首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In models of HIV fusion, the glycoprotein gp41 is thought to form a six-helix bundle during viral fusion with the target cell. This bundle is comprised of three helical regions (from the heptad repeat 2, or HR2, region of gp41) bound to an inner, trimeric, coiled-coil core (from the HR1 region). Although much has been learned about the structure and thermodynamics of this complex, the energetics of the isolated HR1 self-associated oligomer remain largely unknown. By systematically studying self-association through a series of truncations based on a 51-mer HR1 peptide (T865), we have identified amino acid segments which contribute significantly to the stability of the oligomeric HR1 complex. Biophysical characterization of C-terminal truncations of T865 identifies a 10-15-amino acid region that is essential for HR1 oligomerization. This region coincides with a hydrophobic pocket that provides important contacts for the interaction of HR2 helices. Complete removal of this pocket abolishes HR1 oligomerization. Despite the dramatic reduction in stability, the monomeric HR1 peptides are still able to form stable six-helix bundles in the presence of HR2 peptides. Truncations on the N-terminal side of T865 have little effect on oligomerization but significantly reduce the stability of the HR1-HR2 six-helix bundle. Unlike the HR2 binding site, which extends along a hydrophobic groove on the HR1 oligomer, the residues that are critical for HR1 oligomerization are concentrated in a 10-15-amino acid region. These results demonstrate that there are localizations of binding energy, or "hot spots", in the self-association of peptides derived from the HR1 region of gp41.  相似文献   

2.
3.
Yuan W  Craig S  Si Z  Farzan M  Sodroski J 《Journal of virology》2004,78(10):5448-5457
The synthetic peptide T-20, which corresponds to a sequence within the C-terminal heptad repeat region (HR2) of the human immunodeficiency virus type 1 (HIV-1) gp41 envelope glycoprotein, potently inhibits viral membrane fusion and entry. Although T-20 is thought to bind the N-terminal heptad repeat region (HR1) of gp41 and interfere with gp41 conformational changes required for membrane fusion, coreceptor specificity determined by the V3 loop of gp120 strongly influences the sensitivity of HIV-1 variants to T-20. Here, we show that T-20 binds to the gp120 glycoproteins of HIV-1 isolates that utilize CXCR4 as a coreceptor in a manner determined by the sequences of the gp120 V3 loop. T-20 binding to gp120 was enhanced in the presence of soluble CD4. Analysis of T-20 binding to gp120 mutants with variable loop deletions and the reciprocal competition of T-20 and particular anti-gp120 antibodies suggested that T-20 interacts with a gp120 region near the base of the V3 loop. Consistent with the involvement of this region in coreceptor binding, T-20 was able to block the interaction of gp120-CD4 complexes with the CXCR4 coreceptor. These results help to explain the increased sensitivity of CXCR4-specific HIV-1 isolates to the T-20 peptide. Interactions between the gp41 HR2 region and coreceptor-binding regions of gp120 may also play a role in the function of the HIV-1 envelope glycoproteins.  相似文献   

4.
We have previously shown that the first generation human immunodeficiency virus (HIV) fusion inhibitor T20 (Fuzeon) contains a critical lipid-binding domain (LBD), whereas C34, another anti-HIV peptide derived from the gp41 C-terminal heptad repeat, consists of an important pocket-binding domain (PBD), and both share a common 4-3 heptad repeat (HR) sequence (Liu, S., Jing, W., Cheung, B., Lu, H., Sun, J., Yan, X., Niu, J., Farmar, J., Wu, S., and Jiang, S. (2007) J. Biol. Chem. 282, 9612-9620). T1249, the second generation HIV fusion inhibitor, has both LBD and PBD but a different HR sequence, suggesting that these three anti-HIV peptides may have distinct mechanisms of action. Here we rationally designed a set of peptides that contain multiple copies of a predicted HR sequence (5HR) or the HR sequence plus either LBD (4HR-LBD) or PBD (PBD-4HR) or both (PBD-3HR-LBD), and we compared their anti-HIV-1 activity and biophysical properties. We found that the peptide 5HR exhibited low-to-moderate inhibitory activity on HIV-1-mediated cell-cell fusion, whereas addition of LBD and/or PBD to the HR sequence resulted in a significant increase of the anti-HIV-1 activity. The peptides containing PBD, including PBD-4HR and PBD-3HR-LBD, could form a stable six-helix bundle with the N-peptide N46 and effectively blocked the gp41 core formation, whereas the peptides containing LBD, e.g. 4HR-LBD and PBD-3HR-LBD, could interact with the lipid vehicles. These results suggest that the HR sequence in these anti-HIV peptides acts as a structure domain and is responsible for its interaction with the HR sequence in N-terminal heptad repeat, whereas PBD and LBD are critical for interactions with their corresponding targets. T20, C34, and T1249 may function like 4HR-LBD, PBD-4HR, and PBD-3HR-LBD, respectively, to interact with different target sites for inhibiting HIV fusion and entry. Therefore, this study provides important information for understanding the mechanisms of action of the peptic HIV-1 fusion inhibitors and for rational design of novel antiviral peptides against HIV and other viruses with class I fusion proteins.  相似文献   

5.
The envelope spike (S) glycoprotein of the severe acute respiratory syndrome associated coronavirus (SARS-CoV) mediates the entry of the virus into target cells. Recent studies point out to a cell entry mechanism of this virus similar to other enveloped viruses, such as HIV-1. As it happens with other viruses peptidic fusion inhibitors, SARS-CoV S protein HR2-derived peptides are potential therapeutic drugs against the virus. It is believed that HR2 peptides block the six-helix bundle formation, a key structure in the viral fusion, by interacting with the HR1 region. It is a matter of discussion if the HIV-1 gp41 HR2-derived peptide T20 (enfuvirtide) could be a possible SARS-CoV inhibitor given the similarities between the two viruses. We tested the possibility of interaction between both T20 (HIV-1 gp41 HR2-derived peptide) and T-1249 with S protein HR1- and HR2-derived peptides. Our biophysical data show a significant interaction between a SARS-CoV HR1-derived peptide and T20. However, the interaction is only moderate (K(B)=(1.1+/-0.3)x10(5) M(-1)). This finding shows that the reasoning behind the hypothesis that T20, already approved for clinical application in AIDS treatment, could inhibit the fusion of SARS-CoV with target cells is correct but the effect may not be strong enough for application.  相似文献   

6.
T-20 is a synthetic peptide that corresponds to 36 amino acids within the C-terminal heptad repeat region (HR2) of human immunodeficiency virus type 1 (HIV-1) gp41. T-20 has been shown to potently inhibit viral replication of HIV-1 both in vitro and in vivo and is currently being evaluated in a Phase III clinical trial. T-649 is an inhibitory peptide that also corresponds to 36 amino acids within HR2. This sequence overlaps the T-20 sequence but is shifted 10 residues toward the N terminus of gp41. Both inhibitors are thought to exert their antiviral activity by interfering with the conformational changes that occur within gp41 to promote membrane fusion following gp120 interactions with CD4 and coreceptor molecules. We have shown previously that coreceptor specificity defined by the V3 loop of gp120 modulates sensitivity to T-20 and that a critical region within the N-terminal heptad repeat (HR1) of gp41 is the major determinant of sensitivity (C. A. Derdeyn et al., J. Virol. 74:8358-8367, 2000). This report shows that (i) regions within gp41 distinct from those associated with T-20 sensitivity govern the baseline sensitivity to T-649 and (ii) T-649 sensitivity of chimeric viruses that contain sequences derived from CXCR4- and CCR5-specific envelopes is also modulated by coreceptor specificity. Moreover, the pattern of sensitivity of CCR5-specific chimeras with only minor differences in their V3 loop was consistent for both inhibitors, suggesting that the individual affinity for coreceptor may influence accessibility of these inhibitors to their target sequence. Finally, an analysis of the sensitivity of 55 primary, inhibitor-naive HIV-1 isolates found that higher concentrations of T-20 (P < 0.001) and T-649 (P = 0.016) were required to inhibit CCR5-specific viruses compared to viruses that utilize CXCR4. The results presented here implicate gp120-coreceptor interactions in driving the complex conformational changes that occur in gp41 to promote fusion and entry and suggest that sensitivity to different HR1-directed fusion inhibitors is governed by distinct regions of gp41 but is consistently modulated by coreceptor specificity.  相似文献   

7.
He Y  Cheng J  Li J  Qi Z  Lu H  Dong M  Jiang S  Dai Q 《Journal of virology》2008,82(13):6349-6358
Human immunodeficiency virus type 1 (HIV-1) entry into the host cell involves a cascade of events and currently represents one of most attractive targets in the search for new antiviral drugs. The fusion-active gp41 core structure is a stable six-helix bundle (6-HB) folded by its trimeric N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR). Peptides derived from the CHR region of HIV-1 gp41 are potent fusion inhibitors that target the NHR to block viral and cellular membrane fusion in a dominant negative fashion. However, all CHR peptides reported to date are derived primarily from residues 628 to 673 of gp41; little attention has been paid to the upstream sequence of the pocket binding domain (PBD) in the CHR. Here, we have identified a motif ((621)QIWNNMT(627)) located at the upstream region of the gp41 CHR, immediately adjacent to the PBD ((628)WMEWEREI(635)). Biophysical characterization demonstrated that this motif is critical for the stabilization of the gp41 6-HB core. The peptide CP621-652, containing the (621)QIWNNMT(627) motif, was able to interact with T21, a counterpart peptide derived from the NHR, to form a typical 6-HB structure with a high thermostability (thermal unfolding transition [T(m)] value of 82 degrees C). In contrast, the 6-HB formed by the peptides N36 and C34, which has been considered to be a core structure of the fusion-active gp41, had a T(m) of 64 degrees C. Different from T-20 (brand name Fuseon), which is the first and only HIV-1 fusion inhibitor approved for clinical use, CP621-652 could efficiently block 6-HB formation in a dose-dependent manner. Significantly, CP621-652 had potent inhibitory activity against HIV-1-mediated cell-cell fusion and infection, especially against T-20- and C34-resistant virus. Therefore, our works provide important information for understanding the core structure of the fusion-active gp41 and for designing novel anti-HIV peptides.  相似文献   

8.
A 43-mer peptide derived from the coiled coil domain of the transmembrane glycoprotein, gp41, of human immunodeficiency virus type 1, was synthesized. Light scattering measurements suggested that the peptide molecules likely exist in the aqueous solution in trimeric form. Circular dichroism experiments showed a moderate helix population enhancement for the peptide in 80% methanol solution relative to helicity in sodium dodecyl sulfate micellar suspension. NMR spectroscopy indicated that the N-terminal section of the peptide was conformationally more sensitive to the medium. The conformationally labile regions contain residues implicated in gp41-gp120 association. Our data support the idea that the coiled coil region is responsible for oligomerization of the gp41 ectodomain and suggest a site of conformational isomerization following receptor binding-induced gp120 dissociation from gp41.  相似文献   

9.
Noah E  Biron Z  Naider F  Arshava B  Anglister J 《Biochemistry》2008,47(26):6782-6792
The HIV-1 envelope glycoprotein gp41 undergoes a sequence of extensive conformational changes while participating in the fusion of the virus with the host cell. Since the discovery of its postfusion conformation, the structure and function of the protease-resistant six-helix bundle (6-HB) have been the subject of extensive investigation. In this work, we describe additional determinants (S528-Q540 and W666-N677) in the fusion peptide proximal region (FP-PR) and the membrane proximal external region (MPER) that stabilize the six-helix bundle and are involved in the interaction of T-20 (FUZEON, an anti-HIV-1 fusion inhibitor drug) with the gp41 FP-PR. Circular dichroism and sedimentation equilibrium measurements indicate that the 1:1 mixture of N' and C' peptides comprising residues A541-T569 and I635-K665 from the gp41 first and second helical repeats, HR1 and HR2, respectively, fail to form a stable six-helix bundle. Triglutamic acid and triarginine tags were added to these N' and C' peptides, respectively, at the termini distant from the FP-PR and the MPER to alter their pI and increase their solubility at pH 3.5. The tagged HR1 and HR2 peptides were elongated by addition of residues S528-Q540 from the FP-PR and residues W666-N677 from the MPER, respectively. A 1:1 complex of the elongated peptides formed a stable six-helix bundle which melted at 60 degrees C. These results underscore the importance of a detailed high-resolution characterization of MPER interactions, the results of which may improve our understanding of the structure-function relationship of gp41 and its role in HIV-1 fusion.  相似文献   

10.
Antisense amino acids are amino acids which can be translated from the corresponding anti-codons of a sense amino acid. Antisense peptides encoded by the noncoding DNA strand have a tendency to interact with each other. We have demonstrated that antisense peptide sequences are present intramolecularly, and these may contribute to the folding and maintenance of the tertiary structure of a protein. T20 is a synthetic peptide with an amino acid sequence in the gp41 of HIV-1 and has been demonstrated to be a potent inhibitor of HIV-1 infection. We searched for intramolecular peptide sequences which are antisense to portions of T20. A synthetic peptide (TA-1L) consisting of amino acids 84 to 97 of gp160, which contains an antisense peptide sequence (TA-1) to T20, was shown to inhibit HIV-1(IIIB) infection of MT-4 cells. Interaction of these antisense peptides could be involved in sustaining HIV-1 infectivity. The TA-1L site, which exists in the C1 domain of gp160, is highly homologous among strains of HIV-1, especially at TA-1 and in the amino acids flanking the C terminus. Although the TA-1 sites of 18 out of 30 HIV-1 strains were antisense to the T20 region, those of the remaining 12 strains, including HIV-1(MN), were not. However, TA-1L inhibited infection by HIV-1(MN), which has no antisense peptide in T20 corresponding to TA-1, although the inhibitory effect was weaker. TA-1L may thus also interfere with the gp160 interaction with CD4, which has an antisense sequence to TA-1.  相似文献   

11.
The HIV-1 envelope spike is a trimer of heterodimers composed of an external glycoprotein gp120 and a transmembrane glycoprotein gp41. gp120 initiates virus entry by binding to host receptors, whereas gp41 mediates fusion between viral and host membranes. Although the basic pathway of HIV-1 entry has been extensively studied, the detailed mechanism is still poorly understood. Design of gp41 recombinants that mimic key intermediates is essential to elucidate the mechanism as well as to develop potent therapeutics and vaccines. Here, using molecular genetics and biochemical approaches, a series of hypotheses was tested to overcome the extreme hydrophobicity of HIV-1 gp41 and design a soluble near full-length gp41 trimer. The two long heptad repeat helices HR1 and HR2 of gp41 ectodomain were mutated to disrupt intramolecular HR1-HR2 interactions but not intermolecular HR1-HR1 interactions. This resulted in reduced aggregation and improved solubility. Attachment of a 27-amino acid foldon at the C terminus and slow refolding channeled gp41 into trimers. The trimers appear to be stabilized in a prehairpin-like structure, as evident from binding of a HR2 peptide to exposed HR1 grooves, lack of binding to hexa-helical bundle-specific NC-1 mAb, and inhibition of virus neutralization by broadly neutralizing antibodies 2F5 and 4E10. Fusion to T4 small outer capsid protein, Soc, allowed display of gp41 trimers on the phage nanoparticle. These approaches for the first time led to the design of a soluble gp41 trimer containing both the fusion peptide and the cytoplasmic domain, providing insights into the mechanism of entry and development of gp41-based HIV-1 vaccines.  相似文献   

12.
HIV fusion is mediated by a conformational transition in which the C-terminal region (HR2) of gp41 interacts with the N-terminal region (HR1) to form a six-helix bundle. Peptides derived from the HR1 form a well-characterized, trimeric coiled-coil bundle in the presence of HR2 peptides, but there is little structural information on the isolated HR1 trimer. Using protein design, we have designed synthetic HR1 peptides that form soluble, thermostable HR1 trimers. In vitro binding of HR2 peptides to the engineered trimer suggests that the design strategy has not significantly impacted the ability to form the six-helix bundle. The peptides have enhanced antiviral activity compared to wild type, with up to 30-fold greater potency against certain viral isolates. In vitro passaging was used to generate HR1-resistant virus and the observed resistance mutations map to the HR2 region of gp41, demonstrating that the peptides block the fusion process by binding to the viral HR2 domain. Interestingly, the activity of the HR2 fusion inhibitor, enfuvirtide (ENF), against these resistant viruses is maintained or improved up to fivefold. The 1.5 A crystal structure of one of these designs has been determined, and we show that the isolated HR1 is very similar to the conformation of the HR1 in the six-helix bundle. These results provide an initial model of the pre-fusogenic state, are attractive starting points for identifying novel fusion inhibitors, and offer new opportunities for developing HIV therapeutics based on HR1 peptides.  相似文献   

13.
Lu L  Tong P  Yu X  Pan C  Zou P  Chen YH  Jiang S 《Biochimica et biophysica acta》2012,1818(12):2950-2957
Enfuvirtide (T20), the first FDA-approved peptide HIV fusion/entry inhibitor derived from the HIV-1 gp41 C-terminal heptad-repeat (CHR) domain, is believed to share a target with C34, another well-characterized CHR-peptide, by interacting with the gp41 N-terminal heptad-repeat (NHR) to form six-helix bundle core. However, our previous studies showed that T20 mainly interacts with the N-terminal region of the NHR (N-NHR) and lipid membranes, while C34 mainly binds to the NHR C-terminal pocket region. But so far, no one has shown that C34 can induce drug-resistance mutation in the gp41 pocket region. In this study, we constructed pseudoviruses in which the Ala at the position of 67 in the gp41 pocket region was substituted with Asp, Gly or Ser, respectively, and found that these mutations rendered the viruses highly resistant to C34, but sensitive to T20. The NHR-peptide N36 with mutations of A67 exhibited reduced anti-HIV-1 activity and decreased α-helicity. The stability of six-helix bundle formed by C34 and N36 with A67 mutations was significantly lower than that formed by C34 and N36 with wild-type sequence. The combination of C34 and T20 resulted in potent synergistic anti-HIV-1 effect against the viruses with mutations in either N- or C-terminal region in NHR. These results suggest that C34 with a pocket-binding domain and T20 containing the N-NHR- and membrane-binding domains inhibit HIV-1 fusion by interacting with different target sites and the combinatorial use of C34 and T20 is expected to be effective against HIV-1 variants resistant to HIV fusion inhibitors.  相似文献   

14.
Peptides corresponding to N- and C-terminal heptad repeat regions (HR1 and HR2, respectively) of viral fusion proteins can block infection of viruses in a dominant negative manner by interfering with refolding of the viral HR1 and HR2 to form a six-helix bundle (6HB) that drives fusion between viral and host cell membranes. The 6HB of the HIV gp41 (endogenous bundle) consists of an HR1 coiled-coil trimer with grooves lined by antiparallel HR2 helices. HR1 peptides form coiled-coil oligomers that may bind to gp41 HR2 as trimers to form a heterologous 6HB (inhibitor bundle) or to gp41 HR1 as monomers or dimers to form a heterologous coiled coil. To gain insights into mechanisms of Env entry and inhibition by HR1 peptides, we compared resistance to a peptide corresponding to 36 residues in gp41 HR1 (N36) and the same peptide with a coiled-coil trimerization domain fused to its N terminus (IZN36) that stabilizes the trimer and increases inhibitor potency (Eckert, D. M., and Kim, P. S. (2001) Proc. Nat. Acad. Sci. U.S.A. 98, 11187-11192). Whereas N36 selected two genetic pathways with equal probability, each defined by an early mutation in either HR1 or HR2, IZN36 preferentially selected the HR1 pathway. Both pathways conferred cross-resistance to both peptides. Each HR mutation enhanced the thermostability of the endogenous 6HB, potentially allowing the virus to simultaneously escape inhibitors targeting either gp41 HR1 or HR2. These findings inform inhibitor design and identify regions of plasticity in the highly conserved gp41 that modulate virus entry and escape from HR1 peptide inhibitors.  相似文献   

15.
T20 (Fuzeon), a novel anti-human immunodeficiency virus (HIV) drug, is a peptide derived from HIV-1 gp41 C-terminal heptad repeat (CHR). Its mechanism of action has not yet been defined. We applied Pepscan strategy to determine the relationship between functional domains and mechanisms of action of five 36-mer overlapping peptides with a shift of five amino acids (aa): CHR-1 (aa 623-658), C36 (aa 628-663), CHR-3 (aa 633-668), T20 (aa 638-673), and CHR-5 (aa 643-678). C36 is a peptide with addition of two aa to the N terminus of C34. Peptides CHR-1 and C36 contain N-terminal heptad repeat (NHR)- and pocket-binding domains. They inhibited HIV-1 fusion by interacting with gp41 NHR, forming stable six-helix bundles and blocking gp41 core formation. Peptide T20 containing partial NHR- and lipid-binding domains, but lacking pocket-binding domain, blocked viral fusion by binding its N- and C-terminal sequences with gp41 NHR and cell membrane, respectively. Peptide CHR-3, which is located in the middle between C36 and T20, overlaps >86% of the sequences of these two peptides, and lacks pocket- and lipid-binding domains, exhibited marginal anti-HIV-1 activity. These results suggest that T20 and C36 contain different functional domains, through which they inhibit HIV-1 entry with distinct mechanisms of action. The multiple functional domains in gp41 CHR and their binding partners may serve as targets for rational design of new anti-HIV-1 drugs and vaccines.  相似文献   

16.
One chimeric peptide incorporating antigenic sequences from the gp41 transmembrane region (peptide H-18) and the gp120 envelope region (peptide H-15) corresponding to amino acids (587-617) on gp41 and (495-516) on gp120 of human immunodeficiency virus (HIV 1) was synthesized. Both sequences were separated by two glycine residues. This peptide was evaluated as antigen in an ultramicro-enzyme-linked immunosorbent assay (UMELISA) with samples derived from HIV-1 (n = 30) with different titers of antibodies and healthy blood donors (n = 30). The results were compared to plates coated with monomeric peptides and to plates coated with two monomeric peptides together. Results demonstrated that monomeric peptides gp41 (H-18) and gp120 (H-15) were good as antigens with samples that present antibodies to these regions. The chimeric peptide was the most antigenic. Those results may be related to the peptide structure, adsorption to the solid surface, and epitope accessibility to the antibodies. This chimeric peptide would be very useful for HIV-1 diagnostics.  相似文献   

17.
《Journal of molecular biology》2019,431(17):3091-3106
Development of effective inhibitors of the fusion between HIV-1 and the host cell membrane mediated by gp41 continues to be a grand challenge due to an incomplete understanding of the molecular and mechanistic details of the fusion process. We previously developed single-chain, chimeric proteins (named covNHR) that accurately mimic the N-heptad repeat (NHR) region of gp41 in a highly stable coiled-coil conformation. These molecules bind strongly to peptides derived from the gp41 C-heptad repeat (CHR) and are potent and broad HIV-1 inhibitors. Here, we investigated two covNHR variants differing in two mutations, V10E and Q123R (equivalent to V38E and Q40R in gp41 sequence) that reproduce the effect of HIV-1 mutations associated with resistance to fusion inhibitors, such as T20 (enfuvirtide). A detailed calorimetric analysis of the binding between the covNHR proteins and CHR peptides (C34 and T20) reveals drastic changes in affinity due to the mutations as a result of local changes in interactions at the site of T20 resistance. The crystallographic structure of the covNHR:C34 complex shows a virtually identical CHR–NHR binding interface to that of the post-fusion structure of gp41 and underlines an important role of buried interfacial water molecules in binding affinity and in development of resistance against CHR peptides. Despite the great difference in affinity, both covNHR variants demonstrate strong inhibitory activity for a wide variety of HIV-1 strains. These properties support the high potential of these covNHR proteins as new potent HIV-1 inhibitors. Our results may guide future inhibition approaches.  相似文献   

18.
The reactivity of antibodies with dimeric and monomelic peptide antigens was compared by ELISA. A panel of highly purified synthetic peptides of HIV-1 representing defined regions, 598–609 and 524 533 (fusion domain) of gp41 and 306–320 of gpl20, were used as antigens in the ELISA. These peptides were selected and synthesized taking into account the level of sequence conservation of various strains and hydrophilicity. The analysis included sera from 52 HIV-1 infected individuals and 53 HIV-1 negative controls. Both peptides from gp41 were found to be particularly immunoreactive with sera from HIV-1 infected individuals. The frequency of reactivity to the selected peptide from gp120 (V3 loop) in infected individuals was 82%. An interesting observation was that the dimeric peptide antigens had a detection rate more than 4-fold higher than the monomeric antigens. We found that lower levels of antibodies could be detected with dimeric antigens. The peptides reacted with few sera other than HIV-1 positive sera. These results implicate the potential dimeric peptide antigens to be utilized in the serodiagnosis of HIV-1 infection.  相似文献   

19.
Protein design of a bacterially expressed HIV-1 gp41 fusion inhibitor   总被引:1,自引:0,他引:1  
Deng Y  Zheng Q  Ketas TJ  Moore JP  Lu M 《Biochemistry》2007,46(14):4360-4369
Peptides derived from the carboxyl-terminal heptad repeat of the gp41 envelope glycoprotein ectodomain (C-peptides) can inhibit HIV-1 membrane fusion by binding to the amino-terminal trimeric coiled coil of the same protein. The fusion inhibitory peptide T-20 contains an additional tryptophan-rich sequence motif whose binding site extends beyond the gp41 coiled-coil region yet provides the key determinant of inhibitory activity in T-20. Here we report the design of a recombinant peptide inhibitor (called C52L) that includes both the C-peptide and tryptophan-rich regions. By calorimetry, C52L binds to a peptide mimic of the amino-terminal coiled coil with a Kd of 80 nM, reflecting the large degree of helicity in C52L as measured by circular dichroism spectroscopy. The C52L peptide potently inhibits in vitro infection of human T cells by diverse primary HIV-1 isolates irrespective of coreceptor preference, with nanomolar IC50 values. Significantly, C52L is fully active against T-20-resistant variants in a single-cycle HIV-1 infectivity assay. Moreover, because it can be expressed in bacteria, the C52L peptide might be more economical to manufacture on a large scale than T-20-like peptides produced by chemical synthesis. Hence the C52L fusion inhibitor may find a practical application, for example as a vaginal or rectal microbicide to prevent HIV-1 infection in the developing world.  相似文献   

20.
Cole AM  Liao HI  Ganz T  Yang OO 《FEBS letters》2003,535(1-3):195-199
Recent reports have highlighted the anti-HIV-1 activities of defensins, whose structure and charge resemble portions of the HIV-1 transmembrane envelope glycoprotein gp41. The current report explores the obverse, whether peptides derived from HIV-1 envelope glycoproteins can exert antimicrobial activity. Fifteen-residue peptides spanning the entire sequence of HIV-1(MN) gp120 and gp41 were subjected to radial diffusion assays against laboratory strains of Escherichia coli and Listeria monocytogenes. Twenty-four active peptides corresponded predominantly to membrane-active domains of gp120 and gp41. Several peptides retained significant activity in higher ionic conditions and may serve as templates for the development of novel peptide antibiotics. The strategies employed herein could uncover additional antimicrobial peptides from envelope proteins of other lytic viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号