首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Embryogenic callus formation in different larch species from Siberia (Larix sibirica, L. gmelinii, and L. sukaczewii) was carried out on MSGm medium supplemented with growth regulators (2.4-D and BAP) and followed one and the same scheme: elongation of somatic cells and their asymmetric division with formation of initial and tube cells. The cells of embryo initial underwent sequential divisions and formed embryonic globules which caused the formation of somatic embryos. Somatic embryos became mature and germinated by addition of ABA and PEG into the medium. Long-term proliferating cell lines and regenerant plants were obtained in Sukachev larch and its hybrid with Siberian larch. The success of somatic embryogenesis depended on the genotype of the donor tree.  相似文献   

5.
Endogenous levels of IAA, ABA and four types of CKs were analyzed in zygotic and indirect (ISE) and direct somatic embryogenesis of Acca sellowiana. Zygotic and somatic embryos at different developmental stages were sampled for morphological and hormonal analysis. Both embryo types showed substantial asymmetry in hormone levels. Zygotic embryos displayed a conspicuous peak of IAA in early developmental stages. The results outlined the hormonal variations occurring during zygotic and somatic embryogenesis regarding the timing, nature and hormonal status involved in both processes. The short transient pulse of IAA observed on the 3rd day in culture was suggested to be involved with the signaling for the induction of somatic embryogenesis. Fertilized ovule development was associated with increased IAA levels 21?C24?days after pollination, followed by a sharp decrease in the cotyledonary stage, both in zygotic and somatic embryos. There was a prominent increase in ABA levels in cultures which generated ISE 24?C30?days after pollination, a period that corresponds to the heart and torpedo stages. The levels of total CKs (Z, [9R]Z, iP and [9R]iP) were also always higher in zygotic than in somatic embryogenesis. While zygotic embryogenesis was dominated by the presence of zeatin, the somatic process, contrarily, was characterized by a large variation of the other cytokinin forms and amounts studied. The above results, when taken together, could be related to the previously observed high frequency formation of anomalous somatic embryos formed in A. sellowiana, as well as to their low germination ability.  相似文献   

6.
落叶松体胚发育中5个miRNA前体与成熟体的表达   总被引:1,自引:0,他引:1  
利用同源比对或RACE克隆了5个落叶松(Larix leptolepis) miRNA前体。结果显示, 在各物种miRNA前体间, 成熟序列高度相似, 但其它序列相似度差异大, 序列相似度与亲缘关系有关。采用qRT-PCR分析了5个miRNA、前体和靶基因在落叶松体胚8个发育阶段的表达变化。结果显示, miRNA表达最高峰出现在后期子叶胚, 暗示与促进胚胎休眠有关; 表达次高峰出现时期不同, 表现为miR397和miR408在PEMIII, miR398在早期单胚, miR156和miR166在早期子叶胚, 表明其与保持薄细胞壁、质子传递、顶端分生组织形成等调控有关。miRNA成熟体表达与前体含量不呈线性相关, 可能受多重调控。研究结果对于阐明MIR基因进化、表达调控及在体胚发育中的调控功能具有重要理论意义。  相似文献   

7.
Kikuchi A  Sanuki N  Higashi K  Koshiba T  Kamada H 《Planta》2006,223(4):637-645
Studies of carrot embryogenesis have suggested that abscisic acid (ABA) is involved in somatic embryogenesis. A relationship between endogenous ABA and the induction of somatic embryogenesis was demonstrated using stress-induced system of somatic embryos. The embryonic-specific genes C-ABI3 and embryogenic cell proteins (ECPs) were expressed during stress treatment prior to the formation of somatic embryos. The stress-induction system for embryogenesis was clearly distinguished by two phases: the acquisition of embryogenic competence and the formation of a somatic embryo. Somatic embryo formation was inhibited by the application of fluridone (especially at 10−4 M), a potent inhibitor of ABA biosynthesis, during stress treatment. The inhibitory effect of fluridone was nullified by the simultaneous application of fluridone and ABA. The level of endogenous ABA increased transiently during stress. However, somatic embryogenesis was not significantly induced by the application of only ABA to the endogenous level, in the absence of stress. These results suggest that the induction of somatic embryogenesis, in particular the acquisition of embryogenic competence, is caused not only by the presence of ABA but also by physiological responses that are directly controlled by stresses.  相似文献   

8.
云南大叶茶体细胞胚发生及体细胞胚苗形成体系的建立   总被引:9,自引:0,他引:9  
利用云南大叶茶(Camellia sinensis var.assamica Kitamura)胚性细胞系(CL_1)中悬浮培养物,建立了高频率同步化体细胞胚发生及体胚苗形成体系。以改良的MS为基本培养基,将CL_1中培养物由液体保持培养基(0.1mg/L 2,4-D 0.5mg/L 6-BA)继代转入液体诱导培养基(0.05mg/L 2,4-D 0.50mg/L6-BA),暗培养诱导28d,转入不含任何激素的液体分化培养基中再培养28d,获得了不同发育时期的体细胞胚,其发生频率为81.5%。不同发育时期的体细胞胚用不同目的细胞筛收集,在液体生长培养基(1/2 MS 1.0mg/L GA_3 0.5mg/L 6-BA)中培养发育成熟。ABA有利于高质量体细胞胚的形成。20~70月大小的体细胞胚在固体生长培养基中成苗转换率为75%。在液体悬浮培养条件下观察记录了体细胞胚发育过程,证实其过程与合子胚的形态发生过程相似。  相似文献   

9.
The system of high synchronous frequency of somatic embryogenesis and somatic embryo seedling formation was established by means of embryonic cell hne 1 ( CL1 ) of Camellia sinensis var. assamica Kitamura. Modified MS was used as the basic medium. Cultures of CL1 was transferred to the aqueous induced medium (0.05 mg/L 2,4-D + 0.50 mg/L 6-BA) from the maintenance medium (0.1 mg/L 2,4-D + 0.5 mg/L 6-BA) for somatic embryos induction under dark condition. 28 days later, they were cultured in the liquid differentiation medium. Various kinds of somatic embryos were obtained after another 28 days. The frequency of somatic embryos was 81.5 %. Various mesh sizes of sieves were applied to collect the somatic embryos in different developmental stages which could develop to mature stage in the aqueous growth medium ( 1/2 MS + 1.0 mg/L GA3 + 0.5 mg/L 6-BA). ABA was effective to promote the formation of highly qualified somatic embryo. The mature somatic embryos sized 20 to 70 mesh had the conversion frequency 75 %. The development of somatic embryogenesis studied under a cell suspension culture system was similar to the zygotic embryogenesis.  相似文献   

10.
In order to investigate the effect of ABA on secondary embryogenesis from somatic embryos inAralia cordata Thunb., embryogenic callus and somatic embryos were induced from inflorescence on solid MS basal medium supplemented with 1.5 mg/L 2,4-D after eight weeks without subculture. For mass production of somatic embryos, embryogenic cell clumps were maintained in liquid MS medium supplemented with 1.0 mg/L 2,4-D, and then transferred to 2, 4-D-free medium. When developing embryos at various stages were cultured separately in liquid medium with ABA (0 to 2.0 mg/L) for three weeks, and then cultured in ABA-free liquid medium for two weeks, torpedo-shaped embryos exhibited secondary embryogenesis of 65.9% in only 0.2 mg/L ABA pretreatment. Cotyledonary embryos in cultures by 0.2, 0.5 and 1.0 mg/L ABA pretreatment also exhibited secondary embryogenesis (73%, 9.4% and 6.0%, respectively). However, globular and heart-shaped somatic embryos treated with ABA did not form secondary embryos on their hypocotyl surfaces. When cotyledonary embryos were cultured in ABA-free medium or 0.2 mg/L ABA treated medium for three weeks, and then in ABA-free liquid medium for 6 weeks, the germination frequency was lower in medium with 0.2 mg/L ABA (45.9%) than in hormone-free medium (56.8%). This result seems to be related to the high frequency of secondary embryogenesis. It is suggested that secondary embryogenesis by ABA application depends upon the stage of embryo cultured and the ABA concentration.  相似文献   

11.
Embryogeny of gymnosperms: advances in synthetic seed technology of conifers   总被引:26,自引:0,他引:26  
Synthetic seed technology requires the inexpensive production of large numbers of high-quality somatic embryos. Proliferating embryogenic cultures from conifers consist of immature embryos, which undergo synchronous maturation in the presence of abscisic acid and elevated osmoticum. Improvements in conifer somatic embryo quality have been achieved by identifying the conditions in vitro that resemble the conditions during in ovulo development of zygotic embryos. One normal aspect of zygotic embryo development for conifers is maturation drying, which allows seeds to be stored and promotes normal germination. Conditions of culture are described that yield mature conifer somatic embryos that possess normal storage proteins and fatty acids and which survive either partial drying, or full drying to moisture contents similar to those achieved by mature dehydrated zygotic embryos. Large numbers of quiescent somatic embryos can be produced throughout the year and stored for germination in the spring, which simplifies production and provides plants of uniform size. This review focuses on recent advances in conifer somatic embryogenesis and synthetic seed technology, particularly in areas of embryo development, maturation drying, encapsulation and germination. Comparisons of conifer embryogeny are made with other gymnosperms and angiosperms.Abbreviations ABA abscisic acid - LEA late embryogenesis abundant - PEG polyethylene glycol - PGR plant growth regulator - RH relative humidity - TAG triacylglycerol  相似文献   

12.
The maturation of somatic embryogenesis of hybrid larch is an essential step for plantlet production. ABA controls not only synchronicity of maturation, but has important consequences on eventual viability of the plantlet. To gain understanding of the role of this plant growth regulator during the maturation process of hybrid larch somatic embryos, we studied the incorporation of [ 3 H]-(±)-abscisic acid [tritiated (±)-ABA] over 6 weeks of culture. Results showed a rapid incorporation of label into the tissues directly in contact with the culture medium. Accumulation of tritiated (±)-ABA occurred mainly in the maturing somatic embryos found at the periphery of the embryogenic mass but not in direct contact with the culture medium. Tritiated (±)-ABA was mainly conjugated as a glucose ester form. Rates of tritium incorporation indicated a significant build-up in tritiated (±)-ABA metabolization at the third week of culture. The weekly measurement of labelling in the culture medium over 6 weeks showed no localized exhaustion of tritiated (±)-ABA in positions where the embryogenic masses were placed in Petri dishes. The calculated ABA internal content of the maturing somatic embryos was similar to published ELISA measurements of ABA. This result suggests an absence of endogenous ABA synthesis by somatic embryos of hybrid larch during maturation.  相似文献   

13.
The biotechnology of somatic embryogenesis holds considerable promise for clonal propagation and breeding programs in forestry. To efficiently regulate the whole process of plant regeneration through somatic embryogenesis, it is of outmost importance to understand early developmental events when somatic embryos are just formed. In Norway spruce, somatic embryos transdifferentiate from proembryogenic masses (PEMs). This work describes the developmental dynamics (frequency distribution of PEMs and early somatic embryos) of the whole embryogenic suspension culture growing in the presence and absence of plant growth regulators (PGRs), auxin and cytokinin. The experiments have shown that PEM-to-somatic embryo transition is a key developmental switch that determines the yield and quality of mature somatic embryos and ultimately plant production. This switch was induced by the withdrawal of PGRs in cell suspension leading to a rapid accumulation of early somatic embryos (to a maximum of 75% of the entire population of suspension culture) and concomitant degradation of PEMs. The latter was evident from increased level of cell death measured through spectrophotometric Evans blue staining assay. Proembryogenic mass-to-embryo transition and concomitant activation of cell death were mediated by strong extracellular acidification. Therefore, buffering PGR-free culture medium at high (pH 5.8) or low (pH 4.5) levels of pH inhibited both PEM-to-embryo transition and cell death. The yield of mature somatic embryos on abscisic acid (ABA)-containing medium was increased up to 10-fold if the suspension culture had been pretreated for 1 to 9 days in unbuffered PGR-free medium. In this case a large proportion (75%) of the total number of mature embryos was formed within a short, 5-week, contact with ABA. The latter is practically important because prolonged contact with ABA suppresses the growth of somatic embryo plants. Based on these results, an improved method for regulating somatic embryogenesis was set up and tested for nine genotypes of Norway spruce. Over 800 plants regenerated from all tested genotypes demonstrated a good performance in the greenhouse and they were transferred to the field.  相似文献   

14.
15.
Summary In the past 15 years tremendons progress has been made towards the development of systems for the induction and development of somatic embryos of coniferous species. Since the first report in 1985, several species have been induced to produce somatic embryos. This has been rendered possible by the development of rational media and improvement of culture conditions, which have resulted in increased embryo quality and higher conversion frequency. Understanding the physiological and biochemical events occurring during in vivo embryogenesis has been fundamental in the design of new protocols for improving the somatic embryogenic process. Specifically, the inclusions of abscisic acid (ABA) and osmotic agents, such as polyethylene glycol (PEG), have been shown to be necessary for the functional development of somatic embryos. In the past few years, physiological and biochemical investigations have been useful in increasing our knowledge on the mode of action of ABA and PEG during embryo development. In comparison with the flowering plants, our understanding on the molecular mechanisms regulating the embryogenic process in coniferous species is still very limited. The application of new molecular techniques is therefore fundamental towards this end. The emphasis of this review is on recent information dealing with the maturation of conifer somatic embryos.  相似文献   

16.
The overall architectural pattern of the mature plant is established during embryogenesis. Very little is known about the molecular processes that underlie embryo morphogenesis. Last decade has, nevertheless, seen a burst of information on the subject. The synchronous somatic embryogenesis system of carrot is largely being used as the experimental system. Information on the molecular regulation of embryogenesis obtained with carrot somatic embryos as well as observations on sandalwood embryogenic system developed in our laboratory are summarized in this review. The basic experimental strategy of molecular analysis mostly relied on a comparison between genes and proteins being expressed in embryogenic and non-embryogenic cells as well as in the different stages of embryogenesis. Events such as expression of totipotency of cells and establishment of polarity which are so critical for embryo development have been characterized using the strategy. Several genes have been identified and cloned from the carrot system. These include sequences that encode certain extracellular proteins (EPs) that influence cell proliferation and embryogenesis in specific ways and sequences of the abscisic acid (ABA) inducible late embryogenesis abundant (LEA) proteins which are most abundant and differentially expressed mRNAs in somatic embryos. That LEAs are expressed in the somatic embryos of a tree flora also is evidenced from studies on sandalwood. Several undescribed or novel sequences that are enhanced in embryos were identified. A sequence of this nature exists in sandalwood embryos was demonstrated using aCuscuta haustorial (organ-specific) cDNA probe. Somatic embryogenesis systems have been used to assess the expression of genes isolated from non-embryogenic tissues. Particular attention has been focused on both cell cycle and histone genes  相似文献   

17.
This study examined the role of endogenous abscisic acid (ABA) and jasmonic acid (JA) in indirect somatic embryogenesis of Medicago sativa L. A multiplex GC-MS/MS technique allowed quantitative single-run analyses of ABA, JA, 12-oxophytodienoic acid (OPDA) and indole-3-acetic acid (IAA). The preparation of initial explants led to a strong accumulation of ABA, JA and OPDA but not of IAA. Substantially higher levels of ABA, JA and OPDA were detected in developing somatic embryos than in callus or embryogenic suspension. Fluridone (FLD) decreased ABA, JA and OPDA levels. Indoprofen (INP) appeared to be a specific inhibitor of octadecanoid biosynthesis. Somatic embryo production and development were negatively affected by FLD or INP. Only INP (0.5 μM) applied during proliferation phase increased the number of cotyledonary embryos. The results strongly indicate the involvement of ABA and JA in somatic embryogenesis of M. sativa. Surprisingly, low IAA contents in comparison to stress-related compounds (ABA, JA and OPDA) were detected in explants, embryogenic tissues and somatic embryos.  相似文献   

18.
Nishiwaki M  Fujino K  Koda Y  Masuda K  Kikuta Y 《Planta》2000,211(5):756-759
Seedlings of carrot (Daucus carota L. cv. Red Cored Chantenay) formed somatic embryos when cultured on medium containing abscisic acid (ABA) as the sole source of growth regulator. The number of embryos per number of seedlings changed depending on the concentration of ABA added to the medium, with a maximum embryo number at 1 × 10−4 M ABA. Seedling age was critical for response to exogenous ABA; no seedling with a hypocotyl longer than 3.0 cm was able to form an embryo. Removal of shoot apices from seedlings completely inhibited the embryogenesis induced by application of exogenous ABA, suggesting that the action of ABA requires some substance(s) that is translocated basipetally from shoot apices through hypocotyls. Histologically, somatic embryos shared common epidermal cells and differentiated not through the formation of embryogenic cell clumps, but directly from epidermal cells. These morphological traits are distinct from those of embryogenesis via formation of embryogenic cell clumps, which has been found in embryogenic carrot cultures established using 2,4-dichlorophenoxyacetic acid or other auxins. These results suggest that ABA acts as a signal substance in stress-induced carrot seedling somatic embryogenesis. Received: 22 April 2000 / Accepted: 8 June 2000  相似文献   

19.
The effects of methyl jasmonate (MeJA) in relation to abscisic acid (ABA) on different phases of somatic embryogenesis were studied in Medicago sativa L. Different concentrations of both the growth inhibitors (0.0, 0.5, 5.0, 50.0 and 500.0 μM) were tested in five distinct phases of somatic embryogenesis, viz., induction, proliferation, differentiation, maturation and regeneration. Like ABA, MeJA also inhibited callus induction, callus growth, proliferation of embryogenic suspension as well as germination and conversion of somatic embryos. However, its inhibitory effects on various phases of somatic embryogenesis were less pronounced as compared to that due to ABA. In contrast to ABA, MeJA did not have any significant influence on the development of somatic embryos when applied in the differentiation phase. The study showed that ABA used routinely as an inducer of somatic embryo maturation in M. sativa could not be replaced by MeJA.  相似文献   

20.
Three different types of morphogenesis were identified in embryogenic cultures of Prunus avium grown on a proliferation medium containing 0.54 μM NAA, 0.46 μM kinetin and 0.44 μM BA: a friable hyperhydric callus, repetitive embryogenesis and an embryogenic tissue. Translucent and white somatic embryos were produced from the three types of morphogenesis but mainly from the embryogenic tissue. These somatic embryos showed histological and cytological teratological features such as highly differentiated cells with shrunken cytoplasm and destructured nuclei. For the four lines studied, somatic embryo production was improved by transferring the embryogenic tissue to developmental media without auxin and cytokinin but supplemented with maltose alone or maltose and 10 μM ABA. Three weeks after transfer, the line showing the most embryogenesis produced 1404 somatic embryos per gram of embryogenic tissue. A concentration of 263 mM maltose significantly increased the number of white somatic embryos for L 10 line, while translucent somatic embryo production was improved by 88 mM maltose for L 16 line. The combination of maltose and ABA produced different effects with each line. When used with 88 mM maltose, 10 μM ABA significantly increased white somatic embryo production for two lines but decreased the production for one line. When combined with 263 mM maltose, ABA had no effect on white somatic embryo production but significantly decreased the number of translucent somatic embryos. Cells of white somatic embryos contained protein storage reserves and numerous lipid bodies, while those of translucent embryos did not contain storage reserves or lipid bodies. After a two-month cold treatment conversion rate of white and translucent somatic embryos reached 8.5% and 35.2% respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号