首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Echinacea purpurea (L.) is one of the important medicinal plant species. To obtain the tetraploid plants of Echinacea purpurea with improved medicinal qualities, the root tips of two true leaves seedlings were imbibed in 0.25 % (w/v) colchicine solution for 24, 48, 72, 96 and 168 h. The ploidy level of plants was determined by chromosome counting of root tip cells, and confirmed by flow cytometric analysis. Tetraploid induction occurred in seedlings treated for 24, 48 and 72 h at colchicine solution. The morphological, physiological, cytological, and phytochemical characteristics of diploid and colchicine-induced tetraploid plants were compared. Results indicated that tetraploid plants had considerable larger stomata, pollen grain, seed and flower. Moreover, chloroplast number in guard cells, amount of chlorophyll (a, b, and a + b), carotenoids as well as width and thickness of leaves were increased in tetraploids. However, stomata frequency, leaf index, plant height, and quantum efficiency of photosystem II in tetraploid were lower than diploid plants. High-performance liquid chromatography analysis showed that leaves of the tetraploid plants had more cichoric acid (45 %) and chlorogenic acid (71 %) than diploid plants. It was concluded that morphological and physiological characteristics can be used as useful parameters for preliminary screening of putative tetraploids in this species.  相似文献   

2.
Echinacea preparations were the top-selling herbal supplements or medicines in the past decade; however, there is still frequent misidentification or substitution of the Echinacea plant species in the commercial Echinacea products with not well chemically defined compositions in a specific preparation. In this report, a comparative metabolomics study, integrating supercritical fluid extraction, gas chromatography/mass spectrometry and data mining, demonstrates that the three most used medicinal Echinacea species, Echinacea purpurea, E. pallida, and E. angustifolia, can be easily classified by the distribution and relative content of metabolites. A mitogen-induced murine skin inflammation study suggested that alkamides were the active anti-inflammatory components present in Echinacea plants. Mixed alkamides and the major component, dodeca-2E,4E,8Z,10Z(E)-tetraenoic acid isobutylamides (8/9), were then isolated from E. purpurea root extracts for further bioactivity elucidation. In macrophages, the alkamides significantly inhibited cyclooxygenase 2 (COX-2) activity and the lipopolysaccharide-induced expression of COX-2, inducible nitric oxide synthase and specific cytokines or chemokines [i.e., TNF-α, interleukin (IL)-1α, IL-6, MCP-1, MIP-1β] but elevated heme oxygenase-1 protein expression. Cichoric acid, however, exhibited little or no effect. The results of high-performance liquid chromatography/electron spray ionization/mass spectrometry metabolite profiling of alkamides and phenolic compounds in E. purpurea roots showed that specific phytocompound (i.e., alkamides, cichoric acid and rutin) contents were subject to change under certain post-harvest or abiotic treatment. This study provides new insight in using the emerging metabolomics approach coupled with bioactivity assays for medicinal/nutritional plant species classification, quality control and the identification of novel botanical agents for inflammatory disorders.  相似文献   

3.
Light plays an important role in almost all plant developmental processes and provides the fundamental building blocks for growth, development, primary and secondary metabolism. The effects of light on growth rate and caffeic acid derivative (CADs) biosynthesis in hairy root cultures of Echinacea purpurea (Moench) were assessed. Light-grown hairy roots accumulated increased levels of anthocyanins, which became visible in outer cell layer of the cortex as a ring of purple color. The light-grown root cultures also had radially thickened morphology compared with the dark-grown controls. The growth rate and cell viability of the hairy root cultures in light did not show obvious difference in comparison with those in dark. However, biosynthesis of CADs including cichoric acid, caftaric acid, chlorogenic acid and caffeic acid was significantly increased in hairy root cultures grown in the light. The enhanced accumulation of CADs and anthocyanins in E. purpurea hairy root cultures was correlated to an observed light-stimulated activity of phenylalanine ammonium lyase (PAL).  相似文献   

4.
In this study, we evaluated the feasibility of using mass cultivation of the adventitious roots of Echinacea purpurea in balloon type bubble (air-lift) bioreactors to produce caffeic acid derivatives, which have pharmaceutical and therapeutic values. An approximately 10 fold increase in biomass and secondary compounds was observed after 4 weeks of culture in balloon type bubble bioreactors (5 L capacity containing 4 L of half strength MS medium). In addition, a linear relationship was observed between the concentration of biomass and the sucrose and ion consumption rate. Furthermore, the concentration of biomass in the bioreactor culture was found to increase as the conductivity decreased. An inoculum density of 7 g/L FW and an aeration rate of 0.1 vvm were found to be suitable for inducing the accumulation of biomass and secondary metabolites. Of the three caffeic acid derivatives evaluated (caftaric acid, chlorogenic acid, and cichoric acid), the concentration of cichoric acid was the highest (26.64 mg/g DW).  相似文献   

5.
Caffeic acid derivatives (CADs) are a group of bioactive compounds which are produced in Echinacea species especially Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida. Echinacea is a popular herbal medicine used in the treatment of common cold and it is also a prominent dietary supplement used throughout the world. Caffeic acid, chlorogenic acid (5-O-caffeoylquinic acid), caftaric acid (2-O-caffeoyltartaric acid), cichoric acid (2, 3-O-dicaffeoyltartaric acid), cynarin, and echinacoside are some of the important CADs which have varied pharmacological activities. The concentrations of these bioactive compounds are species specific and also they vary considerably with the cultivated Echinacea species due to geographical location, stage of development, time of harvest, and growth conditions. Due to these reasons, plant cell and organ cultures have become attractive alternative for the production of biomass and caffeic acid derivatives. Adventitious and hairy roots have been induced in E. pupurea and E. angustifolia, and suspension cultures have been established from flask to bioreactor scale for the production of biomass and CADs. Tremendous progress has been made in this area; various bioprocess methods and strategies have been developed for constant high-quality productivity of biomass and secondary products. This review is aimed to discuss biotechnological methods and approaches employed for the sustainable production of CADs.  相似文献   

6.
Echinacea purpurea is one of the most widely used immunostimulant plants. Its main active compounds are polysaccharides, glycoproteins, caffeic acid derivatives, alkamides, and melanins. The article describes an optimized extraction procedure that enables spectrophotometric quantification of polysaccharides from Echinacea purpurea. The extraction procedure can be widely applied as it demonstrated to be useful for determining polysaccharide content in flowers and leaves, in summer and autumn plants, in plants with green and red stem, and in plants from two different plantations. A significantly higher content of polysaccharides in flowers in comparison to leaves, as well as in plants with green stems in comparison to plants with red stems was determined. Statistical differences were absent in plants collected in different seasons and growing at different plantations.  相似文献   

7.
The growth of fish is directly dependent on feed composition and quality. Medicinal plants can be added to fish feed as adjuvant therapy for the prevention of fish diseases. The purple coneflower (Echinacea purpurea (L.) Moench.) has been reported to have multiple biological effects, including immunomodulatory and antioxidant activity. The most active compounds of E. purpurea are polyphenols - caffeic acid derivatives: caftaric acid, chlorogenic acid, cynarin, echinacoside and cichoric acid.Due to a relatively limited number of studies on the use of the purple coneflower as a nutritional supplement for fish feeding, extruded fish feed with addition of Echinacea roots was produced. In the feed total phenolic content, selected polyphenol contents, the energetic value, nutrient contents and antioxidant capacity were examined.The results indicate that fish feed with addition of the Echinacea has a great potential to be a good source of natural radical scavengers, for example polyphenols, and nutritive ingredients. Antioxidant properties of feed were well correlated with the coneflower content. The study findings confirmed that high-temperature extrusion-cooking process does not deactivate phenolic antioxidant compounds, which are present both in the Echinacea roots and in the final product. Fish feed with addition of E. purpurea can be used as a nutritional supplement in the prevention of fish diseases caused by oxidative stress.  相似文献   

8.
The allelopathic effect of caffeic acid was tested on root growth, phenylalanine ammonia-lyase (PAL) and peroxidase (POD) activities, hydrogen peroxide (H2O2) accumulation, lignin content and monomeric composition of soybean (Glycine max) roots. We found that exogenously applied caffeic acid inhibited root growth, decreased the PAL activity and H2O2 content and increased the soluble and cell wall-bound POD activities. The p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) monomers and total lignin (H + G + S) increased in the caffeic acid-exposed roots. When applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), caffeic acid equalized the inhibitory effect of PIP, whereas the application of methylene dioxocinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL) plus caffeic acid decreased lignin production. These results indicate that exogenously applied caffeic acid can be channeled into the phenylpropanoid pathway via the 4CL reaction, resulting in an increase of lignin monomers that solidify the cell wall and inhibit root growth.  相似文献   

9.
Quantitative evaluation of phytochemical diversity in Echinacea angustifolia DC. populations from different natural geographic areas supports the existence of distinct natural chemotypes within the species. Consumers, growers and manufacturers of phytomedicines are interested in chemotype identification for prediction of phytochemical content in cultivar development. Six month old E. angustifolia roots, grown from nine different wild seed sources in a controlled environment, were extracted into 70% ethanol and 28 reported phytochemicals were measured by HPLC separation. Two-way ANOVA between the nine populations revealed quantitative differences (p<0.05) in the caffeic acid derivatives 2,3-O-dicaffeoyl tartaric acid (cichoric acid), 2-O-caffeoyl tartaric acid (caftaric acid), 1,3-dicaffeoyl-quinic acid (cynarin), echinacoside and ten reported alkamides. Canonical discriminant analysis determined the phytochemical variables which contributed the most towards chemotype distinction for five of the nine populations: undeca-2E,4Z-diene-8,10-diynoic acid-2-methylbutylamide1, dodeca-2E,4E-dienoic acid isobutylamide1, dodeca-2E-ene-8,10-diynoic acid isobutylamide7, hexadeca-2E,9Z-diene-12,14-diynoic acid isobutylamide1, cichoric acid7, caftaric acid1, and echinacoside7 (1p<0.0001, 7p<0.05). Five of those compounds were also significantly associated with latitudinal variation by regression analyses (p<0.05).  相似文献   

10.
In this study the effects of seed size variation on germinationand seedling vigour have been investigated within and betweenploidy levels of diploid and related autotetraploid Dactylixglomerata. Rates of seed germination and seedling growth werecompared in two contrasting environments using diploid and tetraploidseeds of equal and also different biomass. Within each ploidylevel, seed biomass had no effect on either the overall percentagenor the rate of germination. In contrast, the comparison ofseeds of equal biomass but differing in ploidy level showedthat seeds from tetraploid plants germinated faster and to ahigher percentage than those from diploid plants. With respectto seedling growth, heavier seeds from the tetraploid genotypesgave seedlings of significantly higher biomass than those fromlighter tetraploid and diploid seeds throughout the 2 monthsof study. Interestingly, seeds of equal biomass but from differentploidy levels produced seedlings more similar than those fromthe extreme seed weight categories. These differences were maintainedin two different environmental conditions. These results suggestthat there is a complex interdependance of seed size and ploidyon seed germination and seedling growth but is not a simpleconsequence of differences in seed size between diploids andtheir related tetraploids.Copyright 1995, 1999 Academic Press Dactylis glomerata, polyploidy, seed size, germination, seedling  相似文献   

11.
12.
Chromosome numbers are reported for 190 collections ofCastilleja of the Great Basin-Rocky Mountains and adjacent regions in western North America. Polyploidy has played a major role in evolu tion of this genus. Of the 35 taxa represented, 14 are exclusively diploid (n =12). The remaining 21 taxa exhibit polyploidy: eight are tetraploid only, two are octopIoid only, while 11 of the more wide-ranging species have two or more levels of polyploidy. BothC. rhexifolia andC. sulphured have diploid, tetraploid, and octoploid races while the widespreadC. miniata has four (2x, 4x, 8x, and 10x). Where appropriate, the role of polyploidy and hybridization inCastilleja evolution and their relevance to taxonomy are discussed for individual species.  相似文献   

13.
Polyploidy has played a significant role in the evolutionary history of plants and is a valuable tool for obtaining useful characteristics. Because of the novelty of polyploids, comparison of their in vitro culture responses with diploids would be notable. In this study, leaf explants from diploid, autotetraploid and mixoploid plants of Cichorium intybus L. were cultured in vitro on the similar media and under same conditions. The ploidy level of the obtained calluses and regenerants were determined by flow cytometry analysis. The callogenic response of leaf explants cultured on the callus induction medium did not depend on the ploidy level of their parental plants. According to the flow cytometry analysis, the increased ploidy levels (4x) and (8x) were observed in the callus cultures with diploid and tetraploid origin, respectively. A considerable difference was observed between the ploidy level of mixoploid plants and their calluses, indicating the dominance of diploid cells in the callus tissue. The results showed that polyploidy led to the loss of organogenic potential as the tetraploid origin calluses failed to regenerate, while the diploid origin calluses successfully regenerated to whole plants.  相似文献   

14.
In this study, the effects of ploidy level and culture medium were studied on the production of tropane alkaloids. We have successfully produced stable tetraploid hairy root lines of Hyoscyamus muticus and their ploidy stability was confirmed 30?months after transformation. Tetraploidy affected the growth rate and alkaloid accumulation in plants and transformed root cultures of Egyptian henbane. Although tetraploid plants could produce 200% higher scopolamine than their diploid counterparts, this result was not observed for corresponding induced hairy root cultures. Culture conditions did not only play an important role for biomass production, but also significantly affected tropane alkaloid accumulation in hairy root cultures. In spite of its lower biomass production, tetraploid clone could produce more scopolamine than the diploid counterpart under similar growth conditions. The highest yields of scopolamine (13.87?mg?l?1) and hyoscyamine (107.7?mg 1?1) were obtained when diploid clones were grown on medium consisting of either Murashige and Skoog with 60?g/l sucrose or Gamborg??s B5 with 40?g/l sucrose, respectively. Although the hyoscyamine is the main alkaloid in the H. muticus plants, manipulation of ploidy level and culture conditions successfully changed the scopolamine/hyoscyamine ratio towards scopolamine. The fact that hyoscyamine is converted to scopolamine is very important due to the higher market value of scopolamine.  相似文献   

15.
《Phytochemistry》1987,26(10):2723-2727
l-Phenylalanine ammonia-lyase (PAL, E.C. 4.3.1.5) is the first committed enzyme in the pathway leading to phenylpropanoid biosynthesis in higher plants. PAL catalyses the conversion of l-phenylalanine to t-cinnamic acid with the elimination of ammonia. Standard methods for determination of PAL activity in both green and non-green tissues were found to lead to measurements of both l-phenylalanine amino-transferase (PAT, E.C. 2.6.1.1) and PAL activities together. The accurate estimation of PAL activity alone, necessitated the inhibition of PAT by a specific inhibitor of PAT activity, l-aspartic acid. The influence of PAT on the kinetics of PAL activity may explain (i) the diverse properties that have been attributed to PAL and (ii) the controversies regarding the control mechanism underlying the regulation of PAL activity. Evidence is presented for the regulation of phenylpropanoid biosynthesis via substrate supply and availability as opposed to feedback inhibition, during phaseollin production and hypersensitive necrosis in Phaseolus vulgaris.  相似文献   

16.
Many studies have compared the growth of plants from native and invasive populations, but few have considered the role of ploidy. In its native range in North America, Solidago gigantea Aiton (Asteraceae) occurs as a diploid, tetraploid and hexaploid, with considerable habitat differentiation and geographic separation amongst these ploidy levels. In the introduced range in Europe, however, only tetraploid populations are known. We investigated the growth performance and life history characteristics of plants from 12 European and 24 North American (12 diploid, 12 tetraploid) populations in a common garden experiment involving two nutrient and two calcium treatments. Twelve plants per population were grown in pots for two seasons. We measured 24 traits related to leaf nutrients, plant size, biomass production and phenology as well as sexual and vegetative reproduction. Native diploid plants had a higher specific leaf area and higher leaf nutrient concentrations than native tetraploids, but tetraploids produced many more shoots and rhizomes. Diploids grown with additional calcium produced less biomass, whereas tetraploids were not affected. European plants were less likely to flower and produced smaller capitulescences than North American tetraploids, but biomass production and shoot and rhizome number did not differ. We conclude that a knowledge of ploidy level is essential in comparative studies of invasive and native populations. While clonal growth is important for the invasion success of tetraploid S. gigantea, its potential was not acquired by adaptation after introduction but by evolutionary processes in the native range.  相似文献   

17.
To efficiently produce bioactive compounds of Echinacea via adventitious root (AR) culture, we established an AR co-culture system of Echinacea species. ARs of different combination of Echinacea species [E. pallida (Epa), E. purpurea (Epu), and E. angustifolia (Ean)] were inoculated into 5 L balloon-type airlift bioreactors to select a suitable combination group. The biomass of ARs increased in the Epa+Epu group but decreased in co-culture groups of Epa+Ean and Epa+Epu+Ean. In the Epa+Epu group, the content and productivity of total phenolics, flavonoids, and caffeic acid derivatives increased, a monomer of caffeic acid derivatives (caffeic acid) that is absent in single-species cultures (Epa or Epu) were synthesized; moreover, Epa+Epu also showed the highest antioxidant activity. The inoculum proportions in Epa+Epu significantly influenced the co-culture effect; among the proportion groups (Epa:Epu?=?1:6, 2:5, 3:4, 1:1, 4:4, 5:2, and 6:1), the Epa:Epu proportion of 4:3 was the most favorable for AR biomass and bioactive compound accumulation, and the antioxidant activity also peaked at 4:3 proportion. In addition, the co-culture system is suitable for large bioreactors (10 and 20 L), wherein the AR biomass increased without a decrease in the amount of bioactive compounds. A co-culture system was thus successfully established in this study, and AR cultures are expected to be used as an alternative raw material for the production of Echinacea-derived products.  相似文献   

18.
Thirty-five derivatives of cinnamic acid and related compounds were tested for inhibition against phenylalanine ammonia-lyase (PAL) derived from sweet potato, pea and yeast. Caffeic and gallic acids showed inhibition against PAL originating from higher plants, but not against yeast PAL. In contrast, yeast PAL was specifically inhibited by p-hydroxycinnamic and p-hydroxybenzoic acids. The results suggest that caffeic and gallic acids may act as regulatory substances in phenylpropanoid metabolism in higher plants. Inhibition experiments with synthetic cinnamic acid derivatives have revealed that the presence of a hydrophobic aromatic ring, α,β-double bond and carboxyl group is essential for inhibitory activity. 2-Naphthoic acid which fulfills these structural requirements showed a strong inhibition. The size and shape of the active site is discussed from structure-activity relationships of cinnamic acid derivatives. o-Chlorocinnamic acid, one of the strongest inhibitors found in this study showed an inhibitory effect on the growth of the roots of rice seedlings.  相似文献   

19.
Modes of evolution of species classified within different sections inTaraxacum involve diverse processes, viz. primary divergence of an ancestral sexual diploid, hybridization between a tetraploid apomict and a diploid sexual hybrid, differentiation of an advanced apomictic taxon at one ploidy level, hybridization between a sexual tetraploid and a sexual diploid, formation of a polyploid series from an apomictic ancestor of a lower polyploidy level, and remote hybridization between an autumn-flowering ancestral diploid and a spring-flowering derivative diploid or apomict. Various reproduction systems of the plants involved, different environments and different timing of the processes contribute to a very varied nature of the species groups.  相似文献   

20.
Henry IM  Dilkes BP  Young K  Watson B  Wu H  Comai L 《Genetics》2005,170(4):1979-1988
Polyploidy, the inheritance of more than two genome copies per cell, has played a major role in the evolution of higher plants. Little is known about the transition from diploidy to polyploidy but in some species, triploids are thought to function as intermediates in this transition. In contrast, in other species triploidy is viewed as a block. We investigated the responses of Arabidopsis thaliana to triploidy. The role of genetic variability was tested by comparing triploids generated from crosses between Col-0, a diploid, and either a natural autotetraploid (Wa-1) or an induced tetraploid of Col-0. In this study, we demonstrate that triploids of A. thaliana are fertile, producing a swarm of different aneuploids. Propagation of the progeny of a triploid for a few generations resulted in diploid and tetraploid cohorts. This demonstrated that, in A. thaliana, triploids can readily form tetraploids and function as bridges between euploid types. Genetic analysis of recombinant inbred lines produced from a triploid identified a locus on chromosome I exhibiting allelic bias in the tetraploid lines but not in the diploid lines. Thus, genetic variation was subject to selection contingent on the final ploidy and possibly acting during the protracted aneuploid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号