首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
蓖麻毒素是植物来源的核糖体失活蛋白。蓖麻毒素必须通过细胞的内膜系统到达内质网,然后转位至胞质,才能作用于胞质内的核糖体。在内质网中毒素的两条链分离,具有催化活性的A链被内质网上的蛋白质识别,并被转位到胞质内催化核糖体失活。现对内质网在参与蓖麻毒素胞内转运过程中的作用进行综述。  相似文献   

2.
核糖体RNA拓扑学的研究对阐明核糖体RNA(rRNA)在蛋白质生物合成中的作用具有重要的意义。RNAN-糖苷0酶是一类核糖体失活蛋白.它只水解rRNA特定位置上一个腺苷酸的糖苷键,释放一个腺嘌呤碱基,使核糖体失活。RicinA链是研究得最早和最详细的RNAN-糖苷酶,迄今已发现有二十五种核糖体失活蛋白具有RNAN-糖苷酶活性。RNAN-糖苷酶作用于28SrRNA的α-sarcin结构域,改变核糖体的构象而使其失活。  相似文献   

3.
蓖麻毒素—A链结构功能研究进展   总被引:1,自引:0,他引:1  
蓖麻毒素(ricin)是一种核糖体失活蛋白,是构建免疫毒素的一个重要成分,本介绍近年来ricin-A链的理化性质和制备,结构功能关系及其N-苷酶作用机制方面的研究进展.  相似文献   

4.
核糖体单链失活蛋白是一类广泛分布于植物中的蛋白质,它能使真核细胞核糖体60S亚基失活。本文报道了一些核糖体单链失活蛋白的制备、纯化以及在兔网织红细胞裂解液中对蛋白质生物合成的抑制活性及它们对完整细胞的毒性。其中多数的核糖体单链失活蛋白是首次被分离纯化并对其毒性进行研究的。  相似文献   

5.
用HPLC和薄层层析等方法,分析了不同反应时间天花粉蛋白(TCS)和5'-AMP的反应产物成分,结果显示在0.5h内生成腺嘌呤核苷,随着反应时间的增加,同时有腺嘌呤核苷和腺嘌呤生成,48h后则反应产物主要是腺嘌呤,α-苦瓜子蛋白、肥皂草蛋白、丝瓜素毒蛋白和多花白树毒蛋白等单链核糖体失活蛋白也有类似结果,紫外差光谱研究结果也表明TCS与5'-AMP相互作用显示出明显的时间过程,提示单链核糖体失活蛋白除了N-糖苷酶活性外,还具有5'-AMP磷酸酯酶活性.  相似文献   

6.
核糖体失活蛋白的结构功能与分布   总被引:7,自引:0,他引:7  
核糖体失活蛋白是一类在植物中较广泛存在的毒蛋白。植物核糖体失活蛋白具有RNAN-糖苷酶活力,可作用于核糖体RNA,使核糖体失去蛋白质合成的功能。根据一级结构,核糖体失活蛋白可分为两种类型。Ⅰ型核糖体失活蛋白由一条链组成,分子量在25—30 kDa之间。Ⅱ型核糖体失活蛋白由两条以二硫键相连的链(A、B链)组成,分子量在60 kDa左右。B链可以与细胞表面含半乳糖的受体结合,有助于A链进入细胞,作用于核糖体。目前至少已从9个科31种植物中分离纯化了Ⅰ型RIP。Ⅱ型RIP较少,仅在6科8种植物中发现。除了具有RNA N-糖苷酶活性,还发现一些核糖体失活蛋白可以切割超螺旋双链DNA,产生缺口环状和线状DNA。此外,一种Ⅰ型RIP,克木毒蛋白还具有超氧化物歧化酶活性。  相似文献   

7.
核糖体失活蛋白—RNA N—糖苷酶   总被引:1,自引:0,他引:1  
本文概述了双链和单链植物核糖体失活蛋白的基本特性,在分子水平上讨论了核糖体失活蛋白作用于真核细胞核糖体的机制。扼要介绍了免疫毒素及其在癌症治疗中的应用。同时,也讨论了目前有关核糖体失活蛋白的研究状况和今后的发展趋向。  相似文献   

8.
蓖麻毒素是从蓖麻种子的胚乳中提取的一种核糖体失活蛋白。基于其潜在的威胁,建立快速、灵敏的蓖麻毒素检测技术受到人们的高度关注。根据蓖麻毒素的理化性质、免疫原性,已经建立了免疫荧光技术、夹心免疫PCR技术、免疫胶体金标记技术、蛋白芯片技术和生物传感器技术等用于检测蓖麻毒素。  相似文献   

9.
棕色固氮菌(Azotobacter vinelandii)钼铁蛋白与邻菲口罗啉和O2 保温并经凝胶柱层析后,成为部分缺失P-cluster和FeMoco 的失活蛋白。由3 个- OCH3- 连结于Mo原子间的2 个1Mo∶3Fe∶4S结构单位组成的原子簇与4Fe∶4S原子簇的混合液,以及由KMnO4、高柠檬酸铁、Na2S和二硫苏糖醇组成的重组液均可使这种失活蛋白明显恢复C2H2 还原活性,但都不能使可被FeMoco 激活的nifE和nifH 基因缺失突变种及UW 45的Apo-MoFe 蛋白得到激活。表明,不能合成FeMoco 的固氮菌突变种蛋白只能与具有FeMoco相似或基本相似结构的原子簇进行体外重组,而部分缺失金属原子簇的钼铁蛋白能与具有一定结构和组成的原子簇进行体外重组,变为具有催化氮还原能力的各种固氮酶组分蛋白。  相似文献   

10.
天花粉毒蛋白使核糖体失活的分子机制是它有RNAN-糖苷酶的作用。从樟树种子中纯化的两种新的核糖体失活蛋白(RIP)——辛纳毒蛋白和克木毒蛋白也都具有RNAN-糖苷酶和依赖超螺旋结构的核酸内切酶活性。辛纳毒蛋白还有杀虫活性;克木毒蛋白还有超氧化物歧化酶活性。被RNAN-糖苷酶失活的核糖体用硼氢化钠还原或氨基酸加成反应可部分地复活,这表明失活的核糖体RNA上产生的一个活泼醛基对其失活起着重要作用。工作中建立了荧光标记在凝胶上测定小分子RNA序列和定性测定糖蛋白的两种新方法。  相似文献   

11.
重组蓖麻毒素A链蛋白的可溶性表达、纯化与抗原性分析   总被引:1,自引:0,他引:1  
用PCR方法从克隆质粒pUC19-RTA中扩增出蓖麻毒素A(RTA)链基因,序列分析正确后,亚克隆到原核表达质粒pET-His中,构建重组表达质粒pET-HisRTA,再转化到E.coliBL21(DE3)plysS中获得表达工程菌株BL21/pET-HisRTA。该工程菌在30℃经0.4mmol/LIPTG诱导4h后获得可溶性表达的目的蛋白,约占菌体总蛋白的18.45%,SDS-PAGE分析显示表达的蛋白区带与RTA相对分子量相符,约32kDa左右。表达产物经Ni-NTA亲和层析法一步纯化,蛋白纯度约达97.53%,并可得到约18mg/L重组RTA蛋白。Western印迹和间接ELISA结果证明,重组RTA蛋白与抗天然蓖麻毒素多抗可发生特异性的抗原抗体反应,具有良好的抗原性,这为制备RT特异性抗体及建立RT的检测方法奠定了基础。  相似文献   

12.
Structure of recombinant ricin A chain at 2.3 A.   总被引:5,自引:3,他引:2       下载免费PDF全文
The plant cytotoxin ricin is a heterodimer with a cell surface binding (B) chain and an enzymatically active A chain (RTA) known to act as a specific N-glycosidase. RTA must be separated from B chain to attack rRNA. The X-ray structure of ricin has been solved recently; here we report the structure of the isolated A chain expressed from a clone in Escherichia coli. This structure of wild-type rRTA has and will continue to serve as the parent compound for difference Fouriers used to assess the structure of site-directed mutants designed to analyze the mechanism of this medically and commercially important toxin. The structure of the recombinant protein, rRTA, is virtually identical to that seen previously for A chain in the heterodimeric toxin. Some minor conformational changes due to interactions with B chain and to crystal packing differences are described. Perhaps the most significant difference is the presence in rRTA of an additional active site water. This molecule is positioned to act as the ultimate nucleophile in the depurination reaction mechanism proposed by Monzingo and Robertus (1992, J. Mol. Biol. 227, 1136-1145).  相似文献   

13.
蓖麻毒素A链突变体的设计、表达与活性研究   总被引:6,自引:0,他引:6  
利用蛋白质结构同源模建并结合表观静电势分析,设计了拟具有生物学活性的蓖麻毒素A链的突变体.将PCR扩增的突变体基因,导入pKK223-3载体中,于大肠杆菌(E.coli)中获得高效、可溶性表达,而且,确证了表达产物具有预期的生物学活性.  相似文献   

14.
Ricin enters the cells by receptor-mediated endocytosis, followed by translocation across the membranes of intracellular organelles. A trans-Golgi retention peptide signal YQRL was fused to the C-terminus of ricin A chain (RTA) by polymerase chain reaction. The recombinant RTA and RTA-YQRL were expressed in Escherichia coli using plasmid pKK223.3 under the control of a tac promoter. The recombinant proteins were purified by affinity chromatography on a Blue-Sepharose 6B column. The cytotoxicities of RTA and the fusion toxin RTA-YQRL were measured by the MTT assay in HeLa, SKOV-3, and WISH cells following fluid-phase endocytosis. The rRTA-YQRL was 2-, 10-, and 40-fold more cytotoxic than rRTA itself in the three cell lines, respectively. The results indicate that addition of a TGN retention signal YQRL to the C-terminus of RTA can markedly increase its cytotoxicity, suggesting TGN may play an important role in the intracellular routing and translocation of RTA.  相似文献   

15.
 A pKK expression system in Escherichia coli was used to produce recombinant ricin A chain (rRTA) and rRTA modified by addition of organelle-specific amino acid retention sequences, including KDEL (an endoplasmic reticulum, ER, lumen retention signal), KKMP (an ER membrane retention signal), YQRL (a trans-Golgi network retention signal) and KFERQ (a lysosome-targeting signal) to the C terminus of rRTA. The toxicities of these RTA mutants were assessed in Jurkat cells following fluid-phase endocytosis. rRTA-KDEL and rRTA-YQRL were significantly more cytotoxic for Jurkat cells than rRTA, rRTA-KKMP or rRTA-KFERQ. This difference did not result from signal(KDEL or YQRL)-mediated binding of these RTA mutants to the cell surface. Reconstituted ER and Golgi vesicles have been employed to assess translocation of rRTA and mutant rRTA. RTA-KDEL and RTA-YQRL respectively exhibited 6.7-fold and 6.1-fold more protection against papain digestion in reconstituted ER vesicles and 2.2-fold and 1.8-fold more protection in reconstituted Golgi vesicles, than unmodified rRTA. These mutants were reassociated with ricin B chain to form holotoxins. The mutant RTA-KDEL and RTA-YQRL holotoxins were 3.8-fold and 1.5-fold more cytotoxic for target cells, respectively, than ricin produced using unmodified rRTA. Our results suggest that both ER and the trans-Golgi network may play important roles in the intracellular trafficking and translocation of ricin A chain. Received: 14 August 1997 / Accepted: 14 October 1997  相似文献   

16.
Ricin toxin is a glycoprotein which catalytically inactivates eukaryotic ribosomes by depurination of a single adenosine residue from the 28S ribosomal RNA. The enzymatic activity is present in the A chain of the toxin molecule, whereas the B chain contains two binding sites for galactose. Since it is highly potent in inhibiting protein synthesis, the A chain is used to prepare cytotoxic conjugates effective against tumor cells. Such chimeric proteins are highly selective and have a wide range of clinical applications. Extensive preclinical studies on these conjugates require large amounts of purified A chain. Native ricin A chain is heterogeneous, since plants produce a number of isoforms of ricin toxin. Purified, native preparations often contain two types of ricin A chain which differ in the extent of glycosylation. By cloning and expressing the gene of A chain, one could obtain homogeneous toxin molecules devoid of carbohydrates. In addition, structural changes in the toxin polypeptide could be introduced by in vitro mutagenesis, which can improve the pharmacological properties and antitumor activity. Earlier methods of expression strategies using Escherichia coli have yielded only moderate levels of expression. In the present study, the coding region of ricin A chain was cloned into pET3b, a high-level expression vector under the control of the T7 promoter. Recombinant ricin A chain produced by this construct has an additional 14 amino acid residues at the NH2 terminus. Subsequently, a NdeI site was created at the 5' end of the gene by oligonucleotide-directed mutagenesis. The modified fragment was then introduced into pET3b vector to produce toxin polypeptide identical to the native sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Ricin is a potent toxin presenting a threat as a biological weapon. The holotoxin consists of two disulfide-linked polypeptides: an enzymatically active A chain (RTA) and a galactose/N-acetylgalactosamine-binding B chain. Efforts to develop an inactivated version of the A chain as a vaccine have been hampered by limitations of stability and solubility. Previously, recombinant truncated versions of the 267-amino-acid A chain consisting of residues 1-33/44-198 or 1-198 were designed by protein engineering to overcome these limits and were shown to be effective and nontoxic as vaccines in mice. Herein we used CD, dynamic light scattering, fluorescence, and Fourier-transform infrared spectroscopy to examine the biophysical properties of these proteins. Although others have found that recombinant RTA (rRTA) adopts a partially unfolded, molten globule-like state at 45 degrees C, rRTA 1-33/44-198 and 1-198 are significantly more thermostable, remaining completely folded at temperatures up to 53 degrees C and 51 degrees C, respectively. Deleting both an exposed loop region (amino acids 34-43) and the C-terminal domain (199-267) contributed to increased thermostability. We found that chemically induced denaturation of rRTA, but not the truncated variants, proceeds through at least a three-state mechanism. The intermediate state in rRTA unfolding has a hydrophobic core accessible to ANS and an unfolded C-terminal domain. Removing the C-terminal domain changed the mechanism of rRTA unfolding, eliminating a tendency to adopt a partially unfolded state. Our results support the conclusion that these derivatives are superior candidates for development as vaccines against ricin and suggest an approach of reduction to minimum essential domains for design of more thermostable recombinant antigens.  相似文献   

18.
Ricin is a potent toxin and a potential bioterrorism weapon with no specific countermeasures or vaccines available. The holotoxin is composed of two polypeptide chains linked by a single disulfide bond: the A‐chain (RTA), which is an N‐glycosidase enzyme, and the B‐chain (RTB), a lectin polypeptide that binds galactosyl moieties on the surface of the mammalian target cells. Previously (McHugh et al.), a recombinant truncated form of RTA (rRTA1‐33/44‐198 protein, herein denoted RVEa?) expressed in Escherichia coli using a codon‐optimized gene was shown to be non‐toxic, stable, and protective against a ricin challenge in mice. Here, we describe the process development and scale‐up at the 12 L fermentation scale, and the current Good Manufacturing Practice (cGMP)‐compliant production of RVEc? at the 40 L scale. The average yield of the final purified bulk RVEc? is approximately 16 g/kg of wet cell weight or 1.2 g/L of fermentation broth. The RVEc? was >99% pure by three HPLC methods and SDS‐PAGE. The intact mass and peptide mapping analysis of RVEc? confirmed the identity of the product and is consistent with the absence of posttranslational modifications. Potency assays demonstrated that RVEc? was immunoprotective against lethal ricin challenge and elicited neutralizing anti‐ricin antibodies in 95–100% of the vaccinated mice. Published 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011.  相似文献   

19.
作为导向药物蓖麻毒素A(Ricin-A)链在大肠杆菌中表达时不含糖基侧链,在体内半衰期长,可提高共作为导向药物的疗效。我们根据Ricin基因核苷酸序列,设计Ricin-A的上、下游引物,通过PCR(多聚酶链式反应)方法,扩增出Ricin-A链基因。与pUC_(19)载体连接,转化到JM103大肠杆菌中,得到重组克隆。对其进行几种酶切鉴定,证明酶切位点正确,又经序列分析,读出与文献发表的Ricin-A序列只有两个碱基不同,但无氨基酸残基的改变。有关Ricin-A的表达工作正在进行中。  相似文献   

20.
Ricin is a potent A-B toxin that is transported from the cell surface to the cytosol, where it inactivates ribosomes, leading to cell death. Ricin enters cells via endocytosis, where only a minute number of ricin molecules reach the endoplasmic reticulum (ER) lumen. Subsequently, the ricin A chain traverses the ER bilayer by a process referred to as dislocation or retrograde translocation to gain access to the cytosol. To study the molecular processes of ricin A chain dislocation, we have established, for the first time, a human cell system in which enzymatically attenuated ricin toxin A chains (RTA(E177D) and RTA(Δ177-181)) are expressed in the cell and directed to the ER. Using this human cell-based system, we found that ricin A chains underwent a rapid dislocation event that was quite distinct from the dislocation of a canonical ER soluble misfolded protein, null Hong Kong variant of α(1)-antitrypsin. Remarkably, ricin A chain dislocation occurred via a membrane-integrated intermediate and utilized the ER protein SEL1L for transport across the ER bilayer to inhibit protein synthesis. The data support a model in which ricin A chain dislocation occurs via a novel strategy of utilizing the hydrophobic nature of the ER membrane and selective ER components to gain access to the cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号