共查询到20条相似文献,搜索用时 15 毫秒
1.
Matthias W. Diemer 《Oecologia》1994,98(3-4):429-435
Ecosystem net CO2 uptake, evapotranspiration (ET) and night-time CO2 efflux were measured in an alpine grassland dominated by Carex curvula, treated with doubled ambient partial pressure of CO2 via open-top chambers. One quarter of the plots were treated with mineral nutrients to simulate the effect of lowland nitrogen deposition rates. Depending upon fertilizer supply, ecosystem net CO2 uptake per ground area in full sunlight (NCEmax) was 41–81% higher in open-top chambers supplied with doubled ambient partial pressure (p
a) of CO2 than in plots receiving ambient CO2. Short-term reversals of the CO2 level suggest that the extent of downward adjustment of canopy photosynthesis under elevated CO2 was 30–40%. ET tended to decline, while water use efficiency (WUE), expressed as the NCEmax:ET ratio, increased more than twofold under elevated CO2. Night-time ecosystem CO2 efflux did not respond to changes in CO2
p
a. NCEmax and night-time CO2 efflux were more responsive to mineral fertilizer than the doubling of CO2. This suggests that in these alpine plant communities, atmospheric nutrient input may induce equal or greater effects on gas exchange than increased CO2. 相似文献
2.
Plant and Soil - The objective was to clarify the role of root water transport in waterlogged canola plants. We examined the hypothesis that waterlogging triggers root suberization and... 相似文献
3.
Plant and Soil - Citrate secretion is a kind of typical strategy for plant against aluminum (Al) toxicity. However, the signaling process in Al-activated citrate secretion needs to be clarified.... 相似文献
4.
Soybean leaf growth and gas exchange response to drought under carbon dioxide enrichment 总被引:1,自引:0,他引:1
This study was conducted to determine the response in leaf growth and gas exchange of soybean (Glycine max Merr.) to the combined effects of water deficits and carbon dioxide (CO2) enrichment. Plants grown in pots were allowed to develop initially in a glasshouse under ambient CO2 and well-watered conditions. Four-week old plants were transferred into two different glasshouses with either ambient (360 μmol mol-1) or elevated (700 μmol mol-1) CO2. Following a 2-day acclimation period, the soil of the drought-stressed pots was allowed to dry slowly over a 2-week period. The stressed pots were watered daily so that the soil dried at an equivalent rate under the two CO2 levels. Elevated [CO2] decreased water loss rate and increased leaf area development and photosynthetic rate under both well-watered and drought-stressed conditions. There was, however, no significant effect of [CO2] in the response relative to soil water content of normalized leaf gas exchange and leaf area. The drought response based on soil water content for transpiration, leaf area, and photosynthesis provide an effective method for describing the responses of soybean physiological processes to the available soil water, independent of [CO2]. 相似文献
5.
Knowledge of soil respiration and photosynthesis under elevated CO2 is crucial for exactly understanding and predicting the carbon balance in forest ecosystems in a rapid CO2-enriched world. Quercus mongolica Fischer ex Ledebour seedlings were planted in open-top chambers exposed to elevated CO2 (EC = 500 µmol mol−1) and ambient CO2 (AC = 370 µmol mol−1) from 2005 to 2008. Daily, seasonal and inter-annual variations in soil respiration and photosynthetic assimilation were measured during 2007 and 2008 growing seasons. EC significantly stimulated the daytime soil respiration by 24.5% (322.4 at EC vs. 259.0 mg CO2 m−2 hr−1 at AC) in 2007 and 21.0% (281.2 at EC vs. 232.6 mg CO2 m−2 hr−1 at AC) in 2008, and increased the daytime CO2 assimilation by 28.8% (624.1 at EC vs. 484.6 mg CO2 m−2 hr−1 at AC) across the two growing seasons. The temporal variation in soil respiration was positively correlated with the aboveground photosynthesis, soil temperature, and soil water content at both EC and AC. EC did not affect the temperature sensitivity of soil respiration. The increased daytime soil respiration at EC resulted mainly from the increased aboveground photosynthesis. The present study indicates that increases in CO2 fixation of plants in a CO2-rich world will rapidly return to the atmosphere by increased soil respiration. 相似文献
6.
Dark fixation of 14CO2 was followed in potato disks under varyingsalt treatments at 0° C and 25° C. It is shown thatthe specific activity of the 14CO2 supplied is heavily dilutedby endogenously produced CO2 and that the apparently greaterfixation of 14CO2, at 0° C as compared with that at 25 °C is due to the lower respiration rate at 0° C, with consequentlyless dilution of the 14CO2. supplied. At 25° C organic acidformation in response to different salt treatments fulfils thecommon expectation, 14CO2 fixation increasing in the presenceof K2SO4 and decreasing in CaCl2 relative to that in KCl. Therole of organic acids in maintaining ionic balance within thecell at 25° C is thereby indicated but at 0° C organicacid adjustments did not follow the normal pattern. At 25°C but not at o° C increasing external concentration of KCIresulted in an increased level of 14CO2 fixation. 相似文献
7.
Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2 总被引:2,自引:0,他引:2
Predictions of shifts in rainfall patterns as atmospheric [CO2] increases could impact the growth of fast growing trees such as Populus spp. and Salix spp. and the interaction between elevated CO2 and water stress in these species is unknown. The objectives of this study were to characterize the responses to elevated CO2 and water stress in these two species, and to determine if elevated CO2 mitigated drought stress effects. Gas exchange, water potential components, whole plant transpiration and growth response to soil drying and recovery were assessed in hybrid poplar (clone 53-246) and willow (Salix sagitta) rooted cuttings growing in either ambient (350 &mgr;mol mol-1) or elevated (700 &mgr;mol mol-1) atmospheric CO2 concentration ([CO2]). Predawn water potential decreased with increasing water stress while midday water potentials remained unchanged (isohydric response). Turgor potentials at both predawn and midday increased in elevated [CO2], indicative of osmotic adjustment. Gas exchange was reduced by water stress while elevated [CO2] increased photosynthetic rates, reduced leaf conductance and nearly doubled instantaneous transpiration efficiency in both species. Dark respiration decreased in elevated [CO2] and water stress reduced Rd in the trees growing in ambient [CO2]. Willow had 56% lower whole plant hydraulic conductivity than poplar, and showed a 14% increase in elevated [CO2] while poplar was unresponsive. The physiological responses exhibited by poplar and willow to elevated [CO2] and water stress, singly, suggest that these species respond like other tree species. The interaction of [CO2] and water stress suggests that elevated [CO2] did mitigate the effects of water stress in willow, but not in poplar. 相似文献
8.
Crous KY Zaragoza-Castells J Ellsworth DS Duursma RA Löw M Tissue DT Atkin OK 《Plant, cell & environment》2012,35(5):966-981
We investigated whether the degree of light inhibition of leaf respiration (R) differs among large Eucalyptus saligna grown in whole‐tree chambers and exposed to present and future atmospheric [CO2] and summer drought. Associated with month‐to‐month changes in temperature were concomitant changes in R in the light (Rlight) and darkness (Rdark), with both processes being more temperature dependent in well‐watered trees than under drought. Overall rates of Rlight and Rdark were not significantly affected by [CO2]. By contrast, overall rates of Rdark (averaged across both [CO2]) were ca. 25% lower under drought than in well‐watered trees. During summer, the degree of light inhibition of leaf R was greater in droughted (ca. 80% inhibition) than well‐watered trees (ca. 50% inhibition). Notwithstanding these treatment differences, an overall positive relationship was observed between Rlight and Rdark when data from all months/treatments were combined (R2 = 0.8). Variations in Rlight were also positively correlated with rates of Rubisco activity and nitrogen concentration. Light inhibition resulted in a marked decrease in the proportion of light‐saturated photosynthesis respired (i.e. reduced R/Asat). Collectively, these results highlight the need to account for light inhibition when assessing impacts of global change drivers on the carbon economy of tree canopies. 相似文献
9.
Rumex obtusifolius plants were grown for several months in daylitenvironment chambers (Solardomes) force-ventilated with aircontaining 350 or 600 µ;mol mol1 C02. ElevatedCO2 was found to accelerate the natural ontogenic decline inphotosynthesis, but did not reduce leaf duration. In both CO2treatments photosynthetic rates declined progressively withincreasing leaf age, the decline being greater for plants grownin elevated C02 such that rates became lower than in ambientCO2. The degree of CO2-induced photosynthetic down-regulationas determined by A/C1 analysis was found to be dependent onleaf age. The major contribution to the decline in photosynthesiswas likely to be a reduction in Rubisco activity as changesin stomataland mesophyll limitations were small. Instantaneouswater use efficiency (WUE1) was greater for plants in elevatedCO2, but these values declined rapidly with leaf age, whereasin ambient CO2 values were always lower, but were maintainedfor longer. Growth analysis indicated an increased root:-shootratio for plants grown in elevated CO2, this occurring almostentirely as a result of increased root growth. Greater rootproliferation and increased WUE1, are characteristics whichshould give this persistent and troublesome weed an increasedcompetitive advantage under projected conditions of climatechange Key words: tusifoliu, elevated CO2, gas exchange, leaf age, senescence 相似文献
10.
A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide 总被引:19,自引:7,他引:19
P. S. CURTIS 《Plant, cell & environment》1996,19(2):127-137
The response of trees to rising atmospheric CO2 concentration ([CO2]) is of concern to forest ecologists and global carbon modellers and is the focus of an increasing body of research work. I review studies published up to May 1994, and several unpublished works, which reported at least one of the following: net CO2 assimilation (A), stomatal conductance (gs), leaf dark respiration (Rd) leaf nitrogen or specific leaf area (SLA) in woody plants grown at <400 μmol mol?1 CO2 or at 600–800 μmol mol?1 CO2. The resulting data from 41 species were categorized according to growth conditions (unstressed versus stressed), length of CO2 exposure, pot size and exposure facility [growth chamber (GC), greenhouse (GH), or open-top chamber (OTC)] and interpreted using meta-analytic methods. Overall, A showed a large and significant increase at elevated [CO2] but length of CO2 exposure and the exposure facility were important modifiers of this response. Plants exposed for < 50 d had a significantly greater response, and those from GCs had a significantly lower response than plants from longer exposures or from OTC studies. Negative acclimation of A was significant and general among stressed plants, but in unstressed plants was influenced by length of CO2 exposure, the exposure facility and/or pot size. Growth at elevated [CO2] resulted in moderate reductions in gs in unstressed plants, but there was no significant effect of CO2 on gs in stressed plants. Leaf dark respiration (mass or area basis) was reduced strongly by growth at high [CO2] > while leaf N was reduced only when expressed on a mass basis. This review is the first meta-analysis of elevated CO2 studies and provides statistical confirmation of several general responses of trees to elevated [CO2]. It also highlights important areas of continued uncertainty in our understanding of these responses. 相似文献
11.
夏玉米叶片气体交换参数对干旱过程的响应 总被引:2,自引:0,他引:2
目前已经开展了大量的干旱对作物叶片气体交换参数影响的研究,但关于作物叶片气体交换参数对干旱过程的响应及其关键阈值的研究仍较少。基于夏玉米七叶期开始的5个初始水分梯度的长时间持续干旱模拟实验资料,分析了不同强度持续干旱过程中夏玉米叶片气体交换参数(净光合速率Pn,气孔导度Gs,蒸腾速率Tr,胞间CO_2浓度Ci和气孔限制值Ls)的变化规律及其关键阈值。结果表明,玉米的净光合速率(Pn),蒸腾速率(Tr)和气孔导度(Gs)在干旱发生初期呈大幅度下降,但随着干旱持续会出现一定的适应性。利用统计容忍限方法确定了夏玉米拔节期Pn,Tr和Gs响应干旱的临界土壤相对湿度(0—30cm)分别为53%,51%和48%,对应的临界叶含水率分别为81.8%,81.3%和81.2%。夏玉米光合作用由气孔限制向非气孔限制转换的0—30cm土壤相对湿度均为44%±2%,对应的叶含水率均为77.6%±0.3%。研究结果可为夏玉米干旱发生发展过程的监测预警提供依据。 相似文献
12.
本文研究了CO2加浓对暖温带落叶阔叶混交林典型自然群落建群种辽东栎的影响,结果表明:在生理学方面,CO2倍增下气孔阻抗略增大,为对照的106%,蒸腾速率略下降,为对照的92%,暗呼吸速率与对照很接近,但略微下降为对照的98.9%。净光合速率、昼夜净光合量、水分利用效率都明显提高,分别为对照的155%,172%和179%。可以看出C02倍增对辽东栎的生理过程有促进作用,属正效应。其中以生长旺季6、7月增长更为明显。在生长方面,CO2倍增下生长各项指标增长也较明显,叶面积为对照的107%,叶干重为对照的140%,以植株高度增加最明显,为对照的331%,清楚的看出辽东栎的生长与生理过程的变化趋势是一致的、均属正效应。也就是说在其他环境资源满足植物要求时,CO2倍增对树木具有“施肥”作用,它可促进植物的生理过程和提高其生物生产力。 相似文献
13.
14.
Elevated atmospheric CO2 adversely affects freezing tolerance in many evergreens, but the underlying mechanism(s) have been elusive. We compared effects of elevated CO2 with those of daytime warming on acclimation of snow gum (Eucalyptus pauciflora) to freezing temperatures under field conditions. Reduction in stomatal conductance g(c) under elevated CO2 was shown to cause leaf temperature to increase by up to 3 degrees C. In this study, this increase in leaf temperature was simulated under ambient CO2 conditions by using a free air temperature increase (FATI) system to warm snow gum leaves during daytime, thereby increasing the diurnal range in temperature without affecting temperature minima. Acclimation to freezing temperatures was assessed using measures of electrolyte leakage and photosynthetic efficiency of leaf discs exposed to different nadir temperatures. Here, we show that both elevated CO2 and daytime warming delayed acclimation to freezing temperatures for 2-3 weeks after which time freeze tolerance of the treated plants in both the FATI and open top chamber (OTC) experiments did not differ from control plants. Our results support the hypothesis that delayed development of freezing tolerance under elevated CO2 is because of higher daytime leaf temperatures under elevated CO2. Thus, potential gains in productivity in response to increasing atmospheric CO2 and prolonging the growing season may be reduced by an increase in freezing stress in frost-prone area. 相似文献
15.
大气CO2浓度升高对土壤氮素转化过程产生重要影响,研究其变化有助于更好地预测陆地生态系统的固碳潜力.氮同位素自然丰度作为生态系统氮素循环过程的综合指标能够有效地指示CO2浓度升高对土壤氮素转化过程的影响.本研究采用开顶箱CO2 熏蒸法研究连续10年的大气CO2 浓度升高对我国东北地区蒙古栎及其土壤和微生物生物量碳、氮同位素自然丰度的影响.结果表明: 大气CO2浓度升高改变了土壤氮循环过程,增加了土壤微生物和植物叶片δ15N;促进了富13C土壤有机碳分解,中和了贫13C植物光合碳输入的效果,导致土壤可溶性有机碳和微生物碳δ13C在CO2升高条件下没有发生显著变化.这些结果表明,CO2浓度升高很可能促进了土壤有机质矿化过程,并加剧了系统氮限制的状态. 相似文献
16.
Christiana A. Dietzen Klaus Steenberg Larsen Per L. Ambus Anders Michelsen Marie Frost Arndal Claus Beier Sabine Reinsch Inger Kappel Schmidt 《Global Change Biology》2019,25(9):2970-2977
Elevated atmospheric CO2 concentration and climate change may substantially alter soil carbon (C) dynamics, which in turn may impact future climate through feedback cycles. However, only very few field experiments worldwide have combined elevated CO2 (eCO2) with both warming and changes in precipitation in order to study the potential combined effects of changes in these fundamental drivers of C cycling in ecosystems. We exposed a temperate heath/grassland to eCO2, warming, and drought, in all combinations for 8 years. At the end of the study, soil C stocks were on average 0.927 kg C/m2 higher across all treatment combinations with eCO2 compared to ambient CO2 treatments (equal to an increase of 0.120 ± 0.043 kg C m?2 year?1), and showed no sign of slowed accumulation over time. However, if observed pretreatment differences in soil C are taken into account, the annual rate of increase caused by eCO2 may be as high as 0.177 ± 0.070 kg C m?2 year?1. Furthermore, the response to eCO2 was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 observed here, even when combined with other climate change factors, suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions. The feedback between land C and climate remains one of the largest sources of uncertainty in future climate projections, yet experimental data under simulated future climate, and especially including combined changes, are still scarce. Globally coordinated and distributed experiments with long‐term measurements of changes in soil C in response to the three major climate change‐related global changes, eCO2, warming, and changes in precipitation patterns, are, therefore, urgently needed. 相似文献
17.
干旱胁迫和CO2浓度升高条件下白羊草的光合特征 总被引:1,自引:0,他引:1
采用盆栽控制试验,研究了黄土丘陵区乡土种白羊草在不同水分水平(80% FC和40% FC)和CO2浓度(375和750 μmol·m-2·s-1)处理下的光合生理变化特征.结果表明:干旱胁迫使白羊草的最大净光合速率(Pnmax)、表观量子效率(AQE)、气孔导度(gs)、蒸腾速率(Tt)、最大光化学效率(Fv/Fm)、潜在光化学效率(Fv/Fo)和光合色素含量降低,丙二醛(MDA)和脯氨酸(Pro)含量升高.水分充足条件下,与正常大气CO2浓度相比,大气CO2浓度倍增下白羊草的PnmaxMDA和Pro含量无显著差异.干旱胁迫下,CO2浓度升高提高了白羊草的最大荧光(Fm)、Fv/Fm、Fv/Fo、叶绿素含量和AQE,Pnmax比正常CO2浓度下高23.3%,差异达到显著水平,而MDA和Pro含量均显著降低.CO2浓度升高对干旱胁迫引起的白羊草光合能力下降有一定的补偿作用,减轻了干旱胁迫对白羊草的伤害. 相似文献
18.
A 13C/12C mass spectrometer was interfaced with a open gas exchange system including four growth chambers to investigate CO2 exchange components of perennial ryegrass (Lolium perenne L.) stands. Chambers were fed with air containing CO2 with known δ13C (δCΟ2?2.6 or ?46.8‰). The system did not fractionate C isotopes and no extraneous CO2 leaked into chambers. The on‐line 13C discrimination (Δ) of ryegrass stands in light was independent of δCΟ2 when δCΟ2 was constant. The δ of CO2 exchanged by the stands in light (δNd) and darkness (δRn) differed by 0.7‰, suggesting some Δ in dark respiration at the stand‐level. However, Δ decreased by ~ 10‰ when δCΟ2 was switched from ?46.8 to ?2.5‰, and increased by ~ 10‰ following a shift from ?2.6 to ?46.7‰ due to isotopic disequilibria between photosynthetic and respiratory fluxes. Isotopic imbalances were used to assess (non‐photorespiratory) respiration in light and the replacement of the respiratory substrate pool(s) by new photosynthate. Respiration was partially inhibited by light, but increased during the light period and decreased in darkness, in association with temperature changes. The labelling kinetics of respiratory CO2 indicated the existence of two major respiratory substrate pools: a fast pool which was exchanged within hours, and a slow pool accounting for ~ 60% of total respiration and having a mean residence time of 3.6 d. 相似文献
19.
Maritime pine (Pinus pinaster), a drought-avoiding species, contained 2--4-fold lower activities of superoxide dismutase, ascorbate peroxidase, catalase, dehydroascorbate reductase, and glutathione reductase than pendunculate oak (Quercus robur), a drought-tolerant species. The levels of ascorbate, monodehydroascorbate radical reductase activity, and glutathione in pine needles were similar to those in oak leaves. In both species the development of drought stress, characterized by decreasing predawn water potentials, caused gradual reductions in antioxidant protection, increased lipid peroxidation, increased oxidation of ascorbate and glutathione and in pine also significant loss in soluble proteins and carotenoids. These results support the idea that increased drought-tolerance in oak as compared with pine is related to increased biochemical protection at the tissue level. To test the hypothesis that elevated CO(2) ameliorated drought-induced injury, young oak and pine trees acclimated to high CO(2) were subjected to drought stress. Analysis of plots of enzymatic activities and metabolites against predawn water potentials revealed that the drought stress-induced decreases in antioxidant protection and increases in lipid peroxidation were dampened at high CO(2). In pine, protein and pigment degradation were also slowed down. At high CO(2), superoxide dismutase activities increased transiently in drought-stressed trees, but collapsed in pine faster than in oak. These observations suggest that the alleviation of drought-induced injury under elevated CO(2) is related to a higher stability of antioxidative enzymes and an increased responsiveness of SOD to stressful conditions. This ameliorating mechanism existed independently from the effects of elevated CO(2) on plant water relations and is limited within a species-specific metabolic window. 相似文献
20.
Tonghua Pan Yunlong Wang Linghui Wang Juanjuan Ding Yanfei Cao Gege Qin Lulu Yan Linjie Xi Jing Zhang Zhirong Zou 《Physiologia plantarum》2020,168(3):694-708
Carbon dioxide concentration (CO2) and light intensity are known to play important roles in plant growth and carbon assimilation. Nevertheless, the underlying physiological mechanisms have not yet been fully explored. Tomato seedlings (Solanum lycopersicum Mill. cv. Jingpeng No. 1) were exposed to two levels of CO2 and three levels of light intensity and the effects on growth, leaf gas exchange and water use efficiency were investigated. Elevated CO2 and increased light intensity promoted growth, dry matter accumulation and pigment concentration and together the seedling health index. Elevated CO2 had no significant effect on leaf nitrogen content but did significantly upregulate Calvin cycle enzyme activity. Increased CO2 and light intensity promoted photosynthesis, both on a leaf-area basis and on a chlorophyll basis. Increased CO2 also increased light-saturated maximum photosynthetic rate, apparent quantum efficiency and carboxylation efficiency and, together with increased light intensity, it raised photosynthetic capacity. However, increased CO2 reduced transpiration and water consumption across different levels of light intensity, thus significantly increasing both leaf-level and plant-level water use efficiency. Among the range of treatments imposed, the combination of increased CO2 (800 µmol CO2 mol−1) and high light intensity (400 µmol m−2 s−1) resulted in optimal growth and carbon assimilation. We conclude that the combination of increased CO2 and increased light intensity worked synergistically to promote growth, photosynthetic capacity and water use efficiency by upregulation of pigment concentration, Calvin cycle enzyme activity, light energy use and CO2 fixation. Increased CO2 also lowered transpiration and hence water usage. 相似文献