drugs resulted in a summation of the effects found in the lidocaine and eniporide groups. Contractile recovery and infarct size were significantly improved in hearts treated with both drugs, although not significantly different from hearts treated with either one of them.  相似文献   

16.
K+-Cl cotransporter-3 has two major amino terminal variants, KCC3a and KCC3b. In LLC-PK1 cells, exogenously expressed KCC3a co-immunoprecipitated with endogenous Na+,K+-ATPase α1-subunit (α1NaK), accompanying significant increases of the Na+,K+-ATPase activity. Exogenously expressed KCC3b did not co-immunoprecipitate with endogenous α1NaK inducing no change of the Na+,K+-ATPase activity. A KCC inhibitor attenuated the Na+,K+-ATPase activity in rat gastric mucosa in which KCC3a is predominantly expressed, while it had no effects on the Na+,K+-ATPase activity in rat kidney in which KCC3b is predominantly expressed. In these tissue samples, KCC3a co-immunoprecipitated with α1NaK, while KCC3b did not. Our results suggest that the NH2-terminus of KCC3a is a key region for association with α1NaK, and that KCC3a but not KCC3b can regulate the Na+,K+-ATPase activity.  相似文献   

17.
K+-conductive pathways were evaluated in isolated surface and crypt colonic cells, by measuring 86Rb efflux. In crypt cells, basal K+ efflux (rate constant: 0.24 ± 0.044 min−1, span: 24 ± 1.3%) was inhibited by 30 mM TEA and 5 mM Ba2+ in an additive way, suggesting the existence of two different conductive pathways. Basal efflux was insensitive to apamin, iberiotoxin, charybdotoxin and clotrimazole. Ionomycin (5 μM) stimulated K+ efflux, increasing the rate constant to 0.65 ± 0.007 min−1 and the span to 83 ± 3.2%. Ionomycin-induced K+ efflux was inhibited by clotrimazole (IC50 of 25 ± 0.4 μM) and charybdotoxin (IC50 of 65 ± 5.0 nM) and was insensitive to TEA, Ba2+, apamin and iberiotoxin, suggesting that this conductive pathway is related to the Ca2+-activated intermediate-conductance K+ channels (IKca). Absence of extracellular Ca2+ did neither affect basal nor ionomycin-induced K+ efflux. However, intracellular Ca2+ depletion totally inhibited the ionomycin-induced K+ efflux, indicating that the activation of these K+ channels mainly depends on intracellular calcium liberation. K+ efflux was stimulated by intracellular Ca2+ with an EC50 of 1.1 ± 0.04 μM. In surface cells, K+ efflux (rate constant: 0.17 ± 0.027 min−1; span: 25 ± 3.4%) was insensitive to TEA and Ba2+. However, ionomycin induced K+ efflux with characteristics identical to that observed in crypt cells. In conclusion, both surface and crypt cells present IKCa channels but only crypt cells have TEA- and Ba2+-sensitive conductive pathways, which would determine their participation in colonic K+ secretion.  相似文献   

18.
Summary Active transport of sodium by pulmonary alveolar epithelial cells (AEC) is believed to be an important component of edema clearance in the normal and injured lung. Data supporting this premise have come from measurements of sodium movement across AEC monolayers or from perfused lung model systems. However, direct measurement of fluid flux across AEC monolayers has not been reported. In the present work, AEC were studied with an experimental system for the measurement of fluid flux (Jv) across functionally intact cell monolayers. Primary adult rat type II alveolar epithelial cells were cultured on 0.8 μm nuleopore filters previously coated with gelatin and fibronectin. Intact monolayers were verified by high electrical resistance (> 1000 Θ) at 4–5 d of primary culture. At the same time interval, transmission electron microscopy revealed cells with type I cell-like morphology throughout the monolayer. These were characterized by both adherens and tight junctional attachments. Fluid flux across the monolayers was measured volumetrically over a period of 2 h in the presence of HEPES-buffered DMEM containing 3% fatty acid-free bovine serum albumin. Flux (Jv) was inhibited 39% by 1 × 10−4 M ouabain (P < 0.01) and 27% by 5 × 10−4 M amiloride (P < 0.05). These data support the concept that AEC Na+/K+-ATPase and Na+ transport systems are important determinants of AEC transepithelial fluid movement in vitro.  相似文献   

19.
Summary To study the possible role of intracellular Ca (Ca i ) in controlling the activities of the Na+–K+ pump, the Na+–K+ cotransport and the Na+/Li+ exchange system of human erythrocytes, a method was developed to measure the amount of Ca embodied within the red cell. For complete removal of Ca associated with the outer aspect of the membrane, it proved to be essential to wash the cells in buffers containing less than 20nm Ca. Ca was extracted by HClO4 in Teflon® vessels boiled in acid to avoid Ca contaminations and quantitated by flameless atomic absorption. Ca i of fresh human erythrocytes of apparently healthy donors ranged between 0.9 and 2.8 mol/liter cells. The mean value found in females was significantly higher than in males. The interindividual different Ca contents remained constant over periods of more than one year. Sixty to 90% of Ca i could be removed by incubation of the cells with A23187 and EGTA. The activities of the Na+–K+ pump, of Na+–K+ cotransport and Na+/Li+ exchange and the mean cellular hemoglobin content fell with rising Ca i ; the red cell Na+ and K+ contents rose with Ca i . Ca depletion by A23187 plus EGTA as well as chelation of intracellular Ca2+ by quin-2 did not significantly enhance the transport rates. It is concluded that the large scatter of the values of Ca i of normal human erythrocytes reported in the literature mainly results from a widely differing removal of Ca associated with the outer aspect of the membrane.  相似文献   

20.
Zhang Y  Wang L  Liu Y  Zhang Q  Wei Q  Zhang W 《Planta》2006,224(3):545-555
Nitric oxide (NO), an endogenous signaling molecule in animals and plants, mediates responses to abiotic and biotic stresses. Our previous work demonstrated that 100 μM sodium nitroprusside (SNP, an NO donor) treatment of maize seedlings increased K+ accumulation in roots, leaves and sheathes, while decreasing Na+ accumulation (Zhang et al. in J Plant Physiol Mol Biol 30:455–459, 2004b). Here we investigate how NO regulates Na+, K+ ion homeostasis in maize. Pre-treatment with 100 μM SNP for 2 days improved later growth of maize plants under 100 mM NaCl stress, as indicated by increased dry matter accumulation, increased chlorophyll content, and decreased membrane leakage from leaf cells. An NO scavenger, methylene blue (MB-1), blocked the effect of SNP. These results indicated that SNP-derived NO enhanced maize tolerance to salt stress. Further analysis showed that NaCl induced a transient increase in the NO level in maize leaves. Both NO and NaCl treatment stimulated vacuolar H+-ATPase and H+-PPase activities, resulting in increased H+-translocation and Na+/H+ exchange. NaCl-induced H+-ATPase and H+-PPase activities were diminished by MB-1. 1-Butanol, an inhibitor of phosphatidic acid (PA) production by phospholipase D (PLD), reduced NaCl- and NO-induced H+-ATPase activation. In contrast, applied PA stimulated H+-ATPase activity. These results suggest that NO acts as a signal molecule in the NaCl response by increasing the activities of vacuolar H+-ATPase and H+-PPase, which provide the driving force for Na+/H+ exchange. PLD and PA play an important role in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号